
Defining meaningful Local Process Models

Mitchel Brunings, Dirk Fahland, and Boudewijn van Dongen

Eindhoven University of Technology, Eindhoven, The Netherlands
{m.d.brunings, d.fahland, b.f.v.dongen}@tue.nl

Abstract. Current process discovery techniques are unable to produce high qual-
ity models that describe all observed behavior in semi-structured processes in a
meaningful way. Local process model (LPM) discovery has been proposed to
discover meaningful patterns in event logs from unstructured processes. In this
paper, we explore the use of LPM discovery on event logs from semi-structured
processes and find several drawbacks: it finds many small patterns but doesn’t
find patterns larger than 4-5 events, it produces too many models, and the dis-
covered models describe some events from the log multiple times while leaving
others unexplained. Despite these drawbacks, we observe that a set of LPMs taken
together can yield interesting insights. From these observations we distill several
requirements for meaningful sets of LPMs: we want (1) a limited set of models
that (2) have high accuracy measures such as fitness and precision while (3) they
together cover the whole event log and (4) do not cover parts of the log multi-
ple times unnecessarily. We show that it is possible to manually construct sets of
LPMs that satisfy all these requirements on the well-known BPIC12 event log.
We then apply and evaluate the existing quality measures for individual LPMs.
We propose to disregard support, confidence, and determinism as measures for
meaningfulness of LPMs and we propose new ways to evaluate sets of LPMs
based existing methods.

Keywords: Process discovery · Local Process Models · Coverage

1 Introduction

Semi-structured behavior exists plentiful in practice such as in hospitals and purchas-
ing processes. An example of such behavior is captured in the log of BPIC12 [12].
Discovering process models from this log has proven to be a big challenge for tradi-
tional start-to-end process discovery techniques such as Inductive Miner [4] (produces
fitting but imprecise models) and SplitMiner [1] (produces precise but non-fitting mod-
els). Other methods to model such behavior include Declare [5], DCR graphs [2], trace
clustering [10], patterns [6], and Local Process Models (LPMs) [9].

Using declare to discover a model from semi-structured behavior results in con-
straint explosion. Declare is not suitable for otherwise imperative processes that can be
described with flow-based techniques [3]. Clustering of traces cannot capture situations
where trace variants share parts of behavior with other variants, so either they merge
or we get cluster explosion [7]. Visual exploration using the Log Pattern Explorer [6]
works well, but is a manual task which does not automatically result in models. So far,
LPMs [9] have been applied on finding patterns in highly unstructured behavior (like

6
Copyright © 2020 for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



smarthome environments), but we are interested in finding models for slightly more
structured processes.

In this paper, we explore what it takes to discover accurate process models from
semi-structured behavior. We show what LPM discovery [9] can do on a reduced version
of the BPIC12 log which contains more structured behavior than what LPM discovery
was designed for, but is still not very structured. We find that the output consists of
too many models which together cover less than two-thirds of the log, while covering
nearly a third of the log multiple times. We show that to explain this log, we need only
a few models instead of hundreds, our models describe the whole behavior instead of
only a part, and we provide a high-level description of how our models coexist.

In Section 2 we introduce the fragment of the BPIC12 log that we use as running
example and show that start-to-end mining techniques fall short, and then explain how
LPMs work, and explore the LPMs that LPM discovery produces, from which we distill
some requirements for meaningful sets of LPMs. In Section 3 we show a set of LPMs
that we produced by hand, and explore how they coexist. In Section 4 we compare
how existing quality measures for LPMs score our manually constructed models versus
the automatically discovered LPMs. We then propose new measures that better reward
models for describing more behavior, and measures that help build a set of models that
do not overlap.

2 Process model discovery on semi-structured behavior

In this section, we introduce a running example of semi-structured behavior and ap-
ply some start-to-end model discovery techniques on this example and describe their
shortcomings. We recall the idea of local process models (LPMs) and their purpose
compared to start-to-end models in process discovery. We then apply existing LPM
discovery techniques and discuss the quality of the resulting LPMs for describing semi-
structured behavior in a meaningful way.

