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Abstract. The operation of programmable computer systems is determined by 
their program code. Possibilities of maliciously changing program code poten-
tially pose a security risk. Therefore, monitoring the program code integrity is 
one of the main components of security for programmable systems. This paper 
is devoted to program code integrity monitoring of computer systems built on 
the FPGA chips. Integrity monitoring methods are considered, within which 
monitoring data are embedded into the program code in the form of a digital 
watermark. Such digital watermark does not affect the operation of the FPGA 
and does not change the characteristics of the system. The advantages of this 
approach are that the fact of the presence of monitoring data in the program 
code and the fact of performing integrity monitoring is hidden from an outside 
observer. The paper notes the problem of the need to recovery the initial state of 
program code when performing integrity monitoring. To perform this proce-
dure, the digital watermark must contain the data necessary for recovery. The 
effective volume of a digital watermark depends on the size and structure of the 
FPGA program code, as well as on the limitations defined by the watermark 
embedding key (stego key). Most of this volume is occupied by the data neces-
sary to recovery the initial state. Under these conditions, there is often a short-
age of the effective volume of a digital watermark for storing monitoring data. 

The paper proposes a solution to this problem due to a new approach to the 
formation of a stego key for embedding a digital watermark in the FPGA program 
code. An experimental assessment of the approach proposed in the paper is per-
formed. The advantages of the proposed approach are shown in comparison with the 
existing methods of embedding the digital watermark in the FPGA program code. 
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1 Introduction 

Most modern computer systems contain programmable components: microprocessors, 
microcontrollers, programmable logic integrated circuits [1, 2]. The operation of sys-
tems of this kind is ensured both by the physical links of the components, and by a set 
of software codes that configure the components. Changing the program code of pro-
grammable components leads to a change in the operation of systems built on the 
basis of such components. Therefore, an important constituent of computer systems 
security is to ensure the integrity of the program code for programmable components 
[3]. In this paper, we consider the problem of ensuring the integrity of the program 
code of FPGA (Field Programmable Gate Arrays) chips [4, 5]. FPGA is a two-
dimensional matrix of elementary programmable units of several types [6]. 
The program code of the FPGA chips determines the configuration of each of the 
units in the matrix to perform a specific function, and also forms a system of links 
between the units. FPGA structure provides natural parallel computing processes. The 
calculations within this structure are distributed in the space of the chip [7, 8]. Because 
of this, FPGAs differ from microprocessors in significantly greater performance. 

High performance is the reason for the frequent use of FPGA in safety-critical sys-
tems – systems that control high-risk technical objects [9-11]. Under these conditions, 
the integrity of the FPGA program code is one of the safety factors of this kind of 
system. 

2 Literature Review and Goal of the Paper 

The most commonly used approaches to monitoring the integrity of program code are 
based on the use of a hash sums [12]. Hash sums for these purposes are calculated 
using cryptographic hash functions [13]. The disadvantage of traditional methods for 
monitoring the integrity of program codes is that the hash sums is stored either openly 
or can be detected in the structure of the information object as a result of its analysis. 
So, an approach is known [14] in which the hash sum is placed in memory next to the 
program code. Another frequently used approach [15] is the inclusion of a hash sum 
in the information object of the program code as one of its fields. These approaches 
do not make it possible to hide the fact that integrity monitoring is performed, and do 
not make it possible to hide the monitoring information. 

There is also an approach [16], in the framework of which, the hash sum is at-
tached to the information object of the program code not in open but in encrypted 
form. This approach hides monitoring information, but makes open to the outside 
observer the very fact that integrity monitoring is performed. This leads to the possi-
bility of using a sufficiently wide range of techniques to discover and falsify the hash 
sum. 

There is an advanced approach to storing a hash sum that eliminates the above dis-
advantages. This approach consists in the fact that the hash sum is not attached to the 
information object of the program code, but is embedded in it in the form of a digital 
watermark (DWM) [17, 18]. DWM is embedded in an information object using digi-



tal steganography methods [19]. Several methods [20, 21] have been developed for 
embedding DWM into FPGA program code. These methods are based on the use of 
LUT (Look Up Table) units program codes for embedding the DWM bits. The im-
plementation of these methods is performed using equivalent transformations. These 
transformations do not change the logic functions implemented by the LUT units, and 
do not affect the operation of the FPGA. 

