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Abstract

This paper presents the contribution of
ZHAW-InIT to Task 4 “Low-Resource
STT” at GermEval 2020. The goal of the
task is to develop a system for translating
Swiss German dialect speech into Stan-
dard German text in the domain of parlia-
mentary debates. Our approach is based
on Jasper, a CNN Acoustic Model, which
we fine-tune on the task data. We enhance
the base system with an extended Lan-
guage Model containing in-domain data
and speed perturbation and run further ex-
periments with post-processing. Our sub-
mission achieved first place with a final
Word Error Rate of 40.29%.

1 Introduction

Automatic Speech Recognition (ASR) is defined
as mapping audio signals to text. A particular
challenge for ASR arises if a language does not
have a standardized writing system, as is the case
for Swiss German. In German-speaking Switzer-
land, Swiss German is the default spoken language
on most occasions, from formal to informal; how-
ever, the language of reading and writing is Stan-
dard German (“medial diglossia”, Siebenhaar and
Wyler (1997)). Swiss German is increasingly used
for writing in informal contexts, especially on so-
cial media, but users usually write phonetically in
their local dialect (Siebenhaar, 2013). The par-
ticular dialects of Swiss German differ from each
other to such an extent that speakers of one dialect
might even have difficulty understanding dialects
from some other regions. An indirect consequence
is that many dialects are considered low-resource,
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since there is not enough data for each dialect for
many natural language processing tasks. Nonethe-
less, there is enough data to train ASR systems
for Standard German, which is spoken by a sub-
stantially larger group of native speakers, being
an official language also in Germany and Aus-
tria. On official occasions, speeches are written
down, transcribed, or logged in Standard German.
Since the linguistic distance between the Swiss
German dialects and the official language German
are quite large, this poses a similar task as Cross-
Linguistic Speech-To-Text (CL-STT; also referred
to as speech-to-text translation) which is a difficult
interdisciplinary challenge, combining STT with
elements of Machine Translation (MT) (Bérard
et al., 2016). Both fields have a long history of
methods and approaches, which are currently at
the point of converging thanks to the development
of deep learning technology. This combination
of ASR and MT is indeed needed in the context
of Swiss German dialects, as speeches are para-
phrased or even translated (see Section 6 for an
example).

The Shared Task “Low-Resource STT” at Ger-
mEval 2020 aimed exactly at a specific Swiss case
of CL-STT: translating Swiss German dialect spo-
ken in an official context to written Standard Ger-
man.

In our approach, we applied a general character-
based ASR system (Li et al., 2019), pre-trained
on a large German corpus, and fine-tuned to the
Shared Task data. We further enriched our Lan-
guage Model with additional publicly available
data.

2 Shared Task Description

The goal of this Shared Task was to develop a sys-
tem for translating Swiss German dialect speech
into Standard German text in the domain of par-



liamentary debates.

A data set of 36’572 utterances with a total du-
ration of 69.8 hours was made available for train-
ing the systems and a 4 hour test set was used for
evaluating solutions. The training data consists of
a set of recordings of debates held in the parlia-
ment of the canton of Bern, with utterances pro-
duced by 191 speakers. None of these 191 speak-
ers occur in the test set. The audio recordings con-
tain mostly Swiss German dialect speech with the
majority of the utterances being spoken in Bernese
dialect; however, there are also some recordings of
Standard German speech as well as a few English
utterances. Each utterance contains one sentence
and has an average duration of 6.9 seconds.

All recordings have been manually transcribed
into Standard German, while the alignment be-
tween audio and transcripts was performed au-
tomatically by the task organizers (Pliiss et al.,
2020b,a).

The transcript accuracy is measured with the
Word Error Rate (WER), which is the standard
ASR evaluation metric. It is computed as the sum
of the number of insertions, deletions and substi-
tutions between predicted and reference sentences
divided by the number of words in the reference
(Zechner and Waibel, 2000). Selecting WER in-
stead of the BLEU score, which is usually applied
for automatic evaluation of translations, is justified
by the task organizers with the fact that the Swiss
German spoken in the parliament is comparatively
close to Standard German and the diversity of the
possible correct translations is very limited. Prior
to evaluation, the task organizers normalized both
ground truth and transcribed utterances by lower-
casing them and removing punctuation.