2.1 Semi-structured behavior

To show where current techniques fall short, we take a section of the log from the
Business Process Intelligence Challenge from 2012 [12] (BPIC12). The BPIC12 log is
a well-known log that comes from a loan application process in a bank. We filter this
log to keep only events in which resource 10939 was involved and call this filtered log
L10939

BPIC12. We choose resource 10939 in particular to be the same as the resource chosen
in [9] for easier comparisons with that work. However, in [9] they used the date as their
case notion, instead of the usual loan application ID. We filter to the same events, but
we keep using the loan application ID as our case notion.

A log with resource+caseID as case notion represents the behavior of an individual
resource/actor in a process within each case. This shows how a resource interacts with
a case. This particular view on the BPIC12 log makes L10939

BPIC12 semi-structured: We look
at the same person working along a case, but each case is different and they are not
always involved in the same way in each case, as they are sharing work with other
people. This makes L10939

BPIC12 less structured than the full log in which all steps by all

7



people are recorded: A trace in our log may start and end anywhere in the lifetime of
the full case, and there may be gaps.

L10939
BPIC12 consists of 2763 events in 647 traces. There are 23 event classes and 84

trace variants. In Table 1 we count the event classes observed in L10939
BPIC12. This table also

serves as a legend for the shorthand (in parentheses) that we use for the event classes in
this log.

Table 1: Event occurrence matrix for L10939
BPIC12(with shorthand notation in parentheses)

lifecycle:transition

concept:name SCHEDULE (0) START (1) COMPLETE (2)

A ACCEPTED (A ACC) – – 104
A CANCELLED (A CAN) – – 27
A DECLINED (A DEC) – – 78
A FINALIZED (A FIN) – – 104
A PREACCEPTED (A PRE) – – 73
O CANCELLED (O CAN) – – 34
O CREATED (O CRE) – – 124
O SELECTED (O SEL) – – 124
O SENT (O SEN) – – 124
W Afhandelen leads (W Afh) – 154 154
W Completeren aanvraag (W Com) 73 389 396
W Nabellen incomplete dossiers (W Nid) 4 103 103
W Nabellen offertes (W Nof) 120 227 235
W Valideren aanvraag (W Val) 9 2 2

2.2 Discovering start-to-end process models from semi-structured behavior

Applying the Inductive Miner - infrequent [4] (at 20% threshold) on L10939
BPIC12 results

in the model shown in Fig. 1. The Inductive Miner produces a Petri net that allows
behavior that we know does not exist in the process. For instance, it allows W Afh+1
and W Afh+2 to occur or be skipped independently of each other, while we know that
every W Afh+1 is (eventually) followed by W Afh+2. Several other behavior patterns
that are known from the BPIC12 log and also appear in L10939

BPIC12 have been missed in a
similar fashion.

Applying the SplitMiner (using standard settings) on a modified1 L10939
BPIC12 results in

the model shown in Fig. 2. The SplitMiner produces a BPMN model that disallows be-
havior that we know exists. For instance, this model claims that W Afh+1, ..., W Afh+2
is never followed by W Com+1, ..., W Com+2. Several other behavior patterns that are
known from the BPIC12 log and also appear in L10939

BPIC12 have been missed in a similar
fashion.

1 The SplitMiner [1] doesn’t explicitly consider lifecycle events, therefore we include the life-
cycle data in the event name with the “Bring Lifecycle to Event Name” plugin in ProM 6.9.

