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Abstract

Recent developments in unsupervised rep-
resentation learning have successfully es-
tablished the concept of transfer learn-
ing in NLP. Instead of simply plugging
in static pre-trained representations, end-
to-end trainable model architectures are
making better use of contextual informa-
tion through more intelligently designed
language modelling objectives. Along
with this, larger corpora are used for self-
supervised pre-training of models which
are afterwards fine-tuned on supervised
tasks. Advances in parallel computing
made it possible to train these models with
growing capacities in the same or even in
shorter time than previously established
models. These developments agglomer-
ate in new state-of-the-art results being re-
vealed in an increasing frequency. Never-
theless, we show that it is not possible to
completely disentangle the contributions
of the three driving forces to these improve-
ments.
We provide a concise overview on several
large pre-trained language models, which
achieved state-of-the-art results on differ-
ent leaderboards in the last two years, and
compare them with respect to their use
of new architectures and resources. We
clarify where the differences between the
models are and attempt to gain some in-
sight into the single contributions of lexical
and computational improvements as well
as those of architectural changes. We do
not intend to quantify these contributions,
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but rather see our work as an overview in
order to identify potential starting points
for benchmark comparisons.

1 Introduction

For solving NLP tasks, most researchers turn to
using pre-trained word embeddings (Mikolov et al.,
2013; Pennington et al., 2014; Bojanowski et al.,
2017) as a key component of their models. These
representations map each word of a sequence to a
real valued vector of fixed dimension. Drawbacks
of these kinds of externally learned features are
that they are (i) fixed, i.e. can not be adapted to a
specific domain they are used in, and (ii) context
independent, i.e. there’s only one embedding for a
word by which it is represented in any context.
More recently, transfer learning approaches, as for
example convolutional neural networks (CNNs)
pre-trained on ImageNet (Krizhevsky et al., 2012)
in computer vision, have entered the discussion.
Transfer learning in the NLP context means pre-
training a network with a self-supervised objective
on large amounts of plain text and fine-tuning its
weights afterwards on a task specific, labelled data
set. For a comprehensive overview on the current
state of transfer learning in NLP, we recommend
the excellent tutorial and blog post by Ruder et al.
(2019)1.
With ULMFiT (Universal Language Model Fine
Tuning), Howard and Ruder (2018) proposed a
LSTM-based (Hochreiter and Schmidhuber, 1997)
approach for transfer learning in NLP using AWD-
LSTMs (Merity et al., 2017). This model can be
characterised as unidirectional contextual, while a
bidirectionally contextual LSTM-based model was
presented in ELMo (Embeddings from Language
Models) by Peters et al. (2018).
The bidirectionality in ELMo is achieved by using

1https://ruder.io/state-of-transfer-learning-in-nlp/
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biLSTMs instead of AWD-LSTMs. On the other
hand, ULMFiT uses a more "pure" transfer learn-
ing approach compared to ELMo, as the ELMo-
embeddings are extracted from the pre-trained
model and are not fine-tuned in conjunction with
the weights of the task-specific architecture.
The OpenAI GPT (Generative Pre-Training, Rad-
ford et al., 2018) is a model which resembles the
characteristics of ULMFiT in two crucial points.
It is a unidirectional language model and it al-
lows stacking task specific layers on top after pre-
training, i.e. it is fully end-to-end trainable. The
major difference between them is the internal ar-
chitecture, where GPT uses a Transformer decoder
architecture (Vaswani et al., 2017).
Instead of processing one input token at a time, like
recurrent architectures (LSTMs, GRUs) do, Trans-
formers process whole sequences all at once. This
is possible because they utilize a variant of the At-
tention mechanism (Bahdanau et al., 2014), which
allows modelling dependencies without having to
feed the data to the model sequentially. At the same
time, GPT can be characterised as unidirectional
as it just takes into account the left side of the con-
text. Its successor OpenAI GPT2 (Radford et al.,
2019) possesses (despite some smaller architectural
changes) the same model architecture and thus can
also be termed as unidirectional contextual.
BERT (Bidirectional Encoder Representations
from Transformers, Devlin et al., 2019), and con-
sequently the other two BERT-based approaches
discussed here (Liu et al., 2019; Lan et al., 2019) as
well, differ from the GPT models by the fact that
they are bidirectional Transformer encoder models.
Devlin et al. (2019) proposed Masked Language
Modelling (MLM) as a special training objective
which allows the use of a bidirectional Transformer
encoder without compromising the language mod-
elling objective. XLNet (Yang et al., 2019) on the
contrary relies on an objective which the authors
call Permutation Language Modelling (PLM) and
is also able to model a bidirectional context despite
being an auto-regressive model.

