
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). IntelITSIS-2020

Detecting Software Malicious Implant Based on
Anomalies Research on Local Area Networks

Andrii Nicheporuk[0000-0002-7230-9475], Vadym Paiuk[0000-0002-7253-893X],
Bohdan Savenko[0000-0002-9969-8239], Oleg Savenko[0000-0002-4104-745X]

and Olena Geidarova[0000-0002-7253-893X]

Khmelnytsky National University, Khmelnytsky, Ukraine
andrey.nicheporuk@gmail.com, vadympaiuk@gmail.com,
savenko_bohdan@ukr.net,savenko_oleg_st@ukr.net,

geydarova@ukr.net

Abstract. The paper analyzes malicious software implants that use undocu-
mented software features on local area networks. They can cause significant
harm both users of personal computers and enterprises that utilize computer
networks and use specialized software. In order to detect this type of malware,
its possible models and behavioral scenarios, features, stages of research in lo-
cal area networks have been proposed. Based on this data, a method for detect-
ing computer anomalies has been developed, which is part of a general process
for detecting malicious software implants that use undocumented software fea-
tures. The result of the method is a division of computers on a local network in-
to classes in purpose for further investigation of behavioral patterns. Thus,
groups of computer are highlighted in which similar profiles have been formed,
that in the overall scheme allows to improve the accuracy of detection. The
adopting of the developed models of software implants that use undocumented
software features, as well as a method for detecting computer anomalies, have
allowed to carry out experimental researches with the use of distributed detec-
tion system. The results of the experiments have shown the correctness of the
proposed detection enhancement solutions.

Keywords: Software Malicious Implant, Local Network, Computer, Malware,
Czekanowski Diagram.

1 Introduction

According to research [1] of IDC firm and the University of Singapore, malware-
related security breaches cause users worldwide damage of at least on $ 500 billion
annually. Moreover, the number of malicious software is growing every year [2]. The
most relevant for the benefit of attackers are organizations and enterprises that operate
information technology on local computer networks. There are many ways to gain
entry into the local computer networks of businesses (organizations) for the purpose
of unauthorized access to information in them. One way for attackers to access enter-
prises (organizations) information resources is to use undocumented capabilities in

mailto:andrey.nicheporuk@gmail.com
mailto:vadympaiuk@gmail.com
mailto:savenko_bohdan@ukr.net,savenko_oleg_st@ukr.net

the software and hardware of computers and peripherals that allows unauthorized
access to system resources, typically, via a local network. This is achieved through
the using of software implants, which primary purpose is to provide unauthorized
access to sensitive information.

Software implant is a secretly implemented program which poses a threat to the in-
formation contained on the computer [3]. The software implant can be implemented
as a separate malware, or as undocumented software code in the software.

We will consider the software implants that use undocumented software features
on the local computer networks of enterprises (organizations) as an object of research.
The difficulty of detecting such a secretly functioning software object, which under
certain conditions is capable of providing unauthorized access, is due to the absence
of its activity during a long time. As a rule, such software implants allow to keep
software features and are implemented by some else of the features included in the
software package.

An enterprise may use ready-made software that already has software implants, or
software made to order, which has been poorly verified upon commissioning. Soft-
ware that runs inside enterprise LANs is typically a distributed, which makes software
implants are active on all computers on the network. This increases the threat to busi-
nesses and organizations. Software implants can be used to create botnets [4], imple-
ment trojans, or produce metamorphic or polymorphic components [5], and so on.
Therefore, the scientific problem of detecting software implants on the local area
networks is relevant.

One of the primary tasks that need to be addressed is to develop appropriate meth-
ods for creating effective components of a comprehensive system for detecting soft-
ware implants on local area networks.

2 Related works

Software implants detection studies are presented in many ways that depend on the
considering of specific malware types. The main problem that accompanies the pro-
cess of software implants detection is the discrepancy between what the user sees and
what actually happens [1]. To achieve these results, the attackers have developed
quite a few tools and approaches.