8



Fig. 1: The resulting Petri net of IMf [4] on L10939
BPIC12

Fig. 2: The resulting Petri net of SplitMiner [1] on L10939
BPIC12

These examples of state-of-the-art process discovery tools for start-to-end processes
show that they are unable to deal with the structure of L10939

BPIC12. They result in models
that may have high fitness or high precision scores, but they never score well on both
measures. These models are also rather complex, with Fig. 1 containing tau-skips for
almost all transitions, and Fig. 2 containing many loops and several jumps between
paths. We want models that are accurate (i.e. have high fitness and precision scores),
as inaccurate models do not describe the process we are trying to understand. We also
want models that are simple, because incomprehensible models will also not help our
understanding of the processes they describe. The models in Fig. 1 and Fig. 2 show that
start-to-end model discovery techniques are not able to discover models from semi-
structured behavior that are both accurate and simple.

2.3 Local Process Models

Tax et al. [9] also show that existing process model discovery techniques are unable to
deal with event logs that contain a lot of repetition within traces. They introduce local
process models (LPMs) to describe patterns that are smaller than the full observed be-
havior, but can still capture more behavior than simple sequences, such as concurrency
and choice.

As an example, they give the event log shown in Fig. 3a. They describe the log as
events from a fictional sales department, where each trace describes the activities of a
particular sales person on a particular day. A sales person may work on multiple cases in

9



a day, and multiple sales persons may be working on the same case. However, despite
this chaotic behavior, a frequent pattern still emerges: When a sales person performs
activity ‘A’, they often perform both activities ‘B’ and ‘C’ shortly after that on the same
day.

Applying the Inductive Miner - infrequent [4] (at 20% threshold) on this example
log produces the model shown in Fig. 3b, which allows nearly all behavior. Tax et al.
show that there is a model that describes the frequent pattern from Fig. 3a in Fig. 3c. In
this model we see that 13 times out of 21 total occurrences of ‘A’, it is followed by a
‘B’ and a ‘C’ in any order.

Event sequences:

〈A,A,C,B,A,A,C,B,B,C〉
〈C,A,C,B,A,A,A,B,C,B〉
〈A,A,B,D,C,D,A,B,C,B〉
〈C,A,C,B,B,B,A,D,B,C〉
〈B,A,B,C,C〉
〈D,A,C,B,C,A,A,C,A,B〉
〈D,A,B,C,D,C,A,C,A,B,C〉

(a) (b) (c)

Fig. 3: (a) A log of event sequences with highlighted instances of a frequent pattern.
Gapped instances are underlined. Source: [9]. (b) The resulting Petri net of IMf [4]
on the event sequences shown in Fig. 3a. (c) An LPM showing the frequent behavior
pattern from Fig. 3a. Source: [9].

Tax et al. managed to discover an LPM that describes a pattern that could not be dis-
covered or displayed before. This suggests that LPMs are worth exploring as an alter-
native to traditional start-to-end model discovery and as an improvement on sequential
pattern mining.

2.4 Discovering LPMs from semi-structured behavior

Applying “Search for Local Process Models” on a modified2 L10939
BPIC12 with all the de-

fault settings yields 100 LPMs divided into 13 groups. Each LPM has 2 to 4 labeled
transitions and all LPMs together describe events of 13 event classes out of the 23
event classes that appear in the log. Table 2 shows which event classes occur in which
group(s) of LPMs. In this table, we can also see that LPM groups 2 and 5-12 explain
different combinations of the same 5 event classes.

2 The “Search for Local Process Models” plugin in ProM 6.9 only looks at the event names,
therefore we include the lifecycle data in the event name with the “Bring Lifecycle to Event
Name” plugin.

10



Table 2: Event class occurrence for the 13 groups of LPMs
Group 1 2 3 4 5 6 7 8 9 10 11 12 13

W Afh+1 x
W Afh+2 x
O SEL+2 x x x x x
O CRE+2 x x x x x x x
O SEN+2 x x x x x x x
W Nid+1 x
W Nid+2 x
A PRE+2 x
W Com+0 x
A FIN+2 x x x x x x x
W Com+1 x x x x
W Nof+0 x
W Com+2 x

In Fig. 4, we show the highest ranked LPM from 3 of the 13 groups of LPMs. The
two LPMs on the right show significant overlap (highlighted), where they both explain
all 104 occurrences of A FIN in L10939

BPIC12, and 104 out of 124 occurrences of both O SEL
and O CRE, which implies an overlap of at least 84 occurrences each.

