
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). IntelITSIS-2020

Approach to the Analysis of Software Requirements
Specification on Its Structure Correctness

Artem Boyarchuk 1[0000-0001-7349-1371], Olga Pavlova 2[0000-0003-2905-0215],
Mykyta Bodnar 3[0000-0002-8614-0682] and Ivan Lopatto 4[0000-0001-6886-2238]

1 National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine
2, 3, 4 Khmelnytskyi National University, Khmelnytskyi, Ukraine

1 a.boyarchuk@csn.khai.edu
2 olya1607pavlova@gmail.com

3 nikas.bodnar@gmail.com
4 danloff@ukr.net

Abstract. During forming and formulating the requirements, it is important to
comply with the standards that govern the software development process. The
main basic standard for specifying the software requirements is ISO/IEC/IEEE
29148:2018, which regulates the structure and required items of the specifica-
tion. Result of such analysis is: the known models, methods and tools don’t
solve the problem of software requirements specification analysis on its struc-
ture correctness (according to ISO/IEC/IEEE 29148:2018). In this paper, the
authors have proposed the formalization of the structure of software require-
ments specification (according to ISO/IEC/IEEE 29148:2018) in the form of
set-theoretical models of sections of the specification. The approach to the
analysis of software requirements specification on its structure correctness (ac-
cording to ISO/IEC/IEEE 29148:2018) was developed. This approach made it
possible to perform a quick automated check of the software requirements spec-
ification on consideration of the above-defined specification's items. Such
check allows making the automatic conclusion about the correct-
ness/incorrectness of the structure of the specification, about the possibility of
further work on the project according to such specification or about the need for
re-work of the specification.

Keywords: Software, Software Requirements Specification, ISO/IEC/IEEE
29148:2018, Structure of Specification, Items of Specification, Correct-
ness/Incorrectness of Specification’s Structure.

1 Introduction

Nowadays, software systems are large and complex. They operate in complex and
changing environments. The entire infrastructure (languages, libraries, operating sys-
tems, and computers) changes continuously. Often software systems are crucial for
the operation of the entire business; hence there are quality, schedule and budget pres-
sures. Software systems are part of larger systems (involving humans), which often

need to change along changing/developing a software system. Frequent failures of
software projects today reassure us that the problems of software construction have
not been solved. The main reason of software's failures and crashes is bad documenta-
tion at the design stage. Bad documentation leads to many bugs and decreases effi-
ciency at every stage of a software’s development, causes the software project's fail-
ure or challenges [1].

In the past, the Standish Group International defined the success of software pro-
ject considering the triple constraint (standard for the Project Management Institute)
and classified software projects as successful, challenged or failed projects. The soft-
ware project was a successful project if it met all three constraints (schedule, cost, and
scope). The software project was a challenged project if it met two from three con-
straints (for example, on time and on the budget but with incomplete functionality).
The software project was a failed project if it is cancelled before it is completed. Now
the Standish Group International considers the customer value's delivery, compliance
with the strategic objectives and satisfaction of the customer in determining the suc-
cess of projects [2].

To date, software projects success rates are as follows – Figure 1 [2].

Fig. 1. Software projects success rates in 2019 [2]

As Figure 1 shows, Agile-projects are more successful than Waterfall-projects, but
Agile-methodology is not suitable for all types of software projects (for example, only
Waterfall-methodology is acceptable for critical application software). In addition,
among both Agile-projects and Waterfall-projects, half (1/2) of all projects are
challenged, i.e. they usually have development time delays, budget overruns, or lack
the required features.

Software project success factors are represented on Figure 2 [3]. Obviously, the
clear requirements make up 13% in project success factors.

Fig. 2. Software project success factors for 2020 [3]

Many of the developers of software think that “documentation (in particular, re-
quirements)” is a set of verbose, poorly structured, introductory descriptions which
count the thousands of pages. Many of the traditional engineers consider the docu-
mentation as the primary design means. Developers of software consider the docu-
mentation as an afterthought because they don't know how software documents must
be precisely composed. In fact, it should represent forethought, not an afterthought.
Advantages of good documentation are facilitating the reuse of previous designs,
improving the communication on requirements, increasing the efficiency of design
reviews, facilitating the integration of individual modules, increasing the efficiency of
inspection of code, increasing the efficiency of testing, and increasing the efficiency
of corrections and improvements [1].