The most common research in this area is Backdoor malware detection studies [6-
12]. In [6] authors proposed a new approach to detecting and removing Backdoor
malware using neural networks. The experimental results obtained are based on the
classification made. The work focuses on such type of attack that allows attackers to
insert a hidden function or hidden program code into a malicious action model. Detec-
tion of such types of malware is difficult task, because unexpected behavior occurs
only when there is a launch to execute a hidden function or program code known only
to the attacker. The adequacy of the proposed solution requires more convincing evi-
dence since a small set of validated and reliable datasets was used [6].

In [8] presents a model used by intruders to hide the invasion path. One of these
techniques is done by using multiple hosts on the network, which can be detected

using the approach suggested by the authors. Authors explored the opportunity the use
of this approach to detect others type of malware, including Backdoor. The study
shows that the proposed approach can produce a very low rate of false negative and
false positive and allow to reduce the detection time of the scanning process.

In [9] it is analyzed and substantiated that, due to the complexity of the studied
topic, there are few effective solutions. One way analyzed by the authors is to encode
code fragments using specially designed interrupts that, when triggered, manipulate
the run time state and, under certain conditions, can perform arbitrary computations
without fail.

In [10] proposes to solve the problem of formalizing a terminal machine by mod-
eling a program or system using a so-called machine with a designated end state that
allows one to treat the software fragment as an emulator. Also authors have developed
the concept of a multi-step game where an attacker and a defender get to take turns
interacting that allows thinking about it as the system with states and transitions be-
tween them.

In works [11, 12] analyze the complexity of the problem with using many tools.
This could jeopardize the platform by other means. For example, this is may be a
hardware component, a custom program or a piece of malware. And this is a prerequi-
site for development methods for detecting them. A significant obstacle to the effec-
tiveness of this approach is the lack of test samples.

Another equally malicious tool is the implementation of the software and the
launch of the secret exchange feature. The features of such a hidden function are pre-
sented in [13]. To address this in [14] developed five steps to identify a hidden func-
tion in software.

In [15], models of hidden schemes of function exchange are considered and ana-
lyzed. They take into account the availability of the secure protocol of distributed
information transmission. The reliability of such a protocol under the conditions of
existence of hidden functions is investigated.

Another type of malicious software which can introduce software implants is a
botnets [16, 17]. In [16] a technique for botnet detection based on a DNS-traffic is
presented. Botnets detection based on the property of bots group activity in the DNS-
traffic, which appears in a small period of time in the group DNS-queries of hosts
during trying to access the C&C-servers, migrations, running commands or down-
loading the updates of the malware. The method takes into account abnormal behav-
iors of the hosts’ group, which are similar to botnets: hosts’ group does not honor
DNS TTL, carry out the DNS-queries to non-local DNS-servers. Method monitors
large number of empty DNS-responses with NXDOMAIN error code.

In [17] a DNS-based anti-evasion technique for botnets detection in the corporate
area networks is proposed. Authors have combine of the passive DNS monitoring and
active DNS probing and have construct BotGRABBER detection system for botnets
in corporate area network, which uses such evasion techniques as cycling of IP map-
ping, “domain flux”, “fast flux”, DNS-tunneling. BotGRABBER system is based on a
cluster analysis of the features obtained from the payload of DNS-messages and uses
active probing analysis.

In [18-26] it is shown how the use of metamorphic transformations makes it possi-
ble to hide program codes of functions. Along with polymorphic technologies [27],
these methods are quite effective and widely used by attackers.

The works in [28-30] analyzed the use of known mathematical methods for pro-
cessing events related to software operation. The discussed methods can be used to
detect software implants that use undocumented software features, but only after the
process of processing big data obtained during monitoring has been completed.

Thus, software implants that use undocumented software features [31-36] pose a
problem for computer users, especially when they can be distributed on local comput-
er networks. Known detection methods target to specific subclasses or typical classes
of malware and are not sufficiently represented in related works. The various mathe-
matical methods used for detection process, means require the initial stages of prepa-
ration of the data for processing, which aims to design a comprehensive approach of
detection.