3 Related Work

The most recent developments in both ASR and
machine translation involve generalized methods
that can be relatively easily ported across the two
tasks, such as the encoder-decoder architecture.
One of the most prominent, ~’Listen, Attend and
Spell” (LAS) (Chan et al., 2016), uses an encoder-
decoder architecture with attention and a pyrami-
dal LSTM for the encoder. Chiu et al. (2018) de-
scribe improvements to LAS, such as multi-head
attention, scheduled sampling, and label smooth-
ing, which achieved new state-of-the-art perfor-
mance, although only on proprietary voice search
data. Other encoder-decoder models include the

Neural Transducer (Jaitly et al., 2016), Recur-
rent Neural Aligner (Sak et al., 2017) and models
based on the Transformer architecture (Vaswani
et al., 2017) as in Dong et al. (2018). Zeghidour
et al. (2018) achieved state-of-the-art performance
on an end-to-end system based on convolutional
neural networks (CNN). Their system can predict
characters directly from raw waveforms, instead
of the commonly used log-MEL features.

Lietal. (2019) propose a convolutional network
with residual connections, with state-of-the-art re-
sults on the LibriSpeech and Wall Street Journal
ASR data sets. The network predicts a character at
each step (of 20 ms) and a Connectionist Tempo-
ral Classification (CTC) loss (Graves et al., 2006)
is used for training. Beamsearch decoding allows
the prediction to match a pre-trained Language
Model. Preliminary work, Biichi (2020), showed
that this approach was much easier to adapt and
train on a large German corpus in comparison to
hybrid systems trained with Kaldi (Povey et al.,
2011) which achieve similar results.

While usually tens of thousands of hours of
audio are required for achieving state-of-the-art
ASR performance, some approaches target lan-
guages where only a few hours of data are avail-
able (Samarakoon et al., 2018). The use of pre-
training and transfer learning are especially help-
ful in such challenging setups (Stoian et al., 2019).

Although there are approaches which directly
target the speech translation setup (Bérard et al.,
2016; Jia et al., 2019b,a), and the Shared Task data
consists of translations and paraphrases of the spo-
ken utterances, we decided not to add an additional
component dealing specifically with translation to
our system because of the lack of relevant avail-
able data.

4 System Description

This section describes the initial system used to
establish a base for our experiments. Important
concepts as well as parameters crucial for the ex-
periments are explained.

4.1 Reference Text Pre-processing

We normalized all texts before training the Acous-
tic Models and Language Models. This step was
necessary to have a standardized set of possible
characters, which in this case were the letters a-
z, 4, 6 and . Normalization was performed in
multiple steps, starting by lower-casing the whole



text and splitting it into sentences. All punctua-
tion symbols were removed, except for points and
commas which might be used as decimal point or
for ordinal numbers. Numbers were transliterated
to words. Common abbreviations and symbols
were replaced by their spoken form (e.g. "% by
“Prozent” or ’kg” by “Kilogramm”). Letters with
diacritics other than &, 6, and i were replaced by
their counterpart without diacritics. Finally, any
remaining unknown symbols were removed with-
out replacement.

4.2 Acoustic Model

An Acoustic Model was used to predict linguis-
tic units based on an audio signal. For this pur-
pose, Jasper (Li et al., 2019), a DNN-based model,
was applied. Jasper predicts a probability distri-
bution over all possible characters at every time
step based on mel-filterbank features as input. The
input was augmented with SpecAugment (Park
etal., 2019).

The model consists of convolutional layers
structured in blocks and sub-blocks. A model
B x R is defined by the number of blocks B and
number of sub-blocks R. Every sub-block consists
of a 1D-convolution, batch-normalization, ReLU,
and dropout. The input of each block is connected
to the last sub-block by a residual connection. We
applied the Dense Residual configuration, which
is shown in Figure 1, where the output of each
block is additionally added to the inputs of all
following blocks. For pre- and post-processing
one and three additional blocks were used, respec-
tively.

During training, the CTC loss (Graves et al.,
2006) was minimized using the Novograd opti-
mizer introduced in Li et al. (2019).

4.3 Decoding

In order to get transcriptions from the Acoustic
Model output, beam search was applied. Beam
search tries to find the most probable text sequence
given probabilities of characters over time. Addi-
tionally, a Language Model was used to re-rank
the beam search hypotheses. A Language Model
penalizes words that are not known and assigns a
probability to each word given the words preced-
ing it. The weight of the Language Model is con-
trolled with parameter . A parameter J is used as
the word insertion bonus to prevent the preference
of long words. The Language Model we used was
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Figure 1: Visualization of the Jasper B x R Dense
Residual model, from the Jasper Github repository
(NVIDIA, 2020). It shows one pre-processing, three
post-processing and intermediate blocks with residual
connections.

a 6-gram model trained with KenLM (Heafield,
2011).