In [4] the authors proved that many software-related incidents and catastrophes due
to erroneous requirements, due to their lack of clarity, due to incorrect specification
structure, etc., therefore, the dependence of success of the software project implemen-
tation from the specification of requirements exists, so an in-depth analysis of the
specification of software requirements is necessary. In [5] - [7] concept of estimating
the information sufficiency in the specifications of the requirements for the software
was developed, which has some actuality and necessity. The structure of the specifi-
cations (by standard ISO 29148 [8]) seriously affects the information sufficiency in
the specifications of the requirements for the software.

Then analysis of software requirements specification on its structure correctness
(according to ISO/IEC/IEEE 29148:2018) nowadays is the actual task.

2 Review of the Literature

Let's review the results of research to search the known tools, techniques and models,
which are devoted for analysis of specifications of requirements for software – Figure
3.

Fig. 3. Tools, techniques and models for analysis of specifications of requirements for software

Therefore, the results of such analysis - the known tools, techniques and models
don't solve the problem of structure correctness (by ISO/IEC/IEEE 29148:2018) of
specifications of requirements for the software. Only the RQV Tool (Requirement
Quality Verification Tool) [13] can help in the verification of the quality of the SRS
on the basis of ISO/IEC/IEEE 29148:2011. In addition, all tools, techniques and
models represent the different approaches and are not integrated into a single whole, i.
e. today there is no single approach to the analysis of software requirements
specification on its structure correctness (according to ISO/IEC/IEEE 29148:2018).

Considering the defined urgency and importance of the problem of determination
of structure correctness of specification of requirements for the software, the goal of
such study is the development of the approach to the determination of structure
correctness (by ISO/IEC/IEEE 29148:2018) of specification of requirements for the
software.

3 Approach to the Analysis of Software Requirements
Specification on Its Structure Correctness (according to
ISO/IEC/IEEE 29148:2018)

Given the structure of the specification of the software requirements in accordance
with ISO 29148:2018, let's represent the specification in the following formalized
form:

 SRS=<S_1,…,S_19>, (1)

where S_1 – section “Purpose” of the software requirements specification, S_2 – sec-
tion “Scope”, S_3 – section “Product perspective”, S_4 – section “Product functions”,
S_5 – section “User chararcteristics”, S_6 – section “Limitations”, S_7 – section “As-
sumptions and dependencies”, S_8 – section “Apportioning of requirements”, S_9 –
section “Specific requirements”, S_10 – section “External interfaces”, S_11 – section
“Functions”, S_12 – section “Usability requirements”, S_13 – section “Performance
requirements”, S_14 – section “Logical database requirements”, S_15 – section “De-
sign constraints”, S_16 – section “Standards compliance”, S_17 – section “Software
system attributes”, S_18 – section “Verification”, S_19 – section “Supporting infor-
mation” of the software requirements specification.

Sections of specification of the requirements for the software consist of a set of
items (by ISO 29148) and have the following set-theoretical form:

 S_1 = {ps}, (2)

 S_2 = {isp, spd, spb, spo, spg, cssh}, (3)

 S_3 = {srrp, sosi, soui, sohi, soswi, soci, som, soo, sosar}, (4)

 S_4 = {mf}, (5)

 S_5 = {gcigu, gciu}, (6)

 S_6 = {rp, hwl, ioa, plo, af, cf, holr, shp, quar, ca, ssc, pmc}, (7)

 S_7 = {far}, (8)

 S_8 = {asrse, crtf, crte, rduf}, (9)

 S_9 = {rlds, iss, oss, fss}, (10)

 S_10 = {ni, dp, sido, vrat, um, tg, roio, sfo, wfo, df, cmf, emsg}, (11)