3 A method for detecting anomalies in the computer systems
based on the search for deviations from the mean values of
the behavior profiles

In order to detect software implants that use undocumented software features, let's
build profiles of computer systems (CS) based on behavior of software in which it is
executed. Because the client side of the software is the same, they should have similar
behavioral profiles. System profiles can be clustered in the local area networks
(LANs) into CS groups that use typical parts of specialized software. Such profiles
can range from one to 5-10, because specialized software has a narrow focus and,
therefore, cannot be sprayed for various purposes. We define these profiles as formal-
ized models of software behavior in CS. After some time of functioning of the spe-
cialized software and the available software in the CS the statistics is collected, that is
use for the refinement of profiles. Developing a formal representation of behavior
profiles is based on a numerical expression of the features. After receiving profiles,
the system functions and, on a daily start, analyzes the similarity of profiles and re-
sults of the functioning of the software in the CS. The presence of clustering profiles
allows to more accurately identifying possible anomalies in the CS that belong to
certain groups.

To detect software implants that use undocumented software features in LANs, it
is important to create a set of their behavioral signatures. In order to form a database
of behavioral signatures, appropriate models of software implants were developed
based on scenarios of their functioning. The implementation of software implants that
use undocumented software features at different stages of the software life cycle can
occur by the following scenarios:

1. Work of attackers inside software development team.
2. Creation of dynamically formed commands or parallel computing processes.

3. Implementation of command forwarding and recording malicious information in
the memory of information system.

4. Inserting software implants that use undocumented software features into the
code.

5. Creating a masked trigger mechanism for software implants that use undocument-
ed software features.

6. Inserting software implants that use undocumented software features into separate
routines and into the management program.

7. Preparation of test data for the detection of software implants that use undocu-
mented software features.

8. Hiding software implants that use undocumented software features by making
bugs in the software;

9. Placing software implants that use undocumented software features in the branch-
es of the software that are not verified under testing.

10. The participation of the attackers in the software verification;
11. Development of software implants that use undocumented software features dur-

ing software revision.
12. Development of updates and additions for software.

Scenarios of introducing of software implants that use undocumented software
features are directly dependent and affect on their structure, so they may be separate
entities or parts of another entity. Let's present all scenarios as graphs and formalize
them with respect to the structure of the software implants that use undocumented
software features, as well as all possible combinations of them.

As an example, on the fig. 1 has shown a graph of an irregular Markov process.

Fig. 1. Graph of irregular Markov process

Here, S1 - software implants that use undocumented software features in a separate
file, S2 - software implants that use undocumented software features in a working file,
S3 - software implants that use undocumented software features hidden partially in

two or more files. Suppose with equal probability 2
1

=ip
 information on S1, S2, S3

arrives in pairs on states S4, S5, S6, S7. The states S8, S9, S10, S11 will be counted. For
example, if more information is obtained from states S10, S11, then it will indicate that
software implants that use undocumented software features are placed in several
working files of the program.

We detect software implants that use undocumented software features by manifes-
tations which are based on file analysis and network activity. These manifestations
depend on the models of functioning and structure incorporated in them. These fea-
tures are: presence of software modules that do not meet the purpose of the process;
presence of operating system objects that are open by the process but do not conform
to the purpose of the process; high intensity of input/output operations for a certain
process; a high CPU or internal memory usage from a certain process; the similarity
of the file name to the system file name; the operating system process executable file
is not in the common directory; the system process is run on behalf of the local user;
code enforcement in the data area, which is enabled for all processes, is disabled for
the certain process; the system process has a directory other than what it must be for
that process; the absence of digital signature in the executable; high network activity
of the process, which must run locally, etc. However, to improve detection efficiency,
it is need tools that allow to establish the fact of the threat without the intervention of
a network administrator who may not be able to process certain attributes for various
reasons. Software implants that use undocumented software features may use masking
tools on the system, making it difficult to detect them. On the technical side software
implants use programming methods that are not common when creating standard
software, so these features can also be additional attribute to identify them. In particu-
lar, for a Windows executable, these features can be: an additional section at the end
of the file; an entry point indicates a transition to the middle of a section that is not a
code section; the entry point correspond to a jump command that specifies a jump for
the code section; the presence of features that indicates a code section, which is not a
code section. Similarly for other environments on the CS, information from which
may be related with RAM.

