
Architecture, Design and Implementation of Carrier Phase
Vector Tracking in GNSS RTK Receiver

Nikolay Mikhaylova, Valery Chistyakovb and David Oertela

a Robert Bosch GmbH, Hildesheim, Germany
b BORA Ltd, St. Petersburg, Russia

Abstract
Navigation in GNSS denied environment is a great challenge for GNSS receivers because of

such effects as signal blockage, multipath and non-line of sign reception. A promising approach

for reducing these effects is vector tracking, which is well-known for its robustness against

poor signal-to-noise levels, fast changing environments and temporary signal blockage. In this

paper we consider architecture, design and implementation of carrier phase vector tracking in

GNSS receiver able to receive GNSS measurements from a base station, i.e. a real-time

kinematic (RTK) receiver. We discuss a concept of vector tracking in a differential phase lock

loop (PLL), requirements to be satisfied for Vector PLL to start and how to fulfil these

requirements in a high precision navigation engine. We provide architecture of software that

implements a high precision navigation engine including Vector PLL. Kalman Filter-based

algorithm of Vector PLL is described in detail. We also analyze the performance of carrier

phase vector tracking. In the time of submission of the paper the testing was not yet completed.

Nonetheless the first results obtained in a controlled environment provided promising results

and indicate that the implemented vector PLL provides better results in terms of carrier phase

tracking sensitivity and accuracy. More results are anticipated.

Keywords 1
GNSS, PLL, Vector PLL, Differential PLL, Extended Kalman Filter, Multipath Mitigation

1. Introduction

A known and promising approach to minimize the effect of GNSS multipath interference and to

improve ground tracks is vector tracking loop (VTL), [1], [2], [3]. The approach assumes the

replacement of lock loops used for code/carrier tracking in each channel with an extended Kalman Filter

(EKF) that both tracks the GNSS signals and calculates the user position [4]. This approach is based

upon the fact that all received signals are spatially correlated . The receiver motion projects onto

received signals according to their corresponding locations. This property is used in VTL to enhance

robustness [5].

The main drawback of the receivers using Vector DLL (VDLL) is that navigation solution is based

on the code measurements only and, therefore, it has meters-level accuracy [5]. In order to increase the

accuracy the phase measurements should be used. For pure Vector PLL (VPLL) to be viable, the errors

that affect the carrier phase must be mitigated. For this reason VTL techniques for single frequency

receivers use VDLL with scalar FLL/PLL and obtain navigation solution based on code measurements

only. One of the ways to use carrier phase measurements in the navigation solution in that case is

differential mode [1]. In this mode the base station measurements can be used in VPLL in the same way

as they are used in scalar PLL of carrier phase differential GNSS receivers. Use of phase measurements

of the base station allows obtaining a position solution directly in the VTL of a rover receiver with the

same accuracy as in integer-resolved carrier phase differential GNSS receivers.

ICL-GNSS 2020 WiP Proceedings, June 02–04, 2020, Tampere, Finland

EMAIL: nikolay.mikhaylov@de.bosch.com (A. 1); vchistyakov@softnav.ru; david.oertel@de.bosch.com
ORCID: 0000-0001-9184-3465 (A. 1)

©️ 2020 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org) Proceedings

In this work we describe architecture, design and implementation of the differential vector PLL

(DVPLL). The concept of DVPLL is presented in Section II. In section III a high-level software

architecture is described. Section IV provides details of DVPLL navigation filter. Results of DVPLL

testing are given in Section V. Finally, the conclusions are given in the last section. Appendices A and

B contain mathematical details of common knowledge: model of GNSS measurements, relative

positioning algorithm and system model used

2. DVPLL Concept

As stated above use of phase measurements of the base station allows obtaining a position solution

directly in the VTL of a rover receiver with the same accuracy as in integer-resolved carrier phase

differential GNSS receivers. The block diagram of such differential VPLL (DVPLL) is shown in Figure

1.

