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Abstract

Language detection is a key part of the
NLP pipeline for text processing. The task
of automatically detecting languages be-
longing to disjoint groups is relatively easy.
It is considerably challenging to detect lan-
guages that have similar origins or dialects.
This paper describes Idiap’s submission to
the 2020 Germeval evaluation campaign1

on Swiss-German language detection. In
this work, we have given high dimensional
features generated from the text data as
input to a supervised autoencoder for de-
tecting languages with dialect variances.
Bayesian optimizer was used to fine-tune
the hyper-parameters of the supervised au-
toencoder. To the best of our knowledge,
we are first to apply supervised autoen-
coder for the language detection task.

1 Introduction

The increased usage of smartphones, social me-
dia, and the internet has led to rapid growth in the
generation of short linguistic texts. Thus, identifi-
cation of language is a key component in building
various NLP resources (Kocmi and Bojar, 2017).
Language detection is the task of determining the
language for the given text. Although it has pro-
gressed substantially, still few challenges exist: (1)
distinguishing among similar languages, (2) detec-
tion of languages when multiple language contents
exist within a single document, and (3) language
identification in very short texts (Balazevic et al.,
2016; Lui et al., 2014; Williams and Dagli, 2017).
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1https://sites.google.com/view/
gswid2020

It is a difficult task to discriminate between very
close languages or dialects (for example, German
dialect identification, Indo-Aryan language identifi-
cation (Jauhiainen et al., 2019a)). Although dialect
identification is commonly based on the distribu-
tions of letters or letter n-grams, it may not be possi-
ble to distinguish related dialects with very similar
phoneme and grapheme inventories for some lan-
guages (Scherrer and Rambow, 2010).

Many authors proposed traditional machine
learning approaches for language detection like
Naive Bayes, SVM, word and character n-grams,
graph-based n-grams, prediction partial matching
(PPM), linear interpolation with post-independent
weight optimization and majority voting for com-
bining multiple classifiers, etc. (Jauhiainen et al.,
2019b).

More recently, deep learning techniques have
shown substantial performance in many NLP tasks
including language detection (Oro et al., 2018).
In the context of deep learning techniques, many
papers have demonstrated the capability of semi-
supervised autoencoders solving different tasks, in-
dicating that the use of autoencoders allows learn-
ing a representation when trained with unlabeled
data. (Ranzato and Szummer, 2008; Rasmus et al.,
2015). However, as per our literature survey, none
of the recent research has applied autoencoder for
the language detection task. In this paper, we
propose a supervised configuration of the autoen-
coders, which utilizes labels for learning the repre-
sentation. To the best of our knowledge, this is the
first time this technology is evaluated in the context
of the language detection task.

1.1 Supervised Autoencoder

An autoencoder (AE) is a neural network that learns
a representation (encoding) of input data and then
learns to reconstruct the original input from the
learned representation. The autoencoder is mainly
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used for dimensionality reduction or feature extrac-
tion (Zhu and Zhang, 2019). Normally, it is used
in an unsupervised learning fashion, meaning that
we leverage the neural network for the task of rep-
resentation learning. By learning to reconstruct the
input, the AE extracts underlying abstract attributes
that facilitate accurate prediction of the input.

Thus, a supervised autoencoder (SAE) is an au-
toencoder with the addition of a supervised loss
on the representation layer. For the case of a sin-
gle hidden layer, a supervised loss is added to the
output layer and for a deeper autoencoder, the in-
nermost (smallest) layer would have a supervised
loss added to the bottleneck layer that is usually
transferred to the supervised layer after training the
autoencoder.

In supervised learning, the goal is to learn a
function for a vector of inputs x ∈ Rd to predict
a vector of targets y ∈ Rm. Consider SAE with
a single hidden layer of size k, and the weights
for the first layer are F ∈ Rk×d. The function is
trained on a finite batch of independent and identi-
cally distributed (i.i.d.) data, (x1,y1), ..., (xt,yt),
with the goal of a more accurate prediction on
new samples generated from the same distribution.
The weight for the output layer consists of weights
Wp ∈ Rm×k to predict y and Wr ∈ Rd×k to re-
construct x. Let Lp be the supervised loss and Lr
be the loss for the reconstruction error. In the case
of regression, both losses might be represented by
a squared error, resulting in the objective:

1

t

t∑
i=1

[
Lp(WpFxi,yi) + Lr(WrFxi,xi)

]
=

1

2t

t∑
i=1

[
||WpFxi − yi||22 + ||WrFxi − xi||22

]
(1)

The addition of supervised loss to the autoen-
coder loss function acts as regularizer and results
(as shown in equation 1) in the learning of the better
representation for the desired task (Le et al., 2018).