Let's describe the models of software implants that use undocumented software
features on LANs:

1. software implants are injected in the software, stores all or selected pieces of soft-
ware, entered or displayed in the hidden area of local or remote external direct ac-
cess memory; the object of storage may be keyboard inputs, documents that will be
printed; this model requires external storage, which must be organized in such a
way as to ensure that it is stored for a specified period of time and can be further
removed and hidden from other users or processes;

2. software implants are embedded in network or telecommunication software; As a
rule, this software is always active, so software implants control the processing of
information on the computer, performing installation and deletion other implants,
as well as removing the accumulated information; software implants that use un-
documented software features can trigger events for previously implemented im-
plants;

3. software implants that use undocumented software features transmit information
stored by an attacker (such as keyboard input) into a communication channel, or
store it without relying on the guaranteed possibility of further reception or remov-
al; software implants may also initiate continuous access to information, leading to
an increase in signal-to-noise ratio when intercepting side radiation;

4. software implants that use undocumented software features distort data streams
that occur during applications running (source streams), or distort input streams of
information, or initiate (or suppress) errors that occur when running applications;

5. software implants which do not produce direct affect on software. The main pur-
pose is to maximize the resulting "residual" information for further study; the at-
tacker either obtains these fragments using the implants of the previous models, or
directly accesses the computer in the guise of repair or diagnosis.

To detect software implants that use undocumented software features it is need to
detect anomalies in a particular CS based on searching of deviations from the mean
values of the behavior profiles. Thus, it is need to develop a detection method based
on a combination of anomaly detection technologies and behavioral signature match-
ing.

The implementation of the detection of software implants that use undocumented
software features is based on the further development of information technology,
which will include profile models, models of software implants and method of
anomaly detection and theirs applying on LANs to investigate specialized software.

To determine the software profile in the CS, we use the system call monitor [42].
First, let's form API call sequences for each of the processes over a long time and
build a software profile in the CS. After profile creation their clusterization is done.
And the last step, if it is possible to divide profiles by more than one class, analysis of
the obtained classes of CS is conducted.

For the study we use the anomaly search scheme. In order to reduce the number of
input, grouping of similar values was done. The resulting profile scheme is a partial
case of multidimensional analysis, where multiple objects are considered on many
grounds. When processing statistic data in multivariate analysis [4, 5, 6], taxonomic
methods have been used that do not require expert evaluation but are based only on
observation results. The input for the study is the observation matrix:



























=

snskss

inikii

nk

nk

x...x...xx
..................
x...x...xx
..................

x...x...xx
x...x...xx

X

11

21

222221

112111

 (1)

where n is the number of features observed on the objects; s is number of objects;
ikx – the number of manifestations of k-th feature in i-th object during the observa-

tion period. The features normalization is carried out according to:

∑ =

= s
i ik

ik
ik

x
xV

1
 (2)

After applied formula 2 the matrix V was created:



























=

snskss

inikii

nk

nk

V...V...VV
..................

V...V...VV
..................

V...V...VV
V...V...VV

V

11

21

222221

112111

 (3)

Then the isotonic coefficient that shows the position of the S-th object on the set of all
features was used:



























=

S

i

W
...

W
...

W
W

W

2

1

 (4)

where iW defined as:

 ∑ == n
i iki VW 1 (5)

According to matrix (4), it is possible to arrange the objects by isotonic metric,
that is, by the rank that characterizes the object by the set of features. Next stage in-
volves structural (isomorphic) ordering of objects. To do this, with the matrix X, the
matrix Z is formed by using formulas (4) and (5):

 ∑
∑∑ =

==

= n
i s

i ik

ik
s
i ik

ik
ik

x
x/

x
xZ 1

11
 (6)



























=

snskss

inikii

nk

nk

Z...Z...ZZ
..................

Z...Z...ZZ
..................