2 Related work

In their stimulating paper, Raffel et al. (2019) take
several steps in a similar direction by trying to
ensure comparability among different Transformer-
based models. They perform various experiments
with respect to the transfer learning ability of a
Transformer encoder-decoder architecture by vary-

ing the pre-training objective (different variants
of denoising vs. language modelling), the pre-
training resources (their newly introduced C4 cor-
pus vs. variants thereof) and the parameter size
(from 200M up to 11B). Especially, their idea of
introducing a new corpus and creating subsets re-
sembling previously used corpora like RealNews
(Zellers et al., 2019) or OpenWebText (Gokaslan
and Cohen, 2019) is a promising approach in order
to ensure comparability.
However, their experiments do not cover an impor-
tant point we are trying to address with our work:
Focussing on only one specific architecture does
not yield an answer to the question which com-
ponents explain the performance differences be-
tween models where the overall architecture differs
(e.g. Attention-based vs. LSTM-based). Yang et al.
(2019) also address comparability to some extent
by performing an ablation study to compare their
XLNet explicitly to BERT. They train six different
XLNet-based models where they modify different
parts of their model in order to quantify how these
design choices influence performance. At the same
time they restrict themselves to an architecture of
the same size as BERT-BASE and use the same
amount of lexical resources for pre-training. Liu
et al. (2019) vary RoBERTa with respect to model
size and amount of pre-training resources in or-
der to perform an ablation study also aiming at
comparability to BERT. Lan et al. (2019) go one
step further with ALBERT by also comparing their
model to BERT with regard to run time as well as
width and depth of the model.
Despite all these experiments are highly valuable
steps into the direction of better comparability,
there are still no clear guidelines on which com-
parisons to perform in order to ensure a maximum
degree of comparability with respect to multiple
potentially influential factors at the same time.

3 Materials and Methods

First, we present the different corpora which were
utilised for pre-training the models and compare
them with respect to their size and their accessi-
bility (cf. Tab. 1). Subsequently, we will briefly
introduce benchmark data sets which the models
are commonly fine-tuned and evaluated on.
While conceptual differences between the evalu-
ated models have been addressed in the introduc-
tion, the models will now be described in more
detail. This is driven by the intention to emphasise



differences beyond the obvious, conceptual ones.

3.1 Pre-training corpora

English Wikipedia Devlin et al. (2019) state that
they used data from the English Wikipedia and
provide a manual for crawling it, but no actual data
set. Their version encompassed around 2.5B words.
Wikipedia data sets are available in the Tensorflow
Datasets-module.

CommonCrawl Among other resources, Yang
et al. (2019) used data from CommonCrawl. Be-
sides stating that they filtered out short or low-
quality content, no further information is given.
Since CommonCrawl is a dynamic database, which
is updated on a monthly base (and the extracted
amount of data always depends on the user) we can
not provide a word count for this source in Tab. 1.

ClueWeb (Callan et al., 2009), Giga5 (Parker
et al., 2011) The information about ClueWeb
and Giga5 is similarly sparse as for Common-
Crawl. ClueWeb was obtained by crawling ∼ 2.8M
web pages in 2012, Giga5 was crawled between
01/2009 and 12/2010.

1B Word Benchmark2 (Chelba et al., 2013)
This corpus, actually introduced as a benchmark
data set by Chelba et al. (2013), combines multi-
ple data sets from the EMNLP 2011 workshop on
Statistical Machine Translation. The authors nor-
malised and tokenized the corpus and performed
further pre-processing steps in dropping duplicate
sentences as well as discarding words with a count
below three. Additionally, they randomised the
ordering of the sentences in the corpus. This consti-
tutes a corpus with a vocabulary of 793.471 words
and a total word count of 829.250.940 words.