1.2 Bayesian Optimizer

In the case of SAE, there are many hyperparameters
related to (a) Model construction and (b) Optimiza-
tion. Hence, SAE training without any hyperparam-
eter tuning usually results in poor performance due
to the dependencies that may result in simultaneous
over/under-fitting.

Global optimization is considered to be a chal-
lenging problem of finding the globally best solu-
tion of (possibly nonlinear) models, in the (possi-
ble or known) presence of multiple local optima.
Bayesian optimization (BO) is shown to outper-
form other state-of-the-art global optimization algo-
rithms on several challenging optimization bench-
mark functions (Snoek et al., 2012; Bergstra and
Bengio, 2012). BO provides a principled technique
based on Bayes theorem to direct a search for a
global optimization problem that is efficient and ef-
fective. It works by building a probabilistic model
of the objective function, called the surrogate func-
tion, that is then searched efficiently with an acqui-
sition function before candidate samples are chosen
for evaluation on the real objective function. It tries
to solve the minimization problem:

X∗ = argmin
x∈χ

f(x), (2)

where we consider χ to be a compact subset of Rk
(Snoek et al., 2015).

Thus, we employed BO for hyperparameter op-
timization where the objective is to find the hyper-
parameters of a given machine learning algorithm,
for this, we preserved the best performance as mea-
sured on a validation set.

2 Proposed Method

The architecture of the proposed model is shown
in Figure 1. We used character n-grams as fea-
tures from the input text. In comparison to word
n-grams, which only capture the identity of a word
and its possible neighbors, character n-grams are
additionally capable of providing an excellent trade-
off between sparseness and word’s identity, while
at the same time they combine different types of
information: punctuation, morphological makeup
of a word, lexicon and even context (Wei et al.,
2009; Kulmizev et al., 2017; Sánchez-Vega et al.,
2019). The extracted n-gram features are input to
the deep SAE as shown in the Figure 1. The deep
SAE contains multiple hidden layers. We used the
BO for selecting the optimal parameters.

3 Experimental Setup and Datasets

The training dataset was provided by the organizers
of the shared task. The training2 dataset consists of
2,000 tweets in the Swiss-German language. The

2Although 2K Twitter ids were provided, we were not able
to retrieve them all, resulting in 1976 training instances.



Figure 1: Proposed model architecture. The extracted features of the text are fed to the supervised autoencoder.
The targets “y” are included. The classification output are the language ids for the classified languages.

participants were allowed to use any additional
resources as training datasets. As part of the addi-
tional resources recommended by the organizers,
the following Swiss-German datasets were sug-
gested: NOAH 3 (Hollenstein and Aepli, 2015),
and SwissCrawl 4(Linder et al., 2019); which we
used in our experiments.

The test data released by the organizers consists
of 5,374 Tweets (mix of different languages) to
be classified as Swiss-German versus not Swiss-
German.

The training dataset provided by the organizer
did not have any non-Swiss-German text. In addi-
tion to the recommended Swiss-German datasets,
we have used other non-Swiss-German datasets
(DSL 5 (Tan et al., 2014a), and Ling10 6) for train-
ing our models.
• DSL Dataset: The data obtained from the

“Discriminating between Similar Language
(DSL) Shared Task 2015” contains 13 dif-
ferent languages as shown in Table 1. The
DSL corpus collection have different versions
based on different language group which pro-
vides datasets for researchers to test their sys-
tems (Tan et al., 2014a). We selected DSLCC
version 2.0 7 in our experiments (Tan et al.,
2014b).
• Ling10 Dataset : The Ling10 dataset contains

3https://noe-eva.github.io/
NOAH-Corpus/

4https://icosys.ch/swisscrawl
5http://ttg.uni-saarland.de/resources/

DSLCC/
6https://github.com/johnolafenwa/

Ling10
7https://github.com/Simdiva/DSL-Task/

tree/master/data/DSLCC-v2.0

190,000 sentences categorized into 10 lan-
guages (English, French, Portuguese, Chinese
Mandarin, Russian, Hebrew, Polish, Japanese,
Italian, Dutch) mainly used for language de-
tection and benchmarking NLP algorithms.
We considered “Ling10-trainlarge” (one of
the three variants of Ling10 dataset) in our
experiment.