In DWM-based methods for integrity monitoring, there is a need to recovery of ini-
tial state for the information object of the program code at the time of monitoring. In 
order to recovery the initial state, in addition to the monitoring data, DWM must con-
tain data on which recovery can be performed. The effective volume of DWM de-
pends on the size and structure of the FPGA program code, as well as on the re-
strictions determined by the DWM embedding stego key. Most of this volume is oc-
cupied by data, necessary to recovery the initial state. Under these conditions, there is 
often a shortage of the effective volume of a digital watermark for storing monitoring 
data. 

The goal of this paper is to increase the effective volume of DWM used in integrity 
monitoring of FPGA program code. 

3 Analysis of Factors that Affect the Effective Volume of a 
Monitoring Digital Watermark 

Factor of the embedding path length. Within the framework of the monitoring 
methods under consideration, the DWM contains three fields: MISRec – information 
necessary to recovery the initial state of the FPGA program code at the time the integ-
rity monitoring was performed; Hash – hash sum; S – is the service field needed to 
define the boundaries of the MISRec and Hash fields.  
DWM is located in the FPGA code space along the embedding path. The amount of 
bits of the embedding path depends on the size of the FPGA program code and on the 
stego key. 
The effective volume of DWM is the volume available in it to store the monitoring 
hash sum: 

 LHash = LEmbPath – LISRec – LS; (1) 

where LHash – effective volume of DWM, expressed in amount of bits; LEmbPath – 
amount of LUT units, which are along the embedding path (the amount of bits that are 
available for DWM embedding); LISRec and LS – the lengths of fields MISRec and S, 
respectively. 

In the process of embedding DWM, the program code of only part of the LUT 
FPGA units undergoes a change. These LUT units form an embedding path. To re-
covery the initial state of the program code, it is necessary to recovery only the initial 
state of the LUT units, which are along the embedding path. 

The main approach used to recovery the initial state: 1) lossless compression 
[22, 23] of the target bits of program code in the LUT units, which are along the em-



bedding path; 2) putting the compression results in the MISRec DWM field. When 
using this approach, expression (1) takes the following form: 

 LHash = LEmbPath – LCom(EmbPath) – LS; (2) 

where LCom(EmbPath) – target bits compression result length. 
The effective volume of DWM required to perform integrity monitoring must be at 
least 128 (160 or 256) bits – the size of the most widely used hash sums. As a result: 

 LEmbPath – LCom(EmbPath) – LS ≥ (128 or 160 or 256). (3) 

The feasibility of relation (3) depends on two factors: the length of field LEmbPath 
and the compression ratio provided by the selected lossless compression method. The 
compression ratio also depends on the length of field LEmbPath, and in addition it 
depends on the data in this field and on the compression method used. An approach to 
the use of multi-method compression was proposed in [24]. This approach gives an 
increase in the compression ratio in this situation, however, it is applicable only in the 
case when a unique stego key is generated for each act of successful embedding of 
control data into the FPGA program code. In the case when it is necessary to use a 
universal stego key for many containers, this approach cannot be applied. In addition, 
with a low LEmbPath value, even this approach does not allow us to obtain the feasi-
bility of relation (3). 

Thus, when using effective compression methods, the main reserve for increasing 
the difference LEmbPath – LCom(EmbPath) for the feasibility of relation (3) is to 
increase the length of the embedding path (LEmbPath). However, an increase in the 
length of the embedding path leads to an increase in the amount of LUT units whose 
program code changes. Such an increase could potentially reduce the resistance of the 
monitoring system to attacks on monitoring data. This reduces the advantages of a 
steganographic approach to storing monitoring data. 