Z...Z...ZZ
Z...Z...ZZ

Z

11

21

222221

112111

 (7)

The distance matrix in D is then constructed using formulas (4) and (5):

 2
1

1
21 })ZZ(

N
{d n

k mkikim ∑ = −= (8)

Sometimes the average absolute difference of features values is used, which is de-
termined by the formula:

 ∑
=

−=
n

k
mkikim |ZZ|

N
d

1

1 (9)



























=

snskss

isii

sk

sk

...d...dd
..................

d......dd
..................

d...d...d
d...d...d

D

0

0

0
0

21

21

2221

1112

 (10)

Thus, the square matrix SS × is obtained, where the number of rows and the num-
ber of columns is equal to the number of objects. In this matrix it is possible to distin-
guish subsets for homogeneity. The easiest way to do this is to apply the Czekanowski
method [5, 6, 7, 8].

The numerical values in the distance matrix are replaced by labels, for example:
× – distance B < 0.4
○ – distance 0.4 < B < 0.8
• – distance B > 0.8
As a result a disorderly diagram of Czekanowski will be obtained. To get an or-

dered diagram, the rows and columns are rearranged so that they are as close to the
main diagonal as possible. For example, the ordered Czekanowski diagram is given in
table. 1.

Table 1. Ordered Czekanowski diagram

 1 2 3 4 5 6 7 8
1 × × × × ○ ○ ○ •
2 × × × × ○ ○ • •
3 × × × × ○ ○ • •
4 × × × × • • ○ •
5 ○ ○ ○ • • • ○ ○
6 ○ ○ ○ • • × • •
7 • • • ○ ○ • × •
8 • • • • ○ • • ×

The diagram shows that the objects 1, 2, 6, 7 are grouped together and have the
smallest deviation (with all group) from the main diagonal. In our case, these may be
computers that have specialized software installed. Objects 5 and 3 are form own two
subsets that are far from the main diagonal. At the same time the outermost objects
belong to numbers 4 and 8.

Thus, it is possible to divide software profiles in the CS into classes and, further,
conduct analyzes the deviations in the classes with purpose of anomalies searching.

4 Experiments and evaluation

In order to conduct series of experiments a distributed system [43] for detecting mal-
ware was used. Software implants that use undocumented software features were
developed as part of each of the typical botnets. The purpose of the experiments was
verification of the botnets detection method, the efficiency of the classifier in the
structure of the distributed system and determination of the dependence of the per-
centage of detected nodes of the botnets, which had contained software implants. To
perform the experiments, 28 botnets and codes of known detected botnets were con-
structed [44]. All generated botnets were grouped by classes. From generated botnets
25 structural elements in three stages of operation and 81 functions were allocated.

The experiment was conducted for the classifier without adding instances of the
created botnets and with them, that is, the check was performed without training the
classifier on the created samples and with the preliminary classification of the sam-
ples by classes. The second variant is necessary to check the accuracy of classifying
the same samples from which this class is built. This is important because during
monitoring API functions may occur errors. The monitoring time of the CS in LAN
was 350 hours for each instance of the botnet of each of the two classifiers. It is
should be noted that the functionality of the botnet nodes was simplified and did not
include the attack option. The botnet nodes only worked in control and support modes
of own functioning. Thus, for a distributed system the objects of research were run-
ning processes on CS. In order to conduct the experiment botnets that use the strategy
of obtaining full control by activating their components were selected. That is soft-
ware implants that use undocumented software features were presents on each CS. In
order to obtain software profile in the CS we perform API monitoring call. Based on
the obtained profiles the features vectors are formed. After feature vector creation
their clusterization is done. The results of calculation different metrics are presented
in table. 2.