 S_11 = {faapi, fapgo, vci, eso, ras, ep, rsoi}, (12)

 S_12 = {ubr, mec, mefc, msc}, (13)

 S_13 = {snr, dnr, nts, nssu, athi, nota, not, adnw, adpw, prq}, (14)

 S_14 = {tiuvf, fqu, asc, der, ics, drr}, (15)

 S_15 = {ces, crr, cpl}, (16)

 S_16 = {rf, dn, ap, at}, (17)

 S_17 = {rb, avb, scr, cct, slhd, fdm, csa, dicv, dp,

 mb, pb, pehdc, pchd, uppl, upcls, upos}, (18)

 S_18 = {va, mqs}, (19)

 S_19 = {siof, dcas, rus, sbi, dpss, spi}, (20)

where ps – purpose of software; isp – the software product's identifying, spd – what
software product will provide, spb – benefit of the software product, spo – objectives
of the software product, spg – goals of the software product, cssh – consistency with
the same statements in high-level specifications; srrp – software system's relationship
to other related products, sosi – software operation within the system interfaces, soui
– software operation within the user interfaces, sohi – software operation within the
hardware interfaces, soswi – software operation within the software interfaces, soci –
software operation within the communications interfacse, som – software operation
within the memory, soo – software operation within the operations, sosar – software
operation within the site adaprion requirements; mf – major future functions of the
software; gcigu – general characteristics of the software product's groups of users,
gciu – general characteristics which influence usability; rp – regulatory policies, hwl –
limitations of hardware, ioa – interfaces to other applications, plo – parallel operation,
af – audit functions, cf – control functions, holr – requirements of higher-order lan-
guage, shp – protocols of signal handshake, quar – quality requirements, ca –
criticality of the application, ssc – considerations of safety and security, pmc – physi-
cal/mental considerations; far – factors which influence the requirements; asrse –
distribution the requirements to elements of software, crtf – cross-reference table by

function, crte – cross-reference table by element, rduf – requirements that can be
transferred in software's future versions; rlds – requirements to a detail sufficient lev-
el, iss – inputs into the software system, oss – outputs from the software system, fss –
functions of the software system in response to the input or in support of the output;
ni – item's name, dp – purpose's description, sido – input's source or output's destina-
tion, vrat – valid range, accuracy, and/or tolerance, um – measuring units, tg – timing,
roio – relationships to other inputs/outputs, sfo – formats/organization of screen, wfo
– formats/organization of window, df – formats of data, cmf – formats of command,
emsg – endmessages; faapi – basic actions that must take place in the software when
receiving and processing inputs, fapgo – basic actions that must occur in the software
when processing and generating outputs, vci – checks of validity on the inputs, eso –
exact sequence of operations, ras – responses to abnormal situations, ep – parameters'
effect, rsoi – relationship of inputs and outputs; ubr – usability requirements, mec –
measurable criteria of effectiveness in specific use contexts, mefc – measurable crite-
ria of efficiency in specific use contexts, msc – measurable criteria of satisfaction in
specific use contexts; snr – static numerical requirements, dnr – dynamic numerical
requirements, nts – number of supported terminals, nssu – number of supported sim-
ultaneous users, athi – amount and type of handled information, nota – numbers of
transactions, not – number of tasks, adnw – amount of the processed data within cer-
tain time periods for normal workload conditions, adpw – amount of the processed
data within certain time periods for peak workload conditions, prq – requirements of
performance; tiuvf – types of used information, fqu – frequency of use, asc – access-
ing the capabilities, der – entities of data and their relationships, ics – constraints of
integrity, drr – requirements of data retention; ces – the software system design's con-
straints which are imposed by external standards, crr – the software system design's
constraints which are imposed by requlatory requirements, cpl – the software system
design's constraints which are imposed by project limitations; rf – report format, dn –
data naming, ap – accounting procedures, at – audit tracing; rb – reliability, avb –
availability, scr – security, cct – certain techniques of cryptographic, slhd – data sets
of specific log or history, fdm – certain functions to different modules, csa – commu-
nications between some areas of the software product, dicv – integrity of data for
critical variables, dp – privacy of data, mb – maintainability, pb – portability, pehdc –
the percentage of elements with host-dependent code, pchd – the percentage of host-
dependent code, uppl – portable language use, upcls – particular compiler or language
subset use, upos – operating system use; va – approaches for verification, mqs –
methods for qualifying the software; siof – sample input/output formats, dcas – cost
analysis studies' descriptions, rus – user surveys' results, sbi – supporting or back-
ground information that can help the readers of the SRS, dpss – description of the
problems which will be solved by the software, spi – special packaging instructions
for the code and the media for security, export, initial loading.