Conclusion: an increase in the length of the embedding path is a positive factor 
for increasing the effective volume of DWM, but it is a potentially negative factor for 
the resistance of the monitoring system to attacks. Therefore, the length of the em-
bedding path should be chosen exactly so as to ensure relation (3), but no more. 
Factor of the stego key. The length of the embedding path depends on the stego key 
and on the structure of the links between the LUT units. The basic version of a stego 
key for a LUT-container (FPGA program code) is a set of the following components: 

 Skey = <EnumRule, DThreshold, AddrRule> (4) 

where EnumRule – rule that determines the order of the enumeration for units in the 
LUT container to obtain an ordered set of units that are part of the embedding path; 
DThreshold – parameter that determines the limit on the number of connections to the 
outputs of the LUT units included in the embedding path; AddrRule – rule that determines 
the address of target bit in program code for each LUT unit of the embedding path.  

The length of the embedding path depends on the parameters EnumRule and 
DThreshold. The EnumRule parameter can be described as a fixed value, an iterative 
rule, or a template. This parameter determines the numbering distance between the 
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LUT units that are included in the embedding path. The DThreshold parameter is a 
numeric threshold that is used when deciding whether to include the LUT units in the 
embedding path. This threshold sets the allowable amount of LUT units connected to 
the output of the units, regarding which such a decision is made. Reducing the 
EnumRule and the DThreshold leads to an increase in the length of the embedding 
path, as well as to an increase in the volume of modifiable FPGA program code. 

Factor of stego key usage mode. Two modes of stego key use are possible. 
1. Specialized stego key mode. In this mode, a stego key is generated for each indi-
vidual FPGA container and DWM. If this mode is used, the stego key must be trans-
ferred to the integrity monitoring system for each monitored object via some reliable 
communication channel. When using this mode, you can select the key parameters that 
provide the most suitable length of the embedding path. However, for integrity moni-
toring, this mode is not practical to use because of the complexity of key distribution. 
2. Universal stego key mode. In this mode, the stego key is generated once, after 
which it is used by the DWM embedding modules and integrity monitoring modules. 
This mode is the most commonly used in integrity monitoring systems. The problem 
of stego key formation in this mode is as follows. A situation is possible in which, 
when using the universal key for the next container, it will not be possible to ensure 
the feasibility of condition (3). In this case, it is possible to reduce the size of the hash 
sum, but this reduces the resistance of the monitoring system to attacks on monitoring 
information. 

Thus, we can state that the effective DWM volume and the feasibility of condition 
(3) depend on the length of the embedding path. This length depends on the values of 
the stego key components. When using the universal stego key mode, there is a con-
tradiction between the effective DWM volume and the fraction of LUT units included 
in the embedding path. 

4 The Proposed Approach to Increase the Effective Volume of 
DWM by Using Interval Stego Key 

We propose a method for formation a stego key that allows to adapt the effective 
DWM volume to the structure of the LUT container. 
The first principle of the method is that instead of the point values of the components 
of the universal stego key, it is proposed to use value intervals. It is proposed to use 
interval values for components on whose value the length of the embedding path de-
pends. For each such parami component, an interval of paramimin … paramimax values 
is formed. Moreover, smaller values from these intervals correspond to a shorter em-
bedding path and a smaller fraction of the target LUTs. 

At the first attempt to embedding, the minimum value from the interval is selected 
as the corresponding component of the stego key. If in this case relation (3) is not 
true, then the next greater value is selected from the interval. The component priority 
of the key determines the order of increasing interval components. 
If relation (3) is not true when the maximum values paramimax of all interval compo-
nents are reached, then the actions regulated by the second principle of the method are 



applied. For the basic method of embedding DWM, the following components are 
proposed as interval components of the stego key: EnumRule and DThreshold (4). 

The second principle of the method is that for the embedding and extraction of 
DWM, a sequence of methods Methods = <m1, m2, … mn> is used (this sequence is a 
component of the stego key). The first time you try to embedding, the first method of 
sequence is used. If the result of the embedding (taking into account the first principle 
of the proposed method) does not lead to the truth of relation (3), then we proceed to 
the next method of the sequence Methods. If using this procedure the last method of 
the sequence Methods is reached and relation (3) is still not true, then the decision on 
further actions is applied based on the third principle of the method. 