4.4 Pre-training on Standard German

The Acoustic Model requires a large amount of
data for training. Therefore, Standard German
speech data as listed in Table 1 was used to cre-
ate a pre-trained model'. Based on the given data
sets, a combined version was created. Training,
development and test splits were kept if given in
the original data sets. Otherwise, custom splits
were created with a size of 15% for test and vali-
dation, but with a maximum of 15000 seconds.

For the size of the model the configuration 10 X
5 was used. The model was trained with an initial
learning rate of 0.015 on batches of size 64 for a
total of 100 epochs.

4.5 Fine-Tuning

The pre-trained model was used as a base for fine-
tuning using the task specific data. The first few
blocks serve as acoustic feature extraction. Since
acoustic features of Standard German and Swiss
German are very close, only weights of the post-
processing blocks as well as the last three or five
intermediate blocks were updated, depending on

!Accessible through
german—-asr/megs.

https://github.com/
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Table 1: List of speech corpora used for pre-training. We used the original training splits, if available, and removed
all identified invalid samples (e.g. containing wrong transcriptions or corrupted audios). This resulted in training

data consisting of 536.9 hours of speech.

Name

Size (h) Num. of Speakers

TuDa (Milde and K&éhn, 2018)
CV (Ardila et al., 2019)
VoxForge (VoxForge, 2019)
SWC (Baumann et al., 2018)

M-AILABS (M-AILABS, 2019)

183 179
324 4852

32 328
266 573
233 -

the experiment as described in Section 5.2. Apart
from the frozen blocks, the same hyperparameters
were used as for the pre-training. The model was
trained for another 100 epochs for fine-tuning (see
Figure 2 for Word Error Rate progression over the
100 epochs).
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Figure 2: Word Error Rate progression on the internal
development set.

4.6 Performance

The acoustic models were trained on a NVIDIA
DGX-1 system. Pre-training with about 540
hours of Standard German took approximately
197 hours using two NVIDA Tesla V100 GPUs,
while fine-tuning of the acoustic model (AM-A-
5x5-SP) with about 70 hours of Swiss German
speech required approximately 21 hours with one
V100 GPU. The time for inference was much
lower and took only about two minutes per 4 hours
of speech on a NVIDA Titan X GPU. Applying
the language model (LM extended) required some
additional computation time. However, this took
only a few minutes on a recent system for training
as well as for decoding in combination with the
beam search algorithm.

5 Experiments

We describe the experiments we conducted in or-
der to improve the baseline system in Section 5.2,
present the results we obtained in Section 5.3 and
reflect on them in 5.4.

5.1 System Components

The data set provided as part of the Shared Task
was split into internal train, development and test
sets. The train set consisted of 32’978 utterances,
the development set contained 1°778 utterances,
while the test set comprised 1’816 utterances. This
split approximates 90% training, 5% development,
5% testing. A single speaker could not occur in
different sets and the utterance lengths were taken
into account for splitting.

The experiments consisted in fine-tuning the
baseline system with the use of additional text
data and, in one case, in applying transcript post-
processing.

Acoustic Models The baseline Acoustic Model
(called ”AM base” below) was fine-tuned on the
internal train set, first on three blocks (model
”AM-E 3x5”) and in the second version on five
blocks (model ”AM-E 5x5”). In the last step of
Acoustic Model fine-tuning, the baseline model
was re-trained on the complete official train set
(internal train, development and test sets com-
bined), which resulted in the model called ”AM-
A 5x5”. Additionally, we trained a model with
the internal training set without applying any pre-
training (model ”AM-NOPRE”).

Language Models The language modelling
setup is described in Section 4.3. We used
two different Language Models (LMs). The
basic Language Model ("LM base”) consists
of corpora 1-3 in Table 2. Since these cor-
pora are from different domains than the task
data, we injected additional data to fine-tune



Table 2: List of text corpora used for training Language Models. The first three corpora were used for the basic
Language Model, while the last two were additionally included in the extended LM.