Approach to the analysis of software requirements specification on its structure
correctness (according to ISO/IEC/IEEE 29148:2018) is represented on Figure 4 (on
the basis of concept, which is proposed in [5]-[7]).

Fig. 4. Approach to the analysis of software requirements specification on its structure correct-

ness (according to ISO/IEC/IEEE 29148:2018)

The equations (2) - (20) represent all the necessary items of the software require-
ments specification in terms of ISO/IEC/IEEE 29148:2018, structured by the sections
of the specification. Therefore, for the structure of the specification of requirements to
be recognized as correct, it is necessary that the specification contains all the listed
items. For acceleration and automation of such a procedure of check for all items
availability, it is proposed to develop an ideal ontology based on the equations (2) -
(20), as well as to develop a real ontology based on each analyzed specification. Next,
a comparison of the two ontologies (ideal and real) will result in missing items of
specification being set. If such missing items are available, then the structure of speci-
fication is incorrect and re-work of the specification is proposed. If there are no such
missing items, then the structure of specification is correct and further work is pro-
posed.

The use of ontologies in this approach to the analysis of software requirements
specification on its structure correctness (according to ISO/IEC/IEEE 29148:2018)
provides the automation of such analysis.

Real ontology

Software
Requirements
Specification

Missing items of
specification

Ideal ontology
Comparing

Are missing
items?

Structure of software
requirements

specification is incorrect

Structure of software
requirements

specification is correct

yes no

Re-work of the
specification

Further work

4 Experiment, Results and Discussions

Checking the correctness of the structure of the finished (in mind of the developers)
specification of requirements for a software system for providing the resilience of com-
puter systems was conducted with the help of the developed approach. This checking
identified that the prepared document has not the following items: “software operation
within the system interfaces”, “factors which influence the requirements”, “cross-
reference table by function”, “dynamic numerical requirements”, “requirements that
can be transferred in software's future versions”, “basic actions that must take place in
the software when receiving and processing inputs”, “accessing the capabilities”, “per-
centage of elements with host-dependent code”, “types of used information”, “require-
ments of performance”, “communications between some areas of the software prod-
uct”, “portable language use”, “particular compiler or language subset use”, “sample
input/output formats”, “supporting or background information that can help the read-
ers of the SRS”. It was concluded that "Structure of software requirements specification
is incorrect" and re-work of the specification is proposed. The developers finalized the
specification, re-analyzed the specification using the developed approach, resulting in
the conclusion that there are no missing items, and thus concluded that "Structure of
software requirements specification is correct" and further work is proposed.

The proposed set-theoretical models of software requirements specification's sections
(according to ISO/IEC/IEEE 29148:2018), as well as the approach to the determination
of structure correctness (by ISO/IEC/IEEE 29148:2018) of specification of
requirements for the software, have provided the ability of quick and automated
checking the correctness of the structure of software requirements specification,
considering the availability of specification's items. Such checking gives the automated
decision about the correctness/incorrectness of the structure of specification, about the
possibility/impossibility of continuation of work on the project according to such
specification, about the need/uselessness of re-work of the specification.

The conducted experiment showed the effectiveness of the proposed approach to the
determination of structure correctness (by ISO/IEC/IEEE 29148:2018) of specification
of requirements for the software.

