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Abstract

This paper presents the system we sub-
mitted to the Swiss German language de-
tection shared task, part of the GermEval
2020 Campaign, held at the SwissText &
KONVENS 2020 conference. The goal of
the task is to identify if a given text snip-
pet is written in Swiss German. Our ap-
proach includes a reformulation of a bi-
nary to a multi-way classification prob-
lem, a character filter, a neural RNN-
based classifier, and the addition of syn-
thetic noise to the training set. The of-
ficial evaluation of our submitted system
results in an F1 score of 96.8%, achieving
the second place in this shared task.

1 Introduction

In this paper we describe our approach and results
for the Swiss German language detection shared
task (GSWID 2020) at the SwissText & KON-
VENS conference. The objective of the shared
task is to construct a system to automatically iden-
tify Swiss German (GSW) text snippets.

Generally, language identification has been
viewed as a solved problem “suitable for under-
graduate instruction”, as McNamee (2005) depre-
catingly remarks in the title of his paper. However,
it is not clear if this view holds true for text snip-
pets that are (1) short, (2) noisy, (3) from multi-
ple domains, (4) written in a scarce resource lan-
guage, or (5) which consist of non-standardized
dialects (Gamallo et al., 2014; Jauhiainen et al.,
2019). Since this shared task is about GSW lan-
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guage identification and uses tweets as test data, it
combines all of these difficulties.

Previous approaches based on classical machine
learning typically utilize character level features
like single characters, character combinations (n-
grams) and capitalization together with models
such as naive bayes classifiers, support vector ma-
chines, and decision trees (Gamallo et al., 2014;
Hanif et al., 2007; Kumar et al., 2015; Porta, 2014;
Zubiaga et al., 2014). There have been both CNN-
based (Jaech et al., 2016a,b; Li et al., 2018) and
RNN-based (Jurgens et al., 2017; Kocmi and Bo-
jar, 2017) neural approaches to language identi-
fication using character embeddings as represen-
tations, sometimes with additional features incor-
porated, like n-grams (Chang and Lin, 2014) or
word embeddings (Samih et al., 2016). We ap-
proach this problem using a bidirectional GRU
(BiGRU) architecture similar to the one put for-
ward by Kocmi and Bojar (2017).

In this paper we describe our system, compris-
ing: (1) a reformulation of a binary to a multi-way
classification problem, (2) a BiGRU-based neural
architecture, (3) a character-based filter, and (4) a
noisifier module.

2 Data

Provided Data The shared task organizers pro-
vide a list of approximately 2,000 GSW tweets to
be used as positive training examples.1 The use of
further training material is explicitly allowed and
encouraged. In the following paragraphs we give
a review of additionally collected data.

Swiss German We collect GSW data from the
following sources: the NOAH corpus (Hollenstein

1Due to the distribution regulations of Twitter, the orga-
nizers published only tweet IDs. At the time of downloading,
22 of these tweets were not available anymore, so the actual
number of tweets we are able to use is 1,978.



and Aepli, 2014), a collection of texts from vari-
ous genres; the Swisscrawl corpus (Linder et al.,
2019), which consists of user entries from forums
and social media; the chatmania data from the
SpinningBytes corpus (Grubenmann et al., 2018),
containing forum entries; and the GSW corpus
from the corpus collection of the University of
Leipzig (Goldhahn et al., 2012), that also incor-
porates web data, mainly from chat forums.

Other Languages There is of course an abun-
dant amount of textual data in a multitude of other
languages which cannot be entirely considered, or
feasibly be included in a training set. We devise
the following difficulty-scale from A (easy) to D
(difficult) as a prioritization guideline as for which
languages we presume are hard to distinguish from
GSW and thus most important to include in the
training set as negative examples:

A: languages written in non-GSW character sets2

(e.g. Chinese, Hindi, Arabic)
B: languages written in scripts that overlap with

the GSW character set (e.g. Afrikaans, Taga-
log, English, Tok Pisin)

C: languages in B that share parts of the lexi-
con with GSW (e.g. English, Italian, French,
Standard German)

D: languages and varieties in C that are closely
related to GSW (e.g. Standard German,
Dutch, English, Bavarian)

Note that the following set memberships hold:
B ⊃ C ⊃ D and A ∩B = ∅.