Fig. 4: A selection of LPMs discovered from L10939
BPIC12 (same labels highlighted)

We conclude that these LPMs are not meaningful for three reasons: (1) We get too
many of them. (2) They leave large parts of the log unexplained: the 10 missing event
classes alone already represent 722 out of the 2763 events in L10939

BPIC12. And (3) they
explain some events multiple times: these events are described by multiple transitions
in multiple different LPMs. We show in Section 4 as we evaluate “coverage” of events
that this is indeed the case.

3 The potential of Local Process Models

In Section 2 we introduced L10939
BPIC12 and saw that there are no good process discovery

techniques for this particular log. In this section, we show a manually created set of

11



LPMs to describe the behavior from this log. We then discuss why our set of LPMs is
preferable over the models we saw in Section 2 both in terms of accuracy and under-
standability.

3.1 Local Process Models that could be

(a) Manual LPM 1 for L10939
BPIC12

(b) Manual LPM 5 for L10939
BPIC12

(c) Manual LPM 2 for L10939
BPIC12

(d) Manual LPM 3 for L10939
BPIC12

(e) Manual LPM 4 for L10939
BPIC12

Fig. 5: Manually contructed set of LPMs for L10939
BPIC12

In L10939
BPIC12, all A ... and O ... events occur between pairs of W ...+1 (start) and W ...+2

(complete) events and these start and complete event pairs are never nested. So, we

12



split the log into trace fragments that start with a W ...+1 event and end with their
corresponding W ...+2 event and created a log for each start event class containing
the fragments with the corresponding start events. We analyzed the 5 resulting logs
and constructed the set of LPMs shown in Fig. 5 to model the behavior from each
individual log. By aligning each of the logs to the corresponding LPM [11], we obtained
the number of synchronous moves and model moves per transition as indicated in the
figures. A single move on log is indicated with a number in its corresponding place.

Each of our LPMs represents a chunk of behavior carried out by resource 10939 per
case, just like the LPMs in Section 2.4, but in contrast to those LPMs, 4 of our 5 LPMs
are significantly larger, as we have found much larger patterns. All top LPMs (best of
their group) from Section 2.4 that were found with the plugin by Tax et al. appear as
parts of our larger LPMs. We also see that in our set of LPMs all event classes are
represented at least once, and 7 event classes are represented in more than one LPM.
Not only do our LPMs represent large chunks of observed behavior, but we also only
need 5 of them to describe nearly all observed behavior. We explain this quality criterion
we call coverage in the next section.

3.2 Coverage

We want a set of LPMs to explain as much of the behavior in the log as possible with
minimal redundancy. To this end, we introduce the terms coverage and duplicate cover-
age. We first define coverage on an individual LPM as the fraction of events from the log
that are actually explained by the given LPM. To measure this, we calculate the align-
ment of relevant trace fragments from the log on the LPM and then take the number of
synchronous moves in the alignment and divide by the total number of events in the log.
We say that an LPM covers an event if and only if this event is part of a synchronous
move in the alignment. This differs from the coverage metric in [9] which measures the
fraction of events from the log that might be explained by the LPM because the LPM
has a transition with a matching label.

We define coverage for a set of LPMs as follows: We consider an event covered if
there is at least one LPM in the set that covers it. The coverage is then computed by
counting all covered events and dividing by the total number of events in the log. The
result is the fraction of the observed behavior that is explained by the set of LPMs.