The experiments involved determining the following metrics for the detection of
bot nodes:

11,P – the percentage of vectors of malicious actions belonging to certain class rel-
ative to all test samples that the system assigned to this class with previous training;

,2P1 – similar to metric 11,P , but without previous training;

12,P – the percentage of malicious action vectors belonging to a given subclass of a
class relative to all test vectors that the system assigned to that subclass of the class in

the test sample (those that were correctly assigned to the subclasses) with previous
training;

,2P2 – similar to metric 12,P , but without previous training;

13,P – the percentage of correctly detected botnet nodes with previous training

,2P3 – similar to metric 13,P , but without previous training;

,1P4 – the percentage of incorrectly classified botnet nodes as benign applications
(type I error) with previous training;

,2P4 – similar to metric ,1P4 , but without previous training;

15,P – the percentage of incorrectly assigned bot nodes to one of the botnet classes
(type III error), with previous training;

5,2P – similar to metric 15,P , but without previous training.
The results of evaluating the efficiency of detection the software of botnets' nodes

based on the work of two classifiers for the entered classes and subclasses in the clas-
sifier are shown in table 2.

Table 2. Results of experiments

Metrics Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Mean

11,P , % 90,74 84,29 73,66 86,30 94,04 94,18 96,60 89,44

,2P1 , % 75,93 63,57 60,22 70,32 68,77 67,60 69,36 67,71

12,P , % 85,80 83,57 72,58 85,39 98,88 93,92 96,60 88,42

,2P2 , % 74,69 63,57 59,14 70,32 67,37 66,58 67,66 66,80

13,P , % 92,11 84,21 71,93 89,47 90,53 88,42 93,68 87,72

,2P3 , % 76,32 57,89 63,16 64,91 71,58 54,74 75,79 65,89

,1P4 ,% 7,89 14,47 28,07 10,53 7,37 11,58 6,32 11,70

,2P4 ,% 21,05 40,79 36,84 31,58 24,21 44,21 22,11 31,97

15,P ,% 0 1,32 0 0 2,11 0 0 0,49

5,2P ,% 2,63 1,32 0 3,51 4,21 1,05 2,11 2,14

As a result of the experiment correctly clasterized 66% of test samples for the clas-

sifier without the entered vectors of artificially generated botnets and 88% for the
classifier to which the vectors were previously added by performing its training. The
percentage of features that the distributed system used to detect botnets and have re-
lated to manifestations of software implants, is approximately 27% of the overall
detected. The intensity of manifestations of software implants is significantly lower
than typical manifestations of botnets. Thus, software implants that use undocument-
ed software features within botnets can be detected by distributed systems [43] and
the direction of such research is promising.

5 Discussion and Future work

Software implants that use undocumented software features used on local area net-
works can be developed and used in various malicious models. Important task is fur-
ther developing formal profiles and its behavioral signatures. The combination of
these components will allow you to get metrics to investigate the presence of this type
of malware.

6 Conclusion

Software implants that use undocumented software features used on local area net-
works can cause significant harm to users of personal computers, especially to busi-
nesses that use computer networks and use specialized software.

The obtained class divisions according to the developed solution will allow to per-
form further analysis of deviations for anomalies search in the classes. The use of
developed models of Software implants that use undocumented software features in
distributed detection systems [43] has made it possible to improve the detection effi-
ciency of the botnets they were part of.

The direction of further research is the specification and definition of the many
functions that will form elements of Software implants that use undocumented soft-
ware features, with the aim of representation of theirs behavioral signatures to im-
prove detection efficiency.

References

1. Sanjam, G., Gentr, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Hiding Secrets in
Software: A Cryptographic Approach to Program Obfuscation. Communications of the
ACM, Vol. 59, No. 5, pp. 113-120 (2016).

2. McAfee Mobile Threat Report Q1, 2019. Available:
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf

3. DSTU 3396.2-97 Protection of information. Technical protection of information. Terms
and definitions. State Committee of Ukraine, Kyiv (1997) [in Ukrainian]

4. Lysenko, S., Savenko, O., Kryshchuk, A., Kljots, Y. Botnet detection technique for corpo-
rate area network. In: Proc. of the 2013 IEEE 7th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems, pp. 363-368 (2013).

5. Savenko, O., Lysenko, S., Nicheporuk, A., Savenko, B.: Metamorphic Viruses’ Detection
Technique Based on the Equivalent Functional Block Search. CEUR Workshop, Vol.
1844, pp. 555–569 (2017).

6. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B. et al: Detecting Back-
door Attacks on Deep Neural Networks by Activation Clustering. CEUR Workshop, Vol.
2301, (2019)

7. Adups Backdoor. Available: https://www.kryptowire.com/adups_security_analysis.html.

https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://arxiv.org/search/cs?searchtype=author&query=Chen%2C+B

8. Alminshid K., Omar, M. N.: Detecting backdoor using stepping stone detection approach.
In: Proc. of 2013 Second International Conference on Informatics & Applications (ICIA),
Lodz, Poland, pp. 87-92 (2013)

9. Zaddach, J., Kurmus, A., Balzarotti, D., Blass, E.-O., Francillon, A., et al.: Implementation
and Implications of a Stealth Hard-drive Backdoor. In. Proc. of 29th Annual Computer Se-
curity Applications Conference, New Orleans, Louisiana, US (2013).

10. Dullien, T. F.: Weird machines, exploitability, and provable unexploitability. IEEE Trans-
actions on Emerging Topics in Computing, No. 99, pp. 1-15 (2017)

11. Thomas, S. L., Chothia, T., Garcia, F. D.: HumIDIFy: A Tool for Hidden Functionality
Detection in Firmware. In: Proc. of 14th International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment, Bonn, Germany, pp. 279-300 (2017).

12. Thomas, S. L., Chothia, T., Garcia, F. D.: Measuring the Importance of Static Data Com-
parisons to Detect Backdoors and Undocumented Functionality. In: Proc. of 22nd Europe-
an Symposium on Research in Computer Security. Oslo, Norway, pp. 513-531 (2017).

13. Schönegge A.: The Hidden Function Question Revisited. In: Proc. of Algebraic Methodol-
ogy and Software Technology: 6th International Conference, AMAST '97. Sydney, Aus-
tralia, pp. 451-464 (1997).

14. The Secret Code of Software Validation….In 5 Easy Steps. Available:
https://www.cebos.com/blog/the-secret-code-of-software-validation-in-5-easy-steps/

15. Kawamoto, Y., Yamamoto, H.: Secret function sharing schernes and their applications to
the oblivious transfer. In: IEEE International Symposium on Information Theory, pp. 281-
295, Yokohama, Japan (2003).

16. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., Bobrovnikova, K.: A Technique
for the Botnet Detection Based on DNS-Traffic Analysis. Communications in Computer
and Information Science, Vol. 522, pp.127-138 (2015).

17. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., Bobrovnikova, K.: Anti-evasion
Technique for the Botnets Detection Based on the Passive DNS Monitoring and Active
DNS Probing. Communications in Computer and Information Science, Vol. 608, pp.83-95
(2016).

18. Savenko, O., Lysenko, S., Nicheporuk, A., Savenko, B.: Approach for the Unknown Met-
amorphic Virus Detection. In: 9-th IEEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems. Technology and Applications, pp. 453–
458 (2017).

19. Desai, P., Stamp, M.: A highly metamorphic virus generator. Int. J. Multimedia Intelli-
gence and Security, Vol. 1(4), pp. 402-427 (2010)

20. Podlovchenko, R.I., Kuzyurin, N.N., Shcherbina V.S., Zakharov V.A.: Using algebraic
models of programs for detecting metamorphic malwares. Journal of Mathematical Sci-
ences, Vol. 172 (5), pp. 740-750 (2011)

21. Anderson, B., Quist, D., Neil, J., Storlie C., Lane, T.: Graph-based malware detection us-
ing dynamic analysis. Journal in Computer Virology, 7, pp. 247-258 (2011)

22. Runwal, N., Low, R.M., Stamp, M.: Opcode Graph Similarity and Metamorphic Detection.
Journal in Computer Virology, 8, pp. 37-52 (2012)

23. Nagaraju, A.: Metamorphic malware detection using base malware identification approach.
Journal Security and Communication Networks, 7, pp. 1719-1733 (2014)

24. Patel, M.: Similarity tests for metamorphic virus detection. Master’s thesis, San Jose State
University (2011)

25. Wong, W.: Analysis and Detection of Metamorphic Computer Viruses. Master’s thesis,
San Jose State University (2006)

https://www.cebos.com/blog/the-secret-code-of-software-validation-in-5-easy-steps/
https://ieeexplore.ieee.org/author/37562700900
https://ieeexplore.ieee.org/xpl/conhome/8703/proceeding