We only collect languages from B, with special
focus on C and D, since text snippets written in a
language from A can be filtered out in a rule-based
manner.

We collect data for all languages from the afore-
mentioned corpus collection of the University of
Leipzig. For Standard German, we additionally
gather texts from the Hamburg Dependency Tree-
Bank (Foth et al., 2014). For all corpora that are
not comprised of tweet-like text, we treat each sen-
tence as an individual text snippet. An overview
of our collected data is shown in table 1. We split
our data set with a ratio of 0.95/0.05 resulting in a
training set containing 3,605,283 instances and a
development set of 189,752 instances.

2We define the GSW character set as the set of characters
found on a GSW keyboard. This differs slightly from e.g. a
Standard German Keyboard, which lacks characters like “è”,
“à” and “é”.

Language # instances relative
Swiss German (GSW) 780,502 19.17%
Standard German 568,493 13.97%
English 304,822 7.49%
Italian 300,077 7.37%
Dutch 300,043 7.37%
Swedish 300,002 7.37%
Luxembourgish 300,000 7.37%
Norwegian 300,000 7.37%
French 299,017 7.35%
Low German 100,000 2.46%
West Frisian 100,000 2.46%
Portuguese 100,000 2.46%
Romanian 100,000 2.46%
Tagalog 100,000 2.46%
Bavarian 30,000 0.74%
Lombard 30,000 0.74%
Yiddish 30,000 0.74%
Croatian 10,001 0.25%
Northern Frisian 10,000 0.25%
Other 8,060 0.20%
Total 4,071,017 100.00%

Table 1: Overview of collected text snippets per lan-
guage. Languages with less than 1,000 examples, e.g.
Turkish, are subsumed under class other.

Noise Through manual inspection of the tweets
that were provided as training data we observed
that they are significantly noisier than the rest of
our training data.

We identify two kinds of noise in this data:
token-level noise and character level noise. Both
can be produced on purpose or by accident.
Token-level noise consists of words, phrases or
citations in other languages, mainly English or
Standard German, in otherwise GSW tweets.
Character-level noise consists of omissions, inser-
tions or repetitions of single characters. Examples
can be found in Appendix B.

3 Method

Task Formalization We formalize the task as
follows: Assign a label y ∈ {0, 1} to an input
sequence of characters x = {x0, x1, x2, ..., xn},
where 0 corresponds to the class swiss german and
1 corresponds to the class not-swiss german.

However, the not-swiss german class is a very
broad category since it not only contains all other
languages, some of which are similar to GSW, but
also all possible string sequences that do not ap-
pear in GSW. Thus, we hypothesize that more fine-
grained labels will lead to more homogeneous and
better separable classes.

Following this line of reasoning, we define three
different granularity levels: binary, ternary and
fine-grained. The binary setting corresponds to the
task formalization described above. In the ternary



Figure 1: Neural Architecture based on character em-
beddings, a BiGRU, two dense blocks and a dense
layer.

setting we split the class not-swiss german into the
classes standard german and other. And in the
fine-grained setting, each language present in ta-
ble 1 corresponds to one class, with an additional
class other. For our collected data set, this leads to
a total of 23 classes.

Pipeline We construct a pipeline where an in-
coming text snippet is first cleaned of hashtags,
mentions and URLs. Then a rule-based charac-
ter filter decides if the text snippet is a member of
A and if so, immediately classifies the text snippet
as not-swiss german. If the text snippet is not part
of A, it might be an instance of swiss german and
hence is clipped to a prespecified length, which we
treat as a hyper parameter, and fed into a neural
classifier.