Figure 1. DVPLL Concept

Each channel in Figure 1 does not differ from a canonic scheme and includes code and carrier

generators with associated NCOs, code and carrier correlators and discriminators. As in canonic scheme

E, P and L in Figure 1 denote early, prompt and late correlator channel correspondingly. Dc, Df and Dϕ

are outputs of the discriminators and denote differences between input and locally generated signals

code, frequency and phase correspondingly.

DVPLL requires initialization. For this initialization a high precision relative position vector is

needed. In Figure 1 dashed lines connect the blocks that are required to calculate the initial receiver

position and form an initial high precision relative position vector. The calculation of the vector is done

according to standard differential GNSS scheme. First, the receiver position is calculated with code

measurements from VDLL (Doppler measurements can be used in the VDLL to improve the velocity

and clock drift state estimates, like carrier smoothing or Doppler aiding in traditional scalar receivers).

Then carrier phase measurements from the scalar PLL and carrier phase measurements from the base

station are used to resolve phase ambiguities and to calculate the high precision relative position vector.

During the initialization the scalar PLLs control the carrier NCOs and provide the carrier phase

measurements in each channel. After the initialization, once the high precision relative position vector

is calculated, DVPLL starts and takes over the control of NCO and production of carrier phase

measurements. Initialization of DVPLL must be started every time when cycle slip or carrier phase

tracking fault is detected. In this scheme VDLL drives the code NCO, and DVPLL drives the carrier

NCO. Such approach prevents the less accurate code measurements from degrading the accuracy of the

carrier phase based navigation solution.

Carrier

correlator

Carrier

generator

sin cos

Carrier NCO

Code

correlator

Code

generator

0 +∆ − ∆

Code NCO

Bank of

discriminators

E

P

L

Dc
Df

Channel 1

VDLL

Navigation

Filter

IF

signal

Code NCO

control

Channel 2

Channel N
RTK Lib

PVT

DVPLL

Navigation

Filter

Dφ

PLL

High
precision

PVT

Base
station

User’s data

data

3. Software Architecture

Development and testing of DVPLL is performed on the basis of SX3 receiver by IFEN. This is the

software receiver which provides convenient API enabling the user to add, replace or expand the

capabilities of the SX3 receiver (including integration of another navigation solution into SX3 software)

via interface functions provided by SX3.

The core part is the High Precision Navigation Engine (HPNE), which implements VTL. HPNE SW

architecture is defined by SX3 API provisions. The SX3 API concept is based on the usage of dynamic

link library (DLL) files. Therefore part of HPNE modules is implemented as DLL. Such a library will

be loaded seamlessly into SX3 at runtime and contain predefined function names to be called.

Implementation of HPNE requires of using at least two SX3 API libraries: Baseband API and

Navigation API. HPNE SW components, as well as main modules and main data flows are presented

in Figure 2. Main call flows are noted by dashed lines, main C-functions are marked with ordinary “()”

notation.

Figure 2. High-level software architecture

The software consists of two components: Interface and HPNE. The Interface component uses IFEN

APIs to obtain Code and Doppler measurements from IFEN software receiver. The Code and Doppler

measurements are used in single point positioning modules of HPNE denoted SPP in Figure 2 to

calculate standard precision PVT.

The Interface Component also receives signal accumulations in sinphase and quadrature channels

denoted as I and Q in Figure 2. It calculates phase measurements and provides them to HPNE. The

Interface Component calculates carrier NCO too. It should be noted that on the first step of this project

code NCO is controlled by IFEN Software.

RTCM handler, also a part of the Interface Component does a routine processing of RTCM data.

HPNE includes library modules, SPP modules to provide standard precision PVT and directive

cosines to relative positioning modules. The relative positioning modules implement float and integer

ambiguity resolution and compute accurate PVT based on the single differences between phase

measurements of the rover receiver and those of the base station. The accurate PVT is used by the

Interface Component to control NCOs in each channel.