To calculate the coverage of our set of LPMs from Fig. 5 we can simply sum up the
number of synchronous moves for all models and see that our 5 models together cover
2747 out of 2763 events recorded in the log. The sum is valid because we know that we
did not duplicate any event because of the way we split L10939

BPIC12.
At the end of Section 2.4 we state that all LPMs from that section together fail to ex-

plain at least 722 events because they do not have corresponding transitions, this means
that those models together cover at most 2041 out of 2763 events from the log. From
the perspective of coverage, our manually created set of LPMs is a major improvement.

To measure duplicate coverage of a set of LPMs, we count the number of events that
are covered by more than one LPM and divide by the total number of events in the log.
The result is the fraction of the observed behavior that is explained multiple times by
the set of LPMs. By keeping this number low, we keep redundancy in our set of LPMs
low.

13



Because we did not duplicate any event in splitting L10939
BPIC12, we know that our man-

ually constructed set of LPMs doesn’t cover any event more than once. We showed
in Section 2.4 that the models we discovered there had overlap resulting in significant
duplicate coverage. Our manually constructed set of LPMs is therefore also an improve-
ment from the perspective of duplicate coverage.

3.3 Requirements for meaningful sets of LPMs

The aim of this paper is not to introduce a new LPM discovery technique, but to share
our vision on what a set of LPMs should look like. To more formally define our vision,
we define the following requirements for meaningful sets of LPMs:

R1 The set of LPMs should consist of individual LPMs that are accurate, i.e. have high
fitness and precision scores, because we want to describe the observed behavior
and nothing else;

R2 The set of LPMs should be limited in size, because with too many models it will be
hard to comprehend the set as a whole;

R3 The set of LPMs should maximize coverage, because we want to describe all ob-
served behavior;

R4 The set of LPMs should minimize duplicate coverage, because we want to limit
redundancy.

When we check our manually constructed set of LPMs against these requirements,
we see that all requirements are satisfied. R2 is satisfied as we only have 5 LPMs, R3 is
satisfied because only 17 out of 2763 events are not covered, and R4 is satisfied because
no event is explained more than once. For R1 we show in Section 4 how to calculate
accuracy measures for LPMs, and that these scores are indeed good for our set of LPMs.

In Section 4, we suggest quality measurement techniques based on existing mea-
sures in literature that measure the degree to which these requirements are met.

4 Evaluating quality of LPMs

Tax et al. [9] suggest a list of quality criteria (support, confidence, language fit, de-
terminism, and coverage) to measure the quality of individual LPMs. In this section,
we explain these measures and use them on both the LPMs discovered with the plugin
by Tax et al. and on the LPMs we constructed manually. We then compare these re-
sults, and discuss for each measure if it is useful and why. We then introduce some new
measures that we believe help us find meaningful sets of LPMs.

4.1 Quality metrics designed by Tax et al.

First, we provide a short description of each quality criterion developed by Tax et al.
For the exact definition, we refer to [9].

The support of an LPM measures how often the pattern described by the LPM
occurs (a.k.a. frequency) on a scale from 0 to 1.

14



The confidence of an LPM measures the likelihood that an event whose class ap-
pears as one of the transitions in the LPM is part of a pattern that this LPM describes
on a scale from 0 to 1.

The language fit of an LPM is the ratio of the behavior that is allowed by the LPM
that is observed in the log.

The determinism of an LPM measures how well the LPM can predict the next event
of a fitting trace on a scale from 0 to 1.

The coverage of an LPM is the ratio of events in the log of types that occur in the
LPM. (Note that this is not the same as the coverage measure we define in Section 3.2.)

The score on an LPM is a weighted average of its support, confidence, language fit,
determinism, and coverage.

In tables 3 and 4 we show the scores on these measures for both the top discovered
LPM of each group from Section 2.4 and the manual LPMs from Section 3.1. We use
the “Rescore Local Process Model ranking to Log” plugin in ProM 6.9 to calculate these
scores. Note that instead of reporting the support, this plugin reports the frequency of
LPMs.