During training time, we make two modifica-
tions to the pipeline: (1) The rule-based character
filter is left out because our data only consists of
text snippets from languages in B. (2) We make
use of an additional noisifier, which adds noise
specifically modeled after the noise that is actually
encountered in GSW text snippets on the web. In
the rest of this section we describe the main parts
of the pipeline in detail.

Character-Based Filter For a given sequence
of characters x, the character-based filter com-
putes the relative frequency of characters in x that
do not appear in the GSW character set. If this fre-

quency surpasses a given threshold, x is labeled as
not-swiss german.

Neural Model Our neural model comprises
character embeddings, a BiGRU (Cho et al.,
2014), two blocks of dense layers and a final dense
layer. The BiGRU takes the embedded characters
as input and produces the outputs −→o0 , ...,−→on and
also a last hidden state

−→
hn for the forward GRU.

For the backward GRU we get←−on, ...←−o0 and
←−
h0 re-

spectively.
We ignore all BiGRU outputs and only use the

last hidden states
−→
hn and

←−
h0.3

Each hidden state is fed into a block of two
dense layers with dropout before both layers and
the rectified unit linear function in between. The
outputs of the two dense blocks z1 and z2 are con-
catenated and fed into a final dense layer with the
number of classes as the output dimension. We
apply a log-softmax function to the output to turn
the neural activations into a probability distribu-
tion over the target classes. Note that the number
of target classes depends on the chosen level of
granularity.

For optimization we use the negative log like-
lihood loss combined with the Adam optimizer
(Kingma and Ba, 2014). We initialize the char-
acter embeddings randomly and train them jointly
with the rest of the model.

Noisifier Based on the assumption that the test
data has a similar amount of noise as the tweets
provided for training, we introduce a noisifier with
the goal of injecting this type of noise into the en-
tire training data, which contains large amounts
of text snippets from “clean” resources like news
texts. We refer to this difference in noise between
corpora as noisiness gap. Recall that we observed
token-level and character-level noise in the train-
ing data in section 2. In what follows, we will
address both types of noise separately.

For the token level noise we created a hand-
crafted list L consisting of English and Standard
German words often found in GSW tweets, com-
ments and messages. Additionally, we add men-
tions of Swiss locations to L.4

3In earlier experiments we also used the BiGRU outputs
by concatenating them with the last hidden states and then
fed this entire feature vector into dense layers. However, we
found that using these outputs decreased performance.

4We try to avoid that the model learns to associate Swiss
location names with GSW text which presumably would lead
to false positives.



Configuration & Training Development Set Test Set
Emb Clip G N TT Prec Rec Acc F1 AccT AccF Prec Rec Acc F1
100 280 b f 15.7 0.946 0.926 0.976 0.936 - - 0.898 0.920 0.911 0.909
100 280 t f 15.9 0.971 0.957 0.986 0.964 0.980 - 0.905 0.942 0.924 0.923
100 280 f f 15.8 0.994 0.992 0.997 0.993 0.989 0.994 0.907 0.990 0.946 0.947
100 100 b f 6.8 0.987 0.980 0.994 0.983 - - 0.872 0.880 0.880 0.876
100 100 t f 6.6 0.982 0.973 0.992 0.978 0.988 - 0.932 0.954 0.944 0.943
100 100 f f 6.5 0.991 0.989 0.996 0.990 0.988 0.991 0.930 0.984 0.957 0.956
300 100 b f 7.0 0.987 0.977 0.993 0.981 - - 0.949 0.931 0.943 0.940
300 100 t f 7.1 0.992 0.988 0.996 0.990 0.995 - 0.959 0.948 0.955 0.953
300 100 f f 7.1 0.992 0.989 0.996 0.990 0.988 0.992 0.927 0.985 0.956 0.955
300 100 b t 8.4 0.993 0.987 0.996 0.991 - - 0.955 0.980 0.968 0.967
300 100 t t 7.8 0.993 0.986 0.996 0.990 0.995 - 0.947 0.983 0.965 0.965
300 100 f t 7.8 0.994 0.987 0.997 0.991 0.988 0.992 0.945 0.993 0.969 0.968

Table 2: Results on the development and test set. Abbrevations: Embedding dimension, Clipped after m characters,
Granularity (binary, ternary, finegrained), Noise injected (true, false), Training Time in hours. The last row shows
the configuration that we submitted to the shared task.