26. Kuriakose, J., Vinod, P.: Unknown Metamorphic Malware Detection: Modelling with
Fewer Relevant Features and Robust Feature Selection Techniques, IAENG International
Journal of Computer Science, Vol. 42(2), p139-151 (2015)

27. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A. and Nicheporuk, A.: A technique
for detection of bots which are using polymorphic code. In: 21st International Conference,
CN, Springer, Brunów, Poland, pp. 265-276 (2014)

28. Tarhio, J., Ukkonen, E.: Approximate BoyerMoore String Matching. SIAM Journal on
Computing, Vol. 22, No. 2, pp. 243-260 (1993)

29. Drozd, J., Drozd, A., Antoshchuk, S., Kharchenko, V.: Natural Development of the Re-
sources in Design and Testing of the Computer Systems and their Components. In: 7th
IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, pp. 233-237. Berlin, Germany (2013)

30. Kondratenko, Y., Kondratenko, N.: Soft Computing Analytic Models for Increasing Effi-
ciency of Fuzzy Information Processing in Decision Support Systems. Chapter in book:
Decision Making: Processes, Behavioral Influences and Role in Business Management, R.
Hudson (Ed.), Nova Science Publishers, New York, 41-78 (2015)

31. Proskurin, V.: Software malicious implant in secure systems. Available: http://www.crime-
research.ru/library/progwir98.htm [in Ukrainian].

32. Kaarin, О. V.: Program protection theory and practice. MGUL, pp. 450 (2004) [in Rus-
sian].

33. Kaarin, О. V. Computer system software security. MGUL, pp. 212 (2003) [in Russian].
34. Shanugin, V. F. Protection of computer information. Effective methods and tools: a text-

book. DMK Press, pp.544 (2008) [in Russian].
35. Shanugin, V. F. Protection of information in computer systems and networks. DMK Press,

pp. 592 (2012) [in Russian].
36. Balakrishnan, G., Reps, T.: WYSINWYX: What You See Is Not What You eXecute. In:

Proc of ACM Transactions on Programming Languages and Systems, Vol. 32, Issue 6,
(2010).

37. Igumnov, B. N., Zavgorondnyaya, T. P. Cybernetic basis of construction of economic sys-
tems of enterprises. Khmelnitsky, TUP, pp. 344 (2000) [in Russian].

38. Palyata, V. В. Comparative multidimensional analysis in economic research. Statistica, pp.
151 (1980) [in Russian].

39. Shatalkin, A.I. Taxonomy: Grounds, principles and rules. Tovarischestvo nauchnyih iz-
daniy KMK, pp. 600 (2012) [in Russian].

40. Zhambyu, М. Hierarchical cluster analysis and matching. Finance and statistics, pp. 345
(1988) [in Russian].

41. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the Ameri-
can Statistical Association, Vol. 58, No. 301, pp. 236-244 (1963).

42. Savenko, O., Nicheporuk, A., Hurman I., Lysenko, S.: Dynamic Signature-based Malware
Detection Technique Based on API Call Tracing. CEUR Workshop, Vol. 2393, pp. 633–
643 (2019).

43. Savenko, O., Lysenko, S., Kryschuk, A.: Multi-agent based approach of botnet detection in
computer systems. Communications in Computer and Information Science, Vol. 291,
pp.171-180 (2012).

44. Balyk, A., Karpinski, M., Naglik, A., Shangytbayeva, G., Romanets, I.: Using graphic
network simulator 3 for DDoS attacks simulation. International Journal of Computing.
Vol. 16, Issue 4, pp. 219-225 (2017).

http://www.crime-research.ru/library/progwir98.htm
http://www.crime-research.ru/library/progwir98.htm

	1 Introduction
	2 Related works
	3 A method for detecting anomalies in the computer systems based on the search for deviations from the mean values of the behavior profiles
	4 Experiments and evaluation
	5 Discussion and Future work
	6 Conclusion
	References