BooksCorpus3 (Zhu et al., 2015) In 2015, Zhu
et al. introduced the BooksCorpus, which is heavily
used for pre-training language models (cf. Tab. 1).
In their work, they used the BooksCorpus in order
to train a model for retrieving sentence similarity.
Overall, the corpus comprises 984.846.357 words
in 74.004.228 sentences obtained from analysing
11.038 books. They report a vocabulary consisting
of 1.316.420 unique words, making the corpus lex-
ically more diverse than the 1B Word Benchmark,
as it possesses a by 66% larger vocabulary whereas
having a word count which is only 19% higher.

2https://research.google/pubs/pub41880/
3https://yknzhu.wixsite.com/mbweb

Wikitext-103 (Merity et al., 2016a,b) The au-
thors emphasised the necessity for a new large scale
language modelling data set by stressing the short-
comings of other corpora. They highlight the occur-
rence of complete articles, which allows learning
long range dependencies, as one of the main bene-
fits of their corpus. This property is, according to
the authors, not given in the 1B Word Benchmark
as the sentence ordering is randomised there. With
a count of 103.227.021 tokens and a vocabulary
size of 267.735, it is about one eighth of the 1B
Word Benchmark’s size concerning token count
and about one third concerning the vocabulary size.
Note, that there is also the smaller Wikitext-2 cor-
pus (Merity et al., 2016c) available, which is a
subset of about 2% of the size of Wikitext-103.

CC-News (Nagel, 2016) This corpus was pre-
sented and used by Liu et al. (2019). They used a
web crawler proposed by Hamborg et al. (2017) to
extract data from the CommonCrawl News data set
(Nagel, 2016) and obtained a data set similar to the
RealNews data set (Zellers et al., 2019).

Stories4 (Trinh and Le, 2018) The authors built
a specific subset of the CommonCrawl data based
on questions from common sense reasoning tasks.
They extracted nearly 1M documents, most of
which are taken from longer, coherent stories.

WebText (Radford et al., 2019) This pre-
training corpus, obtained by creating "a new web
scrape which emphasised document quality" (Rad-
ford et al., 2019), is not publicly available.

OpenWebText (Gokaslan and Cohen, 2019)
As a reaction to Radford et al. (2019) not releasing
their pre-training corpus, Gokaslan and Cohen
(2019) started an initiative to emulate an open-
source version of the WebText corpus.

It becomes obvious that there is a lot of hetero-
geneity with respect to the observed combinations
of availability, quality and corpus size. Thus, we
can state that there is some lack of transparency
when it comes to the lexical resources used for
per-training. Especially, the missing standardised
availability of the BooksCorpus is problematic as
this corpus is heavily used for pre-training.

4https://console.cloud.google.com/storage/browser/
commonsense-reasoning/reproduce/stories_corpus
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Corpora Word-count♥ Accessibility Used by

English Wikipedia ∼ 2.500M Fully available BERT; XLNet; RoBERTa; ALBERT

CommonCrawl Unclear Fully available XLNet
ClueWeb 2012-B, Giga5 Unclear Fully available ($$) XLNet
1B Word Benchmark ∼ 830M Fully available ELMo
BooksCorpus ∼ 985M Not available GPT; BERT; XLNet; RoBERTa; ALBERT

Wikitext-103 ∼ 103M Fully available ULMFit
CC-News Unclear Crawling Manual RoBERTa
Stories ∼ 7.000M♦ Fully available RoBERTa
WebText Unclear Not available GPT2
OpenWebText Unclear Fully available RoBERTa

Table 1: Pre-training resources (sorted by date). Crawling Manual means the authors did not provide data, but at
least a manual for crawling it. Dollar signs signify the necessity of a payment in order to get access. RealNews
(Zellers et al., 2019) and C4 (Raffel et al., 2019) are not included as they were not used by the evaluated models.
♥ We report the word-count as given in the respective articles proposing the corpora. Note that the number of
tokens reported in other articles depends on the tokenization scheme used by a specific model.
♦ Stated by one of the authors on twitter: https:/twitter.com/thtrieu_/status/1096672446864748545