The token-level noisifier receives as input a
clean training example x consisting of k tokens
and the two thresholds p1 ∈ [0, 1] and p2 ∈ [0, 1)
with p1 > p2. For each token in x, a noise to-
ken l ∈ L is inserted with a probability of 1− p1.
We hypothesize that the presence of one noise to-
ken increases the probability of additional noise
tokens. To model this, we use a higher second
probability 1 − p2 for repeatedly adding an addi-
tional noise token. We define an upper bound of
k/2 for the number of inserted noise tokens c un-
der the assumption that a text snippet with c ≥ k/2
does not resemble the original language of x any-
more. See algorithm 1 for more details.

The algorithm inserting character level noise re-
ceives as input a token-level noisified training ex-
ample xTnoise and analogous to token-level noise
injection, the two thresholds p3 ∈ [0, 1] and
p4 ∈ [0, 1) with p3 > p4. Additionally, the al-
gorithm receives a character set C, consisting of
alphanumeric and punctuation characters from the
Latin 1 character set. At each character in xTnoise

character-level noise is injected with a probability
of 1−p3. The noise consists of either character in-
sertion, omission, or repetition. All three types of
noise are equally likely to happen. We hypothesize
that the presence of character-level noise makes
more such noise likelier. Thus, in case of insertion
or repetition, we repeatedly add additional noise
characters with a probability of 1 − p4. See algo-
rithm 2 for more details.

Our implementation of the approach described
in this section using PyTorch will be published at
https://github.com/JonathanSchaber/shared task.

4 Results and Discussion

Our submitted model achieves an F1 score of
96.8% in the official evaluation on the test set, re-
sulting in a second place, 1.4% behind the best
model.

Table 2 gives an overview of different hyper-
parameter settings with the corresponding results
on the development and test set.5 We report
the following observations: (1) More fine-grained
classes generally lead to better results. (2) There
is a strong performance drop from development to
test set supporting our noisiness gap assumption.
(3) Injecting noise alleviates this drop and, com-
pared to the same configurations without noise,
leads to relative performance increases ranging
from 1.2% to 2.7% F1 score on the test set.

(4) Increasing embedding dimensionality leads
to more stable results over different granularities.
(5) Clipping after 100 characters leads to a bisec-
tion of training time while on average upholding
performance.

Since the test set does not contain languages
from A the character-based filter is rarely triggered
and its impact on performance is negligible. How-
ever, the filter might be important when detecting
GSW text in settings where languages in A occur
more frequently. More information about hyper-
parameters and hardware is given in Appendix C.

5 Conclusion

This paper described our submission to the
GSWID 2020 shared task. We introduced a
BiGRU-based architecture, a character-based fil-
ter and a noisifier module. Our evaluation results

5The test set evaluation relies on gold labels that were
made available after the submission deadline.

https://github.com/JonathanSchaber/shared_task


show that more fine-grained classes and adding
noise to the training data leads to performance in-
creases. Further investigations will concern pre-
training, transformer-based architectures, and a
more sophisticated noisifier.
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A Neural Architecture

We formally define our architecture as follows:
Let E(xi) denote a function that returns the em-
bedding for a given character xi ∈ x. The last
hidden states

−→
hn,
←−
h0 are given by

−→
hn,
←−
h0, −→o0 , ..., −→on,←−on, ... ←−o0 = BiGRU(E(x0), ..., E(xn)). (1)