Group Name Language Id
South Eastern Slavic Bulgarian bg

Macedonian mk
South Western Slavic Bosnian bs

Croatian hr
Serbian sr

West-Slavic Czech cz
Slovak sk

Ibero-
Romance(Spanish)

Peninsular Spain es-ES

Argentinian Spanish es-AR
Ibero-
Romance(Portuguese)

Brazilian Portuguese pt-BR

European Portuguese pt-PT
Astronesian Indonesian id

Malay my

Table 1: DSL Language Group. Similar languages
with their language code.

As the task is a binary classification of Swiss-
German versus not Swiss-German, we have split
all our collection of datasets including the training
set provided by the organizers into two categories
as follows:
• Swiss-German (NOAH, SwissCrawl, Swiss-

German Training Tweets).
• not Swiss-German (DSL, Ling10).
Accordingly, we labeled the target class of all

the Swiss-German text as “gsw” (Swiss-German)
and labeled the target class of all other language

https://noe-eva.github.io/NOAH-Corpus/
https://noe-eva.github.io/NOAH-Corpus/
https://icosys.ch/swisscrawl
http://ttg.uni-saarland.de/resources/DSLCC/
http://ttg.uni-saarland.de/resources/DSLCC/
https://github.com/johnolafenwa/Ling10
https://github.com/johnolafenwa/Ling10
https://github.com/Simdiva/DSL-Task/tree/master/data/DSLCC-v2.0
https://github.com/Simdiva/DSL-Task/tree/master/data/DSLCC-v2.0


text as “not gsw”).
We prepared three settings (S1, S2, and S3) com-

bining the above datasets in different proportions
of Swiss-German versus not Swiss-German lan-
guages for training the model. The statistics of the
datasets for the settings are shown in Table 2.

We mixed the datasets of Swiss-German and
other languages and split them into different ratios
for training and development as per the settings. In
each setting, the training and development set is
different based on the selection of the number of
sentences from each dataset. We used the test set
provided by the shared task organizers. As the test
set includes twitter text during preprocessing, we
removed emojis and other unnecessary symbols.

The range of values for the hyperparameters
search space is shown in Table 3. During training,
BO chooses the best hyperparameters from this
range. The overall configuration of the SAE model
is shown in Table 4.

4 Results and Discussion

We evaluated the development set performance and
the test set evaluation performed by the shared task
organizers. The development set performance is
given in section Section 4.1 and the test set perfor-
mance in Section 4.2.

Our evaluation includes calculating classification
accuracy based on the predicted label compared
with the actual label. The organizers calculated pre-
cision, average precision, recall, and F1 score for
each of the submissions. As known, precision is the
ratio of correctly predicted positive observations
to the total predicted positive observations; recall
(or sensitivity) is the ratio of correctly predicted
positive observations to all observations in actual
positive class, and the F1 score is the weighted
average of precision and recall.

Organizers also generated the Receiver Operat-
ing Characteristic curve (ROC), Area Under the
ROC Curve (AUC), and Precision-Recall (PR)
curves. The AUC - ROC curve is a performance
measurement at various threshold settings. ROC is
a probability curve and AUC represents the degree
or measure of separability. It indicates how much a
trained model is capable of distinguishing between
classes, thus, the higher the AUC, the better the
model performance. Finally, PR curves summarize
the trade-off between the true positive rate and the
positive predictive value for a predictive model us-
ing different probability thresholds; hence, a good

Confusion matrix for setting S1 on dev set.

Confusion matrix for setting S2 on dev set.

Confusion matrix for setting S3 on dev set.

Figure 2: Confusion matrix on the development (dev)
set for the setting S1, S2, and S3. The confusion matrix
shows the correct and incorrect predictions with count
values broken down by each class i.e. “gsw” (Swiss-
German) or “not gsw” (not Swiss-German).

model is represented by a curve that bows towards
(1,1).