Table 3: The scores attained by the discovered LPMs from Section 2.4
group score frequency confidence determinism language fit coverage

1 0.869 154 1.000 1.000 1.000 0.111
2 0.868 124 1.000 1.000 1.000 0.135
3 0.867 103 1.000 1.000 1.000 0.075
4 0.865 73 1.000 1.000 1.000 0.053
5 0.832 104 0.912 1.000 1.000 0.083
6 0.832 104 0.912 1.000 1.000 0.083
7 0.821 104 0.886 1.000 1.000 0.127
8 0.756 104 0.874 0.800 1.000 0.172
9 0.691 104 0.561 1.000 1.000 0.268

10 0.686 104 0.547 1.000 1.000 0.275
11 0.631 104 0.561 0.800 1.000 0.268
12 0.631 104 0.561 0.800 1.000 0.268
13 0.628 104 0.403 1.000 1.000 0.187

Table 4: The scores attained by the manual LPMs from Section 3.1
model score frequency confidence determinism language fit coverage

1 0.742 154 0.939 0.660 1.000 0.193
2 0.661 388 0.670 0.737 1.000 0.575
3 0.446 103 0.081 0.876 0.833 0.236
4 0.544 227 0.219 0.954 1.000 0.367
5 0.823 2 1.000 1.000 1.000 0.001

Comparing these results, we see that the manual LPMs have lower scores than the
discovered LPMs because the manual LPMs have lower confidence, determinism, and

15



language fit. The manual LPMs have lower confidence because they feature activities
which only cover a fraction of the events of their class. This is by design, as the same
activities may occur in different phases of the process, and thus occur in different LPMs.
The manual LPMs have lower determinism, as we constructed larger LPMs with more
choice than those discovered in Section 2.4. Finally, we score lower on language fit on
a single LPM, because in that LPM we allow O CAN+2 and A CAN+2 to occur in
parallel between W Nid+1 and W Nid+2, when there is no evidence for this in L10939

BPIC12.
However, we did observe 11 occurrences of O CAN+2 and A CAN+2 in parallel be-
tween W Nof+1 and W Nof+2, and with only 3 occurrences between W Nid+1 and
W Nid+2, we assumed parallelism there as well. Though on L10939

BPIC12we score lower on
language fit because of this, when we check the original log from BPIC12, we see that
these activities do indeed occur in parallel between W Nid+1 and W Nid+2.

The manual LPMs have higher frequency and coverage than the discovered LPMs,
except for manual LPM 5 (Fig. 5b) which covers only 4 events. One could argue for its
removal, but it explains 4 events perfectly that no other LPM does.

We observe that the manual LPMs have lower confidence and determinism by de-
sign and even frequency, language fit, and coverage don’t seem to be important enough
to accept or reject an LPM from a set. In the rest of this section, we explore measures
that better evaluate sets of LPMs.

4.2 New quality measures for individual LPMs

A model should not leave large parts of the log unexplained. For traditional start-to-end
models, there exist fitness measures that try to measure how much of a log is explained
by a model. In this paper, we use the replay method explained in [11]. However, replay-
ing L10939

BPIC12 on the LPMs in this paper yields very low fitness scores for each LPM, as
these LPMs do not represent the whole log by design. Instead, we limit our replays to
relevant trace fragments for each LPM as follows.

As we have split L10939
BPIC12 up by the W ...+1 and W ...+2 events to construct our

manual LPMs, it makes sense to split the log the same way for their evaluation. Because
we want to evaluate the automatically discovered LPMs using the same techniques, we
need a way to find appropriate trace fragments from a log based only on a given LPM.
To that end, we use the following method: Trace fragments should not include events
for which there is no matching activity in the LPM, as these are clearly not events that
the LPM is describing, so we filter out any such events. An LPM describes behavior
that starts with its first activity, so we should make sure all of our trace fragments start
with an event that matches the LPM’s first activity. If an LPM starts with a tau AND-
split, a trace fragment may start with any combination of its first labeled activities.
Therefore, we start recording trace fragments when encountering such start events. For
similar reasons, and using similar methods, we stop recording trace fragments when we
encounter final events. Should we encounter a start event before we encountered a final
event, we simply finish recording the previous trace fragment at that point, and start a
new one. The resulting set of trace fragments can then be used as a log, which should
have as many traces as there are occurrences of the first activity in the original log. This
log of trace fragments can then be replayed on the LPM and the resulting alignment
yields the fitness.