We feed each last hidden state into a block of
dense layers defined as

fblock(v) = WT
2 ∗ dr(ReLU(WT

1 ∗ dr(v) + b1)) + b2 (2)

where W1 ∈ R300×150 and W2 ∈ R150×50 denote
the weight matrices of the block’s first and sec-
ond layer, dr denotes a dropout function, b1 and
b2 denote learnable biases, and ReLU denotes the
rectified linear unit activation function.
z1 is computed as z1 = f block(

←−
h0) and z2 re-

spectively as z2 = f block(
−→
hn). Note that the

weights of the two dense blocks are not shared,
but initialized and trained independently. We con-
catenate z1 and z2 to z, which is then fed through
a final layer formalized as follows:

ffinal(v) = log-softmax(W T ∗ v + b) (3)

with W ∈ R100×Q where Q is the # target
classes.

B Noisifier

As examples for data containing token- and
character-level noise, consider the following two
made up text snippets.6 Character sequences we
regard as noise are boldfaced.

Dä bus isch stablibe, mis ticket nüme gültig try-
ing to stay chill

ooohhhh neiiiii mir händs nöd gschafft

In the following algorithms, r() denotes a func-
tion which returns a random value ∈ [0, 1].

In algorithm 2 parameter A contains
{’omission’, ’insertion’, ’repetition’}.

For a given example input our noisifier with pa-
rameters settings as shown in the hyper parame-
ter table in Appendix C introduces noise structures
into non-noisy texts, like the following:

6For copyright reasons we do not cite or display real
tweets in the publication.

Algorithm 1 Token-level noise injection
Input: x, p1, p2, L
Output: xTnoise

t← split x into tokens
initialize array u
for each tj ∈ t do

if r1 ← r() > p1 then
add randomly chosen token l ∈ L to u
while r2 ← r() > p2 ∧ c < k/2 do

add randomly chosen token l ∈ L to u
end while

end if
append tj to u

end for
return concatenate u to string xTnoise

Algorithm 2 Character-level noise injection
Input: xTnoise, p3, p4, C,A
Output: xCnoise

initialize empty string xCnoise

for each xi ∈ xTnoise do
if r3 ← r() > p3 then

a← choose random action ∈ A
if a = ’omission’ then

continue
else if a = ’insertion’ then

b← choose random character ∈ C
else if a = ’repetition’ then

b← xi

end if
add b to xCnoise

while r4 ← r() > p4 do
add b to xCnoise

end while
end if
add xi to xCnoise

end for
return xCnoise

clean: Viele Personen sind nicht der Überzeugung.
noisy: Viele Personen sind nicht der Üerzeugunnng.

clean: Hast du schon die neue xbox 3 gesehen?
noisy: Hast du music schon die neue xbox 3 geese-

hen?

clean: You’ll never guess what happened this morn-
ing.

noisy: You’ll never guess Jwhat happened this
morninnng.

clean: Le tigre est un grand chat de proie originaire
d’Asie.

noisy: Le tigre estt un grand chatde proie originaire
d’Asie.

clean: C’è ancora una mancanza di chiarezza, non
possiamo farci nulla.

noisy: C’è ancor una mancanza di chiarezza, non pos-
siamo St. Moritz Frisör farci nulla.

As is obvious from these examples, the noise
injected by the noisifier still looks quite different
from human created noise, thus a more sophisti-
cated noisifier is desirable.



C Configurations

Table 2 only lists parameters which are changed
during ablation testing. In the table below, we re-
port the parameters we left unchanged during ab-
lation testing.

Parameter Value
hidden size h 300
dense-block layer-in size 300
dense-block layer-betw. size 150
dense-block layer-out size 50
final-block layer-in size 100
final-block layer-out size # target classes
dropout 0.1
learning rate 0.001
number of epochs 15
p1 0.99
p2 0.6
p3 0.97
p4 0.5
character-filter threshold 0.8

Table 3: Hyperparameters maintained constant during
all experiments.

After two epochs the learning rate is decreased
from 0.001 to 0.0001 and after six epochs the
learning rate is further decreased to 0.00003.

We ran our models on a NVIDIA GeForce GTX
TITAN X graphics processing unit.