5 Conclusions

During developing the software, software organizations must be guided by standards
for both software development and evaluation processes. During forming and
formulating the requirements, it is important to comply with the standards that govern
the software development process. The main basic standard for specifying the
software requirements is ISO/IEC/IEEE 29148:2018, which regulates the structure
and required items of the specification. The conducted analysis has shown that the
known models, methods and tools for analysis of software requirements specification
do not solve the problem of analysis of software requirements specification on its
structure correctness (according to ISO/IEC/IEEE 29148:2018).

Given the regulated structure and mandatory items of specification, in this paper,
the authors have proposed the formalization of the structure of software requirements
specification (according to ISO/IEC/IEEE 29148:2018) in the form of set-theoretical
models of sections of the specification.

Based on the proposed formalization of the specification, the approach to the
analysis of software requirements specification on its structure correctness (according
to ISO/IEC/IEEE 29148:2018) was developed. This approach made it possible to
perform a quick automated check of the software requirements specification on con-
sideration of the above-defined specification's items. Such checking makes the auto-
matic conclusion about the correctness/incorrectness of the specification's structure,
about the possibility of continuation of the work on the project according to such
specification, about the need/uselessness of re-work of the specification.

The prospective research of authors will be devoted to the development of the ideal
ontology on the basis of the developed set-theoretical models of specification's sec-
tions; to the development of a method of activity and to the realization of the ontolo-
gy-based intelligent agent, which will work on the basis of the developed approach
and will perform automatic verification of the correctness of structure of the specifi-
cation (by ISO/IEC/IEEE 29148:2018).

References

1. Leonard, J.: CSCE 606: Introduction, 2019, https://slideplayer.com/slide/15545897/, last
accessed 2020/04/10.

2. Mersino, A.: Agile Project Success Rates are 2X Higher than Traditional Projects (2019), 2018,
https://vitalitychicago.com/blog/agile-projects-are-more-successful-traditional-projects/, last ac-
cessed 2020/04/10.

3. 4-Step Project Plan for 2020, 2019, http://projexs.io/project-plan-made-easy/, last accessed
2020/04/10.

4. Pomorova, O., Hovorushchenko, T.: The Way to Detection of Software Emergent Properties.
In: The 2015 IEEE 8-th International Conference on Intelligent Data Acquisition and Ad-
vanced Computing Systems: Technology and Applications Proceedings. Warsaw (2015).

5. Hovorushchenko, T.: Methodology of Evaluating the Sufficiency of Information for Soft-
ware Quality Assessment According to ISO 25010. Journal of Information and Organiza-
tional Sciences 42(1), 63-85 (2018).

6. Hovorushchenko, T.: Information Technology for Assurance of Veracity of Quality Infor-
mation in the Software Requirements Specification. Advances in Intelligent Systems and
Computing 689, 166-185 (2018).

7. Hovorushchenko, T., Pomorova, O.: Ontological Approach to the Assessment of Infor-
mation Sufficiency for Software Quality Determination. CEUR-WS 1614, 332-348 (2016).

8. ISO/IEC/IEEE 29148:2018. Systems and software engineering. Life cycle processes. Re-
quirements engineering (2018).

9. Verma, K., Kass, A.: Requirements Analysis Tool: A Tool for Automatically Analyzing Soft-
ware Requirements Documents. Lecture Notes in Computer Science 5318, 751-763 (2008).

10. Mahmood, H., Rehman, M. S.: Tools for software engineers. International Journal of Re-
search in Engineering & Technology 3 (10), 75-86 (2015).

11. Jones., V., Murray, J.: Evaluation of current requirements analysis tools capabilities for
IV&V in the requirements analysis phase, https://www.slideserve.com/shlomo/evaluation-

https://slideplayer.com/slide/15545897/
https://vitalitychicago.com/blog/agile-projects-are-more-successful-traditional-projects/
http://projexs.io/project-plan-made-easy/
https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase

of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-
phase, last accessed 2020/04/10.