4.1 Development Set

The SAE model performance for the three settings
(S1, S2, and S3) on the development set is shown in
Table 5. The confusion matrix for all the settings
on the development set is shown in Figure 2. The
confusion matrix shows the correct and incorrect
predictions with count values broken down by each
class i.e. “gsw” (Swiss-German) or “not gsw” (not



Setting Datasets and Language Distribution Distribution Training Dev Test
(Overall)

S1 NOAH (Swiss-German) 7,327 (8%) 50% Swiss-German 80,000 20,000 5,374
SwissCrawl (Swiss-German) 40,697 (40%) 50% not Swiss-German
SwissTextTrain (Swiss-German) 1,976 (2 %)
DSL (not Swiss-German) 25,000 (25 %)
Ling10 (not Swiss-German) 25,000 (25 %)

S2 NOAH (Swiss-German) 7,327 (5%) 61% Swiss-German 130,000 20,000 5,374
SwissCrawl (Swiss-German) 81,841 (55 %) 39% not Swiss German
SwissTextTrain (Swiss-German) 1,976 (1 %)
DSL (not Swiss-German) 25,000 (17 %)
Ling10 (not Swiss-German) 33,856 (22 %)

S3 NOAH (Swiss-German) 7,327 (4 %) 46% Swiss-German 180,000 20,000 5,374
SwissCrawl (Swiss-German) 81,841 (41 %) 54% not Swiss-German
SwissTextTrain (Swiss-German) 1,976 (1 %)
DSL (not Swiss-German) 50,000 (25 %)
Ling10 (not Swiss-German) 58,856 (29 %)

Table 2: Dataset Statistics. The training-development-test set distribution for each of setting (S1, S2 and S3). The
distribution is based on the number of sentences selected from the datasets.

Hyper Parameter Range
number of layer 1-5
learning rate 10−5 − 10−2

weight decay 10−6 − 10−3

activation functions ‘relu’, ‘sigma’

Table 3: Search space hyper parameter range.

Parameter Value
char n gram range 1-3
number of target 2
embedding dimension 300
supervision ‘clf’ (classification)
converge threshold 0.00001
number of epochs 500

Table 4: SAE model configuration used for training.

Swiss-German).

Accuracy (%)
Model Setting Development Set
SAE (char-3gram) S1 100
SAE (char-3gram) S2 100
SAE (char-3gram) S3 100

Table 5: Swiss-German language detection perfor-
mance (classification accuracy) of the proposed model
on the development set based on the setting S1, S2, and
S3.

4.2 Test Set
The overall result announced by the organizers on
test set is shown in the Table 6 and in the Figure 3.
Our submission labeled as “IDIAP”, obtained the
results 0.777, 0.998, and 0.872 for precision (prec),
recall (rec), and F1 score respectively for the setting
S3 as shown in Table 6. The detailed performance
of each of our setting is shown in Table 7.

Precision Recall F1
IDIAP 0.775 0.998 0.872

jj-cl-uzh 0.945 0.993 0.968
Mohammadreza 0.984 0.979 0.982

Banaei

Table 6: Shared task result announced by the organiz-
ers displaying participant team and their model perfor-
mance (Precision, Recall, and F1).

Setting Prec Rec F1 Avg. AUROC(gsw) (gsw) (gsw) Prec
S1 0.649 0.997 0.786 0.871 0.924
S2 0.673 0.997 0.804 0.911 0.946
S3 0.775 0.998 0.872 0.965 0.975

Table 7: Performance of setting S1, S2, and S3.

Based on our initial analysis, we presume that
the low performance of the SAE on the test set is
due to the very few samples of twitter data available
in the training data.

5 Conclusion

In this paper, we have shown the pertinence of SAE
with Bayesian optimizer for the language detection
task. Obtained results are encouraging, and SAE
was found effective for discriminate between very
close languages or dialects. The proposed model
can be extended by creating a host of features such
as character n-gram, word n-gram, word counts, etc
and then passing it through autoencoder to choose
the best features. In future work, we plan to (i) ver-
ify our model (SAE with BO) with other language
detection datasets, and (ii) include more short texts,
particularly Twitter data, in the training set and



Figure 3: Official results announced by the organizers displaying team’s performance (ROC, PR curves).

verify the performance of our model under a more
balanced data type scenario.
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