3.2 Benchmark data sets for fine-tuning

GLUE5 (Wang et al., 2018) The General Lan-
guage Understanding Evaluation (GLUE) bench-
mark is a freely available collection of nine data
sets on which models can be evaluated. It provides
a fixed train-dev-test split with held out labels for
the test set, as well as a leaderboard which displays
the top submissions and the current state-of-the-art
(SOTA). The relevant metric for the SOTA is an
aggregate measure of the nine single task metrics.
The benchmark includes two binary classification
tasks with single-sentence inputs (CoLa [Warstadt
et al., 2018] and SST-2 [Socher et al., 2013]) and
five binary classification tasks with inputs that con-
sist of sentence-pairs (MRPC [Dolan and Brockett,
2005], QQP [Shankar et al., 2017], QNLI, RTE
and WNLI [all Wang et al., 2018]). The remain-
ing two tasks also take sentence-pairs as input but
have a multi-class classification objective with ei-
ther three (MNLI [Williams et al., 2017]) or five
classes (STS-B [Cer et al., 2017]).

SuperGLUE6 (Wang et al., 2019) As a reaction
to human baselines being surpassed by the top
ranked models, Wang et al. (2019) proposed a set
of benchmark data sets similar to, but, according
to the authors, more difficult than GLUE. It did not
make sense to include it as a part of our model com-
parison, as (at the time of writing) only two of the

5https://gluebenchmark.com/
6https://super.gluebenchmark.com/

discussed models were evaluated on SuperGLUE.

SQuAD7 (Rajpurkar et al., 2016, 2018) The
Stanford Question Answering Dataset (SQuAD)
1.1 consists of 100.000+ questions explicitly de-
signed to be answerable by reading segments of
Wikipedia articles. The task is to correctly locate
the segment in the text which contains the answer.
A shortcoming is the omission of situations where
the question is not answerable by reading the pro-
vided article. Rajpurkar et al. (2018) address this
problem in SQuAD 2.0 by adding 50.000 hand-
crafted unanswerable questions to SQuAD 1.1. The
authors provide a train and development set as well
as an official leaderboard. The test set is completely
held out, participants are required to upload their
models to CodaLab. The SQuAD 1.1 data is, in an
augmented form (QNLI), also part of GLUE.

RACE8 (Lai et al., 2017) The Large-scale
ReAding Comprehension Dataset From
Examinations (RACE) contains English exam
questions for Chinese students (middle/high
school). In most of the articles using RACE
for evaluation, it is described to be especially
challenging due to (i) the length of the passages,
(ii) the inclusion of reasoning questions and (iii)
the intentionally tricky design of the questions
in order to test a human’s ability in reading
comprehension. The data set can be subdivided

7https://rajpurkar.github.io/SQuAD-explorer/
8http://www.qizhexie.com/data/RACE_leaderboard.html
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in RACE-M (middle school examination) and
RACE-H (high school examination) and comprises
a total of 97.687 questions on 27.933 passages of
text.

3.3 Evaluated Models

ULMFit (Howard and Ruder, 2018) The
AWD-LSTMs in this architecture make use of
DropConnect (Wan et al., 2013) for better regu-
larisation and apply averaged stochastic gradient
descent (ASGD) for optimization (Polyak and Ju-
ditsky, 1992). The model consists of an embed-
ding layer followed by three LSTM layers with
a softmax classifier on top for pre-training. It is
complemented by a task specific final layer during
fine-tuning. The vocabulary size is limited to 30k
words as in Johnson and Zhang (2017).
ULMFiT was not evaluated on GLUE, but on sev-
eral other data sets (IMDb [Maas et al., 2011],
TREC-6 [Voorhees and Tice, 1999], Yelp-bi, Yelp-
full, AG’s news, DBpedia [all Zhang et al., 2015]).