The third principle of the method determines the way of deciding on further actions 
if the use of any of the methods in Methods did not lead to the truth of relation (3). 
Special component mfinal of the stego key indicates whether to apply the method of 
preliminary preparation of the information object [20]. Thus, the mfinal parameter de-
termines the admissibility of losing the initial state of an information object by 
switching to the functional equivalent of this state. If the mfinal parameter is equal to 
zero, then the use of the preliminary preparation method is invalid. In this case, the tra-
ditional approach is used, which consists in reducing the size of the hash sum. 
In accordance with the first three principles of the method, an interval stego key is 
defined as a tuple of the following form: 

 Skey = <EnumRule, DThreshold, priority, Methods, mfinal, AddrRule> (5) 

where EnumRule = (EnumRulemin … EnumRulemax); DThreshold = (DThresholdmin … 
DThresholdmax); Methods = <m1, m2, … , mn>; mi = <MethodIdi, MethodParamsi>. 
The fourth principle of the method determines how the Methods sequence is formed. 
The methods of this sequence should be arranged in order of potential increase in the 
embedding path length or the DWM effective volume. 
The fifth principle of the method determines the way of extraction DWM in the case 
of the use of the interval stego key. When extraction, the procedure of searching for 
specific values (which were used during the embedding) from the intervals is per-
formed. The selection of these values is carried out in accordance with the procedure 
defined by the first principle of the method. After that, DWM extraction is performed. 
Further, based on the information contained in the service field S, DWM is divided 
into three fields: S, MISRec and Hash. Next, the MISRec field is decompressed. After this, 
the truth of the relation is checked: 

 LDecom(MISRec) = LEmbPath = LS + LISRec + LHash (6) 

where LDecom(MISRec) – length of field MISRec decompression result; LEmbPath – length 
of embedding path; LS, LISRec, LHash – lengths of the respective fields of DWM. 
In fig. 1 shows a flowchart for the implementation of the proposed embedding meth-
od. The flowchart is shown for the case of using two methods included in the Meth-
ods component: the basic DWM embedding method and the embedding method 
adapted to FPGAs containing Adaptive Logic Modules (ALM). 



5 Experimental Assessment of the Proposed Method 

The method proposed in the work was implemented as a software application. For 
this, software modules were used that implement: a) the basic DWM embedding 
method; b) the embedding method adapted to FPGAs containing ALM; c) the method 
of embedding DWM with the preliminary preparation of the information object of the 
FPGA program code. The functioning procedure of the developed software applica-
tion is as follows. The application receives the interval stego key. After that, values 
are sequentially selected from the interval components and transferred to the corre-
sponding DWM embedding modules. In the process of embedding, condition (3) is 
checked. In general, the functioning of the developed application corresponds to the 
flowchart shown in Fig. 1. 
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Fig. 1. Flowchart for the implementation of the proposed method 

In the environment of the developed software, an experiment was carried out neces-
sary to assessment the proposed method. The initial data of the experiment were 6 
FPGA projects. These projects have a different amount of FPGA hardware resources 
used and different design missions. The synthesis of the projects was carried out in 
the CAD Intel Quartus Prime [25]. As target FPGA chips Intel Cyclone IV [26, 27] 
and Cyclone V [28] were applied. The experiment process was as follows. Two stego 
keys were formed: point key and interval key. As parameters of the point key, the 
minimum values of the corresponding interval components of the interval key were 
used. Next, DWM was formed using both keys. After that, the effective DWM vol-
ume was calculated. If the volume turned out to be sufficient to store the hash sum, 
then DWM was embedding in the container. After that, DWM extraction was per-
formed and the possibility of dividing it into separate fields was checked. 