12. Raffo, D. M., Ferguson, R.: Evaluating the Impact of The QuARS Requirements Analysis
Tool Using Simulation, https://pdfs.semanticscholar.org/7e7d/4e6f5ab13d00ca57
c87711e30cd080730f34.pdf, last accessed 2020/04/10.

13. Konig, F., Ballejos, L., Ale, M.: A semi-automatic verification tool for software require-
ments specification documents. In: Simposio Argentino de Ingeniería de Software Pro-
ceedings. Sociedad Argentina de Informática e Investigación Operativa (2017).

14. Ossowska, K., Szewc, L., Weichbroth, P., Garnik, I., Sikorski, M.: Exploring an ontologi-
cal approach for user requirements elicitation in the design of online virtual agents. Infor-
mation Systems: Development, Research, Applications, Education 264, 40-55 (2017).

15. Meziane, F., Vadera, S.: Artificial Intelligence Applications for Improved Software Engi-
neering Development: New Prospects. Advances in Intelligent Information Technologies
278-299 (2010).

16. Hovorushchenko, T., Pavlova, O.: Method of Activity of Ontology-Based Intelligent
Agent for Evaluating the Initial Stages of the Software Lifecycle. Advances in Intelligent
Systems and Computing 836, 169-178 (2019).

17. Hovorushchenko, T., Pavlova, O., Bodnar, M.: Development of an Intelligent Agent for
Analysis of Nonfunctional Characteristics in Specifications of Software Requirements.
Eastern-European Journal of Enterprise Technologies 1(2), 6-17 (2019).

18. Ahmad, S., Asmai, S.A.: Measuring software requirements quality following negotiation
through empirical study. International Journal of Applied Engineering Research 11(6),
4190-4196 (2016).

19. Thitisathienkul, P., Prompoon, N.: Quality Assessment Method for Software Requirements
Specifications Based on Document Characteristics and Its Structure. In: The Second Interna-
tional Conference on Trustworthy Systems and their Applications Proceedings. Hualien (2015).

20. Jain, H.K., Vitharana, P., Zahedi, F.: An assessment model for requirements identification
in componentbased software development. Association for Computing Machinery New
York NY United States 34(4), 48-63 (2003).

21. Audytra, H., Hendradjaya, B., Sunindyo, W.D.: A proposal for quality assessment model
for software requirements specification in Indonesian language for e-Government. In In-
ternational Conference on Data and Software Engineering Proceedings. Denpasar (2016).

22. Nazaruka, E., Osis, J.: The Formal Reference Model for Software Requirements. Commu-
nications in Computer and Information Science 1023, 352-372 (2018).

23. Tan, H., Ismail, M., Tarasov, V., Adlemo, A., Johansson, M.: Development and Evaluation
of a Software Requirements Ontology. In: The 7th International Workshop on Software
Knowledge Proceedings. Porto (2016).

24. Alshazly, A., Elfatatry, A., Abougabal, M.S.: Detecting defects in software requirements
specification. Alexandria Engineering Journal 53(3), 513-527 (2014).

25. Kohl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, D.: Explainability as
a Non-Functional Requirement. In: IEEE 27th International Requirements Engineering
Conference Proceedings. Jeju Island (2019).

26. Mahalakshmi, K., Prabhakar, R.: Performance Evaluation of Non Functional Require-
ments. Global Journal of Computer Science and Technology Software & Data Engineering
13(8), 15-19 (2013).

https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
https://www.slideserve.com/shlomo/evaluation-of-current-requirements-analysis-tools-capabilities-for-ivv-in-the-requirements-analysis-phase
https://pdfs.semanticscholar.org/7e7d/4e6f5ab13d00ca57%20c87711e30cd080730f34.pdf
https://pdfs.semanticscholar.org/7e7d/4e6f5ab13d00ca57%20c87711e30cd080730f34.pdf

	1 Introduction
	2 Review of the Literature
	3 Approach to the Analysis of Software Requirements Specification on Its Structure Correctness (according to ISO/IEC/IEEE 29148:2018)
	4 Experiment, Results and Discussions
	5 Conclusions
	References