ELMo (Peters et al., 2018) Consisting of mul-
tiple biLSTM layers, one can extract multiple
intermediate-layer representations from ELMo.
These representations are used for computing a
(task-specific) weighted combination, which is
concatenated with external, static word embed-
dings. During the training of the downstream
model, ELMo embeddings are not updated, only
the weights for combining them are. For the GLUE
benchmark there are multiple ELMo-based archi-
tectures available on the leaderboard. In Tab. 3, we
report the best-performing model, an ELMo-based
BiLSTM-model with Attention (Wang et al., 2018).

OpenAI GPT (Radford et al., 2018) The Open-
AI GPT is a pure attention-based architecture that
does not make use of any recurrent layers. Pre-
training is performed by combining Byte-Pair en-
coded (Sennrich et al., 2015) token embeddings
with learned position embeddings, feeding them
into a multi-layer transformer decoder architecture
with a standard language modelling objective. Fine-
tuning was, amongst others, performed on the nine
tasks that together form the GLUE benchmark.

BERT (Devlin et al., 2019) BERT can be seen
as a reference point for everything that came there-
after. Similar to GPT it uses Byte-Pair Encod-
ing (BPE) with a vocabulary size of 30k. By in-
troducing the MLM objective, the authors were
able to combine deep bidirectionality with Self-

Attention for the first time. Additionally, BERT
also utilizes the next-sentence prediction (NSP) ob-
jective, the usefulness of which has been debated
in other research papers (Liu et al., 2019). The
BERT-BASE model consists of 12 bidirectional
transformer-encoder blocks (24 for BERT-LARGE)
with 12 (16 respectively) attention heads per block
and an embedding size of 768 (1024 respectively).

OpenAI GPT2 (Radford et al., 2019) Com-
pared to its predecessor GPT, it contains some
smaller changes concerning the placement of layer
normalisation and residual connections. Overall,
there are four different versions of GPT2 with the
smallest one being equal to GPT, the medium one
being of similar size as BERT-LARGE and the
xlarge one being released as the actual GPT2 model
with 1.5B parameters.

XLNet (Yang et al., 2019) In order to overcome
(what they call) the pretraining-finetune discrep-
ancy, which is a consequence of BERT’s MLM
objective, and to simultaneously include bidirec-
tional contexts, Yang et al. (2019) propose the PLM
objective . They use two-stream self-attention for
preserving the position information of the token to
be predicted, which would otherwise be lost due
to the permutation. While the content stream at-
tention resembles the standard Self-Attention in
a transformer-decoder, the query stream attention
doesn’t allow the token to see itself but just the
preceding tokens of the permuted sequence.

RoBERTa (Liu et al., 2019) With RoBERTa
(Robustly optimized BERT approach), Liu et al.
(2019) introduce a replicate of BERT with tuned
hyperparameters and a larger corpus used for pre-
training. The masking strategy is changed from
static (once during pre-processing) to dynamic (ev-
ery sequence just before feeding it to the model),
the additional NSP objective is removed, the BPE
vocabulary is increased to 50k and training is per-
formed on larger batches than BERT. These adjust-
ments improve performance of the model and make
it competitive to the performance of XLNet.

ALBERT (Lan et al., 2019) By identifying that
the increase of the model size is a problem, AL-
BERT (A Lite BERT) goes into another direc-
tion compared to most of post-BERT architectures.
Parameter-reduction techniques are applied in or-
der to train a faster model with lower memory de-
mands that, at the same time, yields a comparable



Compute Resources

Model Hardware Training time pfs-days ♥ #parameters lexical

ULMFiT NA NA NA 33M 0.18GB
GPT 8 GPUs (P600) ∼ 30 days 0.96 117M < 13GB
BERT-BASE 4 Cloud TPUs ∼ 4 days 0.96 [2.24] ♦ 110M 13GB
BERT-LARGE 16 Cloud TPUs ∼ 4 days 3.84 [8.96] ♦ 340M 13GB
GPT2-MEDIUM NA NA NA 345M 40GB
GPT2-XLARGE 8 v3 Cloud TPUs ∼ 7 days 7.84 1.500M 40GB
XLNet-LARGE 128 v3 Cloud TPUs ∼ 2.5 days 44.8 340M 126GB
RoBERTa DGX-1 GPUs (8xV100) ♣ NA ♣ NA 360M 160GB