Name

Num. of Sentences

EuroParl (Koehn, 2005)

Dk~ W -

Training set transcripts

News-Commentary (Bojar et al., 2018)

Tuda-Text (Milde and Kohn, 2018)
Federal Chancellery Press Releases

383764
1920208
7776674

174520

32977

the LM: corpus 4 is a collection of 11’576
press releases by the Federal Chancellery (Bun-
deskanzlei). These were scraped from https:
//www.bk.admin.ch/bk/de/home/
dokumentation/medienmitteilungen.
msg—1id—-<ID>.html using a custom script,
where consecutive <ID>s up to the most recent
press release were queried and the content was
subsequently extracted using XPath. Corpus 5
consists of the internal training set transcripts.
The LM trained on all available corpora (1-5) is
referred to as "LM extended”.

Article Post-processing During development
we noticed that there was a considerable amount
of errors due to incorrectly predicted articles (e.g
“der”, ’die”, ’das”) (see Section 5.4 for more de-
tails). We identified individual definite and in-
definite articles in a predicted utterance, removed
them, and queried the top 5 predictions of a BERT
model (Devlin et al., 2019). If the originally pre-
dicted article appeared in the list of suggestions,
we kept it. Otherwise it was replaced by the ar-
ticle scored highest by BERT, making sure not to
replace an indefinite article by a definite one or
vice-versa.

5.2 Experimental Setup

In total, nine experiments were conducted with
the goal to investigate system performance of the
various models. The details of the experiments
are presented in Table 3. The very first exper-
iment (“base”) was performed without any fine-
tuning or post-processing on the base model, while
the second one ("AMext3x5”) aimed at evaluat-
ing the predictions from the "AM extended 3x5”
model without applying any Language Model.
In the third experiment we evaluated the model
trained only on the internal Swiss German train
set without any pre-training on Standard Ger-
man ("AMno_pretrain”). The next two exper-
iments consisted in introducing and extending

the Language Model ("AMch3x5_LMbase” and
”AMch3x5_LMext”). Following that, we inves-
tigated data augmentation possibilities. In ad-
dition to SpecAugment which is used in all ex-
periments, we applied speed perturbation (Ko
et al., 2015) on the Acoustic Model data (model
”AMch3x5_sp_LMext”). The sixth experiment
("AMch3x5_sp_LMext_artc”) was an attempt to
improve the results by performing transcript post-
processing. We sought to reduce the number
of substitutions resulting from incorrect predic-
tion of articles by applying BERT as described
above. In "AMch5x5_sp_LMext” we introduced
the Acoustic Model "AM extended 5x5” and re-
placed it with ”AM all 5x5” in the final experiment
(AMall5x5_sp_LMext).

5.3 Evaluation

The results of all experiments were evaluated
on the internal test set, except for the last one,
”AMall5x5 _sp_LMext”, where the internal test set
was used for training the models. The five best-
performing versions were submitted for evaluation
on the public test set of the Shared Task. Table 3
provides an overview of all results.

Eventually, we achieved 40.29% WER on the
official test set. Our best performing system is a
combination of the baseline Acoustic Model re-
trained on 5 blocks with Swiss German data, speed
perturbation, and a Language Model fine-tuned on
in-domain data from Switzerland.

5.4 Discussion

The two largest performance improvements were
achieved by fine-tuning the Acoustic Model on
the task-specific data ("AMext3x5” vs “base”:
WER reduced by 38% absolute) and by using a
general-purpose Language Model during decod-
ing ("AMext3x5_LMbase” vs "AMext3x5”: WER
reduced by 7.64% absolute). Both of these are
standard practices in ASR and hence these im-
provements are neither surprising nor particularly
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Table 3: Experiments overview. Note on Acoustic Models: AM-E-3x5-SP stands for AM extended 3x5 with speed

perturbation, and AM-A-5x5-SP for AM all 5x5 with speed perturbation.

System Acoustic Language Post- WER
Name Model Model Processing internal  official
base AM base - - 92.1% -
AMext3x5 AM-E 3x5 - - 54.1% -
AMch3x5_LMbase AM-E 3x5 LM base - 46.46% -

AMno _pretrain_LMext AM-NOPRE SP LM extended - 46.82%  43.52%
AMch3x5_LMext AM-E 3x5 LM extended - 45.52% 42.61%
AMch3x5_sp_LMext AM-E 3x5 SP LM extended - 44.83% 41.76%
AMch3x5_sp_LMext_artc AM-E 3x5 SP LM extended articles 45.17% 42.2%
AMch5x5_sp_LMext AM-E 5x5 SP LM extended - 4443%  41.16%
AMall5x5_sp_LMext AM-A 5x5 SP LM extended - - 40.29%

insightful.