16



A model should not allow much more behavior than what is observed. For tradi-
tional start-to-end models, there exist precision measures that try to measure how much
unobserved behavior is allowed by a model. In this paper, we use the escaping-edge
based method explained in [8]. We calculate precision for an LPM using the same log
of trace fragments and resulting alignment as we use for calculating fitness.

Applying these fitness and precision measuring techniques on the same sets of
LPMs as used in Section 4.1 yields the results shown in tables 5a and 5b. These ta-
bles also include the coverage measured as described in Section 3.2.

Table 5: The scores attained by the LPMs from:

(a) Section 2.4

group fitness precision coverage

1 1.000 1.000 0.111
2 1.000 1.000 0.135
3 1.000 1.000 0.075
4 1.000 1.000 0.053
5 1.000 1.000 0.075
6 1.000 1.000 0.075
7 1.000 1.000 0.113
8 0.986 1.000 0.172
9 0.662 1.000 0.254

10 0.662 1.000 0.254
11 0.662 1.000 0.254
12 0.662 1.000 0.254
13 0.970 1.000 0.081

(b) Section 3.1

model fitness precision coverage

1 1.000 1.000 0.186
2 0.999 1.000 0.519
3 1.000 0.995 0.087
4 1.000 1.000 0.201
5 1.000 1.000 0.001

With these results, we conclude that the manual LPMs satisfy R1 from Section 3.3.
We also see that some of the discovered LPMs have low fitness, meaning they don’t
satisfy R1.

4.3 Quality measures for sets of LPMs

For R2 it is easy to see that we have far fewer manual LPMs than automatically dis-
covered LPMs. Clearly neither set consists of a single model, but our manual LPMs do
better on this requirement than the automatically discovered LPMs.

To determine how well a set of LPMs satisfies R3 and R4, we project the coverage
of the individual LPMs back on the original log. To do so, we check for each event
by which models it is covered, and we record if it is covered at least once, and if it is
covered more than once. Satisfaction of R3 is measured by the fraction of events in the
log that is covered at least once. Satisfaction of R4 is measured by the fraction of events
in the log that is covered more than once.

17



Calculating these numbers for the LPMs discovered in Section 2.4 yields a total
coverage of 0.633 and a duplicate coverage of 0.313. This means that these 13 models
explain less than two-thirds of the log, and they explain nearly half of the events that
they do explain more than once. In contrast, the LPMs constructed in Section 3.1 have
a total coverage of 0.994 with a duplicate coverage of precisely 0. Our manual LPMs
explain nearly the entire log, without explaining any event more than once.

4.4 Measures versus requirements

Though we have seen unfit LPMs, they have all been fairly precise. Their simplicity
prevents unexpected traces to be considered fitting, ensuring good precision scores.
Should an LPM allow unobserved behavior, the precision score will still warn us of
this inaccuracy, just as it does with traditional start-to-end models. Both our fitness and
precision measures help in finding accurate models, which means they help us satisfy
R1.

We don’t have a measure for R2 other than counting the number of LPMs, and
deciding on a per-case basis if that is too many. We should, however, minimize the
number of LPMs without sacrificing any of the other requirements.

For R3 and R4 we have shown that measuring coverage and duplicate coverage can
easily tell us how well a set of LPMs meets these requirements.