1024 32GB V100 GPUs ♠ ∼ 1 day ♠ 4.78 360M 16GB
ALBERT 64 – 1024 v3 Cloud TPUs NA NA 233M 16GB

Table 2: Usage of compute and pre-training resources alongside with model size for the evaluated model archi-
tectures. With lexical resources we refer to the size of the pre-training corpus. ELMo not included as it is not
end-to-end trainable (Size depends on the used model after obtaining the embeddings). The size of ULMFiT is
assumed to be the larger value from Merity et al. (2017), since Howard and Ruder (2018) use AWD-LSTMs with
a vocabulary size of 30k tokens (Johnson and Zhang, 2016, 2017). Values for GPT2-XLARGE are taken from
Strubell et al. (2019).
♥ Petaflop-days: Estimation according to the formula proposed on https://openai.com/blog/
ai-and-compute/:
pfs-days = number of units × PFLOPS/unit × days trained × utilization, with an
assumed utilization of 1

3 . PFLOPS/unit for TPUs from https://cloud.google.com/tpu/.
♦ Unclear, whether v2 or v3 TPUs were used. Thus, we provide calculations for both: v2[v3]
♣ Full RoBERTa model (Liu et al., 2019) ♠ RoBERTa variant utilizing less pre-training resources

performance to SOTA models. We will always re-
fer to the best performing ALBERT-XXLARGE,
despite also the smaller ALBERT models yield re-
sults comparable to BERT.

4 Model comparison

Tab. 2 gives an overview on the amount of com-
putational power needed to pre-train a given archi-
tecture on given pre-training (lexical) resources. In
Tab. 3 we will directly try to relate model architec-
ture and size as well as usage of lexical resources
to model performance.
One thing we can learn from Tab. 2 is the lack of de-
tails when it comes to reporting the computational
resources used for pre-training. While Howard and
Ruder (2018) do not provide any information on
the computational power utilised for pre-training,
the other articles report it to different degrees. Un-
fortunately, there are no clear guidelines on how
to appraise this when it comes to evaluating and
comparing models. This may be attributed to the
rapidly growing availability of hardware, but in
our opinion it should nevertheless be accounted for,
since it might pose environmental issues (Strubell

et al., 2019) and also limits portability to smaller
devices.

Further, it is important to consider the differ-
ences displayed in the Tab. 2 and Tab. 3 when
comparing the model performances. Consider-
ing two models of approximately the same size
(BERT-BASE vs. GPT), the superior performance
of BERT-BASE seems to originate purely from its
more elaborated architecture because of the similar
size. But one should also be aware of the larger
lexical resources (BERT-BASE uses at least twice
as much data for pre-training) and the unknown
differences in usage of computational power. We
approximated the latter as the pfs-days (cf. Tab. 2),
resulting in an estimation for BERT-BASE being
not less than the one for GPT.
Another aspect which should not be ignored when
evaluating performance is ensembling. As can be
seen in the first column of Tab. 3, the three model
ensembles outperform both of the BERT models
by a large margin. Only parts of these differences
may be attributed to the model architecture or the
hyperparameter settings, as the ensembling as well
as the larger pre-training resources might give an

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://cloud.google.com/tpu/


GLUE SQuAD RACE Resources

Model leaderboard dev♥ v1.1 (dev) v2.0 (dev) test #parameters lexical

BERT-BASE 78.3 – 88.5 76.3 ♣ 65.0 ♠ 110M 13GB

ELMo-based - 8.3 – - 2.9 – – – –
GPT - 5.5 – – – - 6.0 1.1x < 0.5x
BERT-LARGE + 2.2 84.05 + 2.4 + 5.6 + 7.0 ♠ 3.1x 1.0x
XLNet-BASE – – – + 5.03 + 1.05 ∼ 1.0x 1.0x
XLNet-LARGE + 10.1 ♦ + 3.39 + 6.0 + 12.5 + 16.75 3.1x 9.7x
RoBERTa + 10.2 ♦ + 5.19 + 6.1 + 13.1 + 18.2 3.3x 12.3x
RoBERTa-BASE – + 2.30 – – – 1.0x 12.3x
RoBERTa ‡ – + 3.79 + 5.1 + 11.0 – 3.3x 1.2x †