We identified articles as one distinct source
of errors: around one sixth of substitution
errors were articles; hence, we decided to
address these during post-processing (model
”AMch3x5_sp_LMext_artc”). Our method using
BERT (see Section 5.2) did not improve perfor-
mance. There are several reasons for this. First,
while some articles were indeed improved with
this method, often there was insufficient context to
accurately determine the correct article. Domain-
specific abbreviations (e.g. party names such as
SVP, EVP) also proved difficult. Second, we ob-
served a number of article errors that are due to the
non-exact nature of the transcription. These are
linguistic or stylistic changes and improvements of
the spoken text and can therefore not be addressed
by our method. For example: changing a spoken
definite article to an indefinite one, using plural in-
stead of singular, transcribing a spoken “’es” with
”das”, or inserting an extra article into a coordi-
nated noun phrase.

Finally, there is also a challenge that relates to
the specific language variety in this task: articles
in Swiss German are rather difficult to detect as
they usually consist of single phonemes which are
assimilated to the following noun. This means that
articles may be missed at an earlier stage of pro-
cessing and will not be present in the output passed
to the post-processing.

Our extended Language Model brought
a nearly 1% absolute WER improvement
("AMch3x5_LMext” vs “AMch3x5_LMbase”),
which is less than we expected. However, this
can be explained by the rather small amount of

additional data - corpora 4 and 5 (see Table 2)

only account for 2% of all sentences passed to the
LM. Using more in-domain data in the LM could
lead to a larger effect.

Further small improvements were obtained by
using speed perturbation ("AMch3x5_sp_LMext”
vs “AMch3x5_LMext”: -0.7% absolute on
our internal test set and -0.85% on the task
test set) and retraining five Jasper blocks
instead of three ("AMch5x5_sp LMext” vs
”AMch3x5_sp_LMext”: -0.4% absolute on our
internal test set and -0.6% absolute on the task
test set).

We also note that our performance on the task
test set is consistently better than the one on our
internal test set.

6 Training Data Challenges

Before we conclude, we would like to reflect on
the properties of the task data and their repercus-
sions for WER results.

Our analysis of the errors and the data showed
that properties of the data often lead to an increase
in WER, where the ASR model provides an ade-
quate transcription but is “punished” by data arte-
facts. We identified the following main issues:

e We noticed that transcriptions in the training
set are inconsistent with respect to numer-
als, which are written as either numbers or
words, so that transcribing the numeral four
as “vier” when the reference transcript has
”4” will lead to a substitution error. Since
there is no consistency in the writing of nu-
merals (e.g. always using words, always us-
ing numbers, using words when smaller than
ten, etc), this leads to errors that we could not
prevent.



e Transcripts are polished (e.g. speech disflu-
encies such as repetitions, hesitations, and
false starts are removed) and reformulated
so they become more readable, which means
they do not exactly represent the spoken
text. For example, in training set item
19940. flac, the speaker starts by saying
”mer hie enne” (DE: ”wir hier drin”, EN: ”we
in here”), but this was transcribed as ~’wir
in diesem Saal” (EN: ”we in this chamber”),
leading to three errors (two substitutions and
one deletion) when transcribed faithfully to
the spoken utterance by the model.

e We also note issues with the segmentation of
audio files, which, according to the task or-
ganizers, was performed automatically. This
leads to insertion errors (when extra audio is
included beyond what is transcribed) or dele-
tion errors (when portions of the audio are
missing) of the model that cannot be miti-
gated.

Given the observed discrepancies between the
speech and transcript, additional evaluation mea-
sures might be considered. In CL-STT, BLEU
scores are used for evaluation. Even though this
metric has been criticized, it might fit the setup
of this task better, since the paraphrasing might
not be unique. Further, measures considering se-
mantics and synonyms (Wieting et al., 2019; Kane
et al., 2020) might prove helpful. However, in this
specific case of official transcriptions, this would
entail re-annotation, the cost of which would be
prohibitive.

7 Conclusion

In this paper, we presented our contribution to the
Shared Task on Low-Resource STT at GermEval
2020. Our solution consists of a CNN acoustic
model based on Jasper (Li et al., 2019) with beam-
search decoding and CTC loss. Our most success-
ful model uses Transfer Learning, where we re-
train the last five blocks of the Acoustic Model on
the task data. Additionally, we use speed perturba-
tion and a Language Model trained on both out-of-
domain and in-domain text data. These improve-
ments reduced the WER by over 50% compared
to the Standard German baseline system. Our best
model achieved a WER of 40.29% on the official
task test set, resulting in first place out of three
contributions.
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