5 Conclusion

On semi-structured behavior, state-of-the-art start-to-end process model discovery tech-
niques yield models that are too complex, not fitting and/or imprecise. New LPM dis-
covery techniques yield too many models that repeatedly describe the same small frac-
tions of behavior, and are not able to explain all observed behavior. However, it is possi-
ble to use sets of larger LPMs that do not have these problems. Therefore, the following
requirements need to be met: (1) the individual LPMs should be accurate, (2) there
should not be too many LPMs in the set, (3) the set of LPMs together should maximize
coverage, and (4) the set of LPMs should minimize duplicate coverage.

It is possible to create a set of LPMs for L10939
BPIC12 that satisfies these requirements,

but they do not score well on the existing quality measures for LPMs. This indicates
that these quality measures do not measure the qualities that our requirements demand.
Adapting existing fitness and precision measurement techniques of start-to-end models
for use on LPMs yields results that better describe the accuracy of individual LPMs.
Accurately determining which events are described by which LPM shows both how
well a set of models covers a log, and how much of that log is covered multiple times.
These new techniques help distinguish good sets of LPMs from bad.

A major limitation of this paper is that it has only been shown to work on L10939
BPIC12,

and has not been tested on other datasets. However, the goal of this paper was to show
a new way of thinking about LPMs: not as models of small pieces of an unstructured
process, but rather as models of larger chunks of behavior in a semi-structured process.

Future work in this area should focus mainly on automatic discovery of sets of
LPMs that meet the requirements mentioned above, measuring the simplicity of LPMs,
and further improving quality measures for individual and sets of LPMs.

18



References

1. Adriano Augusto, Raffaele Conforti, Marlon Dumas, and Marcello La Rosa. Split miner:
Discovering accurate and simple business process models from event logs. 2017.

2. Søren Debois, Thomas T. Hildebrandt, Paw Høvsgaard Laursen, and Kenneth Ry Ulrik.
Declarative process mining for DCR graphs. In Proceedings of the SAC 2017, 2017.

3. Dirk Fahland, Daniel Lübke, Jan Mendling, Hajo A. Reijers, Barbara Weber, Matthias Wei-
dlich, and Stefan Zugal. Declarative versus imperative process modeling languages: The
issue of understandability. volume 29 of Lecture Notes in Business Information Processing,
2009.

4. Sander J.J. Leemans, Dirk Fahland, and Wil M.P. van der Aalst. Discovering block-structured
process models from event logs containing infrequent behaviour. In International conference
on business process management, 2013.

5. Volodymyr Leno, Marlon Dumas, Fabrizio Maria Maggi, Marcello La Rosa, and Artem
Polyvyanyy. Automated discovery of declarative process models with correlated data condi-
tions. Inf. Syst., 89, 2020.

6. Xixi Lu, Dirk Fahland, Robert Andrews, Suriadi Suriadi, Moe T. Wynn, Arthur H.M. ter
Hofstede, and Wil M.P. van der Aalst. Semi-supervised log pattern detection and exploration
using event concurrence and contextual information. In OTM 2017 Conferences, 2017.

7. Xixi Lu, Seyed Amin Tabatabaei, Mark Hoogendoorn, and Hajo A. Reijers. Trace clus-
tering on very large event data in healthcare using frequent sequence patterns. ArXiv,
abs/2001.03411.

8. Jorge Munoz-Gama et al. Conformance checking and diagnosis in process mining. 2016.
9. Niek Tax, Natalia Sidorova, Reinder Haakma, and Wil M.P. van der Aalst. Mining local

process models. Journal of Innovation in Digital Ecosystems, 3(2), 2016.
10. Tom Thaler, Simon Felix Ternis, Peter Fettke, and Peter Loos. A comparative analysis of

process instance cluster techniques. In Wirtschaftsinformatik, 2015.
11. Wil M.P. van der Aalst, Arya Adriansyah, and Boudewijn F. van Dongen. Replaying history

on process models for conformance checking and performance analysis. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 2(2), 2012.

12. Boudewijn F. van Dongen. BPI Challenge 2012, 2012.

19