ALBERT + 11.1 ♦ + 5.91 + 5.6 + 13.9 + 21.5 2.1x 1.2x †

Table 3: Performance values as well as model size and resource usage (Reference in italics, highest improvements
in bold). Performance differences are given in percentage points (%pts), differences in size/resources as factors.
ULMFiT and GPT2 are omitted as there are no performance values on these data sets publicly available. No model
size for ELMo provided, since the performance values are from different models (cf. Sec. 3.3).
Displayed performance measures are Matthews Correlation (GLUE), F1 score (SQuAD) and Accuracy (RACE).
♥ Own calculations based on Lan et al. (2019), Tab. 13; WNLI is excluded ♦ Ensemble performance
♣ Values taken from Yang et al. (2019), Tab. 6 ♠ Values taken from Zhang et al. (2019), Tab. 2
† Liu et al. (2019) and Lan et al. (2019) specify the BooksCorpus + English Wikipedia as 16GB
‡ This variant of RoBERTa uses only BooksCorpus + English Wikipedia for pre-training

advantage to these models. As there are no perfor-
mance values of single models available for XL-
Net, RoBERTa and ALBERT on the official GLUE
leaderboard, we also compare the single model per-
formances from Lan et al. (2019) obtained on the
dev sets. From this comparison we get an impres-
sion of how high the contribution of ensembling
might be: The difference between BERT-LARGE
and the XLNet ensemble in the official score (7.9
%pts) is more than twice as high as the difference
in dev score (3.4 %pts).
In order to address the differences in size of the
pre-training resources, Yang et al. (2019) make the
extremely insightful effort to compare a XLNet-
BASE variant to BERT-BASE using the same pre-
training resources. While the F1 score on SQuAD
v2.0 is still remarkably higher than for BERT-
BASE (comparable to BERT-LARGE) it does not
show a large improvement on RACE (which might
have been expected due to the large improvement
of XLNet-LARGE over both BERT models).
The comparability of RoBERTa from the GLUE
leaderboard (ensemble + larger pre-training re-
sources) to BERT-LARGE is limited, but the au-
thors perform several experiments in order to show
the usefulness of their optimisations. Pre-training

a single model on comparable lexical resources
(13GB for BERT vs. 16GB for RoBERTa), the
RoBERTa model shows a smaller (compared to
the RoBERTa ensemble), but still remarkable, im-
provement over BERT-LARGE. In another ablation
study, Liu et al. (2019) train a RoBERTa-BASE
variant on larger pre-training resources. Even
though comprising only about one third of the size
of BERT-LARGE, the larger pre-training corpus in
conjunction with the optimised training leads to a
slightly better performance on the GLUE dev set.
We are not able to compare RoBERTa-BASE to
BERT-BASE, as neither the "official" leaderboard
score for RoBERTa-BASE nor the "inofficial" dev
set score for BERT-BASE are available.
In order to set the results of ULMFiT into con-
text, we present the results published by Yang
et al. (2019) alongside with information on size
and pre-training resources in Tab. 4. Despite
being much larger and pre-training on some or-
ders of magnitude larger corpora, BERT-LARGE
and XLNet-LARGE do not exhibit that large im-
provements over the performance of ULMFiT. This
might partly originate from the relative simplic-
ity of the tasks, but partly also from the already
achieved high performances.



Sentiment Topic Resources

Model IMDb Yelp-bi Yelp-full AG’s news DBpedia size lexical

ULMFiT 95.40 97.84 70.02 94.99 99.20 33M 0.18GB

BERT-LARGE + 0.09 + 0.27 + 0.66 – + 0.16 10.3x 72.2x
XLNet-LARGE + 0.81 + 0.61 + 2.28 + 0.52 + 0.18 10.3x 222.2x

Table 4: Performance comparison (+ model size and resource usage) on the benchmark data sets used by Howard
and Ruder (2018). Specification of the differences and highlighting as in Tab. 3. We report accuracies, as opposed
to Howard and Ruder (2018); Yang et al. (2019), in order to facilitate a similar interpretation compared to Tab. 3.