Table 1 shows that when using the traditional approach for projects 1, 2, the size of 
the Hash field is insufficient to store the hash amount. When using an interval stego 
key with the parameter mfinal = 0 (the method of preliminary preparation of the infor-
mation object is not applied), the size of the Hash field increases, but is still insuffi-
cient. This is due to too few LUT units in the project. However, with the value of the 
parameter mfinal = 1 (the method of preliminary preparation of the information object 
is allowed), the size of the Hash field allows you to store the hash sum in DWM. For 
projects 3–6 mfinal = 0, because a sufficient size of the Hash field is provided without 
using the method of preliminary preparation of the information object. 
Project 3 shows that the Hash field is not large enough when using the point stego 
key. When switching to the interval stego key, this field is enough to store the MD5 
hash sum (the size is 128 bits). Projects 5 and 6 show an increase in the length of the 
Hash field when switching to the interval stego key. Due to this, it becomes possible 
to store a hash of a larger length: SHA1 (the size is 160 bits) for project 5 and SHA2 
(the size is 256 bits) for project 6. Thus, the results of experimental assessment of the 
proposed method show that the method allows to increase the effective volume of 
DWM. For projects with a very small amount of LUT units, an increase is achieved 
by switching to the method of preliminary preparation of the information object. For 
other projects, an increase in effective volume is provided by using interval parame-
ters of the stego key instead of point parameters. 

Table 1. Experiment Results 

Project 
No 

Total 
amount 
of LUT 

units 

Traditional approach Proposed method 
Amount of 
LUT units, 

which are along 
the embedding 

path 

Maximum 
possible 

amount of 
hash sum 

bits 

Possibility 
to use hash 
functions 

(size) 

Amount of 
LUT units, 

which are along 
the embedding 

path 

mfinal Maximum 
possible 

amount of 
hash sum 

bits 

Possibility  
to use hash 
functions 

(size) 

1 780 143  
(18,3%) 6 — 176  

(22,5%) 
0 7 — 
1 143 MD5 (128) 

2 4212 904  
(21,4%) 35 — 1011  

(24,1%) 

0 43 — 

1 904 
SHA2(256) or 
SHA1(160) or 

MD5 (128) 

3 9856 2620  
(26,5%) 119 — 3371 

(34,2%) 0 130 MD5 (128) 

4 10074 2851  
(28,3%) 133 MD5 (128) 3275  

(32,5%) 0 138 MD5 (128) 

5 11839 3179  
(26,8%) 141 MD5 (128) 3932  

(33,2%) 0 181 SHA1(160) or 
MD5 (128) 

6 15043 4811  
(31,9%) 168 

SHA1(160) 
or 

MD5(128) 

6155  
(40,9%) 0 262 

SHA2(256) or 
SHA1(160) or 

MD5 (128) 

6 Conclusions and Directions of the Further Research 

The paper proposes a method that increases the effective volume of DWM used in 
FPGA program code integrity monitoring tasks. If the effective volume is small, the 



hash sum cannot be stored in the DWM. The proposed method eliminates this disad-
vantage. 

The proposed method differs from existing methods in that instead of the point 
components of the stego key, interval components are used. This allows the use of a 
universal stego key for many containers. However, the key components in each case 
are adapted to obtain the most suitable effective DWM volume. When you embedding 
DWM, the values of the interval components are iterated sequentially. At the same 
time, on each iteration, the sufficiency of the effective DWM volume is checked to 
store the hash sum. When extracting DWM, the values of the interval components of 
the key are sequentially enumerated. The paper proposes a relation that allows you to 
make a decision about the interval element that was used when DWM embedding. 
An experimental evaluation of the proposed method showed its effectiveness in com-
parison with existing methods. Namely, the method provides an effective volume of 
DWM sufficient to store hash sums (in integrity monitoring tasks). For FPGA projects 
that were used in the experiment, the average increase in the effective volume of the 
DWM was 22.8%. This, in most experimental cases, made it possible to use a hash 
sum with greater cryptographic strength than before applying the proposed method. 

Application of the proposed method simultaneously with an increase in the effec-
tive volume of DWM increases the amount of LUT units, the program code of which 
changes during the embedding of DWM. We assume that this could potentially reduce 
the resistance of such an embedding to steganalysis. At the moment, there are no 
well-developed methods of steganalysis for FPGA containers. Conventional steganal-
ysis methods are not effective for containers of this kind. Because of this, a decrease 
in resistance to traditional stegoanalysis can be considered insignificant. However, 
with the development of stegoanalysis methods oriented to FPGA containers, the 
problem of reducing resistance when applying the proposed method will become rele-
vant. We consider that this question creates the direction for further research. 
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