5 Discussion

This chapter reflects the main takeaways from the
above comparisons and raises some issues for re-
search practices. We do not claim to have a solution
to these potentially problematic aspects, but rather
think that these points are highly debatable.

Why no benchmark corpus for pre-training?
It is good practice to use benchmark data sets for
comparing the performance of pre-trained language
models on different types of Natural language un-
derstanding (NLU) tasks. Many recently published
articles (Liu et al., 2019; Yang et al., 2019; Lan
et al., 2019) perform (partly extensive) ablation
studies controlling for pre-training resources in or-
der to make (versions of) their models comparable
to BERT, which is really important as it helps to
get an intuition for the impact of pre-training re-
sources. Nevertheless, it is unfortunately not per-
fect due to two critical issues: (i) BERT and all of
its successors make use of the BooksCorpus (Zhu
et al., 2015) which is not publicly available and
(ii) this only leads to model comparisons in a low
pre-training resource environment (compared to
more recent models) and yields no insight on the
behaviour of the reference model (e.g. BERT) in
a medium or high resource context. So we view
statements of the type "Model architecture A is su-
perior to model architecture B on performing task
X." somewhat critical and propose to phrase it more
like the following statement: "Model architecture A
is superior to model architecture B on performing
task X, when pre-trained on a small/medium/large
corpus of low/high quality data from domain Y for
pre-training time Z."

Why no standardised description of (computa-
tional) resources? When writing this article, it
turned out difficult to get one unified measure for

the amount of the computational power used for
pre-training. In our opinion, this is not a careless-
ness of the authors but rather the lack of a clear
reporting standard. We found ourselves confronted
with the following situations:

a) No information at all (Radford et al., 2019)

b) Hardware (Liu et al., 2019; Lan et al., 2019)

c) Hardware and training time (Devlin et al.,
2019; Yang et al., 2019)

d) Standardised measure (Radford, 2018)

While a) is clearly unsatisfactory and should be
avoided, b) and c) provide most of the necessary
information but miss out on going the last final step
to d), where the reporting reaches universal compa-
rability across different articles. The measure we
computed (cf. Tab. 2) is of course not as exact as
a computation based on the counts of operations
in a network, but requires no deep insight into the
model architecture and is thus applicable to a wide
range of architectures without much effort.

Shouldn’t performance be evaluated in relation
to size and resource usage? As larger models
have a higher capacity for learning representations
and using larger pre-training resources should im-
prove their quality, varying these two components
simultaneously with the model architecture might
lead to interference between the individual effects
on model performance. This aspect has a slight
overlap with the question raised above, but while
the above is more or less about introducing some
reference, this is about carefully varying and evalu-
ating the effects of different model parts.

6 Conclusion

As can be seen from the above analysis, there is a
lack of a concise guideline for fair comparisons of



large pre-trained language models. It is not suffi-
cient to just rank models by their performance on
the common benchmark data sets as this does not
take into account all the other factors mentioned
in this analysis. Further aspects worth reporting
are the use of resources (time and compute) spent
on model development (including all experimental
runs and trials) and hyperparameter tuning during
pre-training. In our opinion, this is important with
respect to two facets: On the one hand side it is
important to take into account environmental con-
siderations when training deep learning models
(Strubell et al., 2019), on the other hand side it is
also a signal to the reader/user how difficult it is
to train (and to fine-tune) the model. This might
have implications for the usage of a model as trans-
fer learning model for diverse downstream tasks.
Models that have already been tuned to a high de-
gree during pre-training to reach a certain level of
performance, may have, in the long run, less poten-
tial for further improvements compared to models
which do so without much hyperparameter tuning.
To conclude, we unfortunately cannot say with de-
termination which one of the influential factors
(architecture or amount of pre-training resources)
is more important, but we think that a substan-
tial amount of the recent improvements can be at-
tributed to larger pre-training resources. A detailed
disentanglement of the influence of the different
components stays an open research question which
might be answerable by carefully designed bench-
mark studies.
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