4. DVPLL Algorithm

DVPLL navigation filter estimates relative PVT, which is used to predict carrier phase for each

tracked signal. Initialization of the relative PVT is performed on the basis of fixed (relative position and

clock bias) and float (relative velocity and clock drift) solutions.

DVPLL navigation filter is implemented as an error state Kalman filter (ErKF), which estimates

the error in the states, rather than the states themselves. In our case the filter estimates the errors in the

relative coordinates, relative clock bias and corresponding derivatives. Error state vector is modelled as

zero mean Gaussian process. This has the effect of resetting the predicted error at each time instant, i.e.

the instantaneous error is more important than error history.

In Appendix A one can find the algorithm for relative positioning. It is shown there that the single

differences of phase measurements are given by

𝝋𝑢𝑏 =
1

𝜆
(−𝑨𝑀×3𝑿𝑢𝑏 + 𝑐𝑏𝑢𝑏𝑰𝑀×1) + 𝑵𝑢𝑏 + 𝜺𝜑,𝑢𝑏, (1)

where

𝝋𝑢𝑏 – difference of carrier measurements between user u and base station b, m

𝜆 – carrier wavelength, m

𝑨𝑀×3 – matrix of directive cosines (M is the number of measurements)

𝑿𝑢𝑏 –
𝑿𝑢𝑏 = (𝑥𝑢𝑏 𝑦𝑢𝑏 𝑧𝑢𝑏 𝑐𝑏𝑢𝑏)

𝑇 State vector consisting of differences of position

components and clock bias between user u and base station b, m

c – velocity of light, m/s

𝑏𝑢𝑏 – user clock bias relatively base station receiver, s

𝑰𝑀×1 = (1 1…1)𝑇

𝑵𝑢𝑏 – vector of integer ambiguities

𝜺𝜑,𝑢𝑏 –
noise of the difference of carrier phase measurements between user u and base station

b, cycles

The equation (2) below can be obtained by differencing (1), connects errors of the carrier phase

single differences with error in relative position:

∆𝝋𝑢𝑏 =
1

𝜆
(−𝑨𝑀×3∆𝑿𝑢𝑏 + 𝑐∆𝑏𝑢𝑏𝑰𝑀×1) + 𝜺′𝜑,𝑢𝑏, (2)

where

∆𝑿𝑢𝑏 – relative position error,

∆𝑏𝑢𝑏 – relative clock bias error,

𝜺′𝜑,𝑢𝑏 – noise of the carrier phase single differences.

 ∆𝝋𝑢𝑏 = 𝝋𝑢𝑏 − 𝝋̂𝑢𝑏 = 𝝋𝑢 −𝝋𝑏 − (𝝋̂𝑢 − 𝝋̂𝑏) = 𝝋𝑢 − 𝝋̂𝑢 − (𝝋𝑏 − 𝝋̂𝑏), (3)

where 𝝋̂𝑏 and 𝝋̂𝑢 denote predictions of the carrier phase in base station and in rover receiver.

Taking into account that carrier phase error for base station is significantly less than for rover

receiver, the equation (2) can be rewritten as:

𝜆∆𝝋𝑢 = −𝑨𝑀×3∆𝑿𝑢𝑏 + 𝑐∆𝑏𝑢𝑏𝑰𝑀×1 + 𝜺′𝜑,𝑢𝑏, (4)

where

∆𝝋𝑢 – carrier phase error of the rover receiver (PLL discriminator).

Equation for the error in relative velocity can be obtained by differentiating (4):

𝜆∆𝒇𝑢 = −𝑨𝑀×3∆𝑿̇𝑢𝑏 + 𝑐∆𝑏̇𝑢𝑏𝑰𝑀×1 + 𝜺′𝑓,𝑢𝑏, (5)

where

∆𝒇𝑢 – carrier frequency error of the rover receiver (FLL discriminator).

Let’s define state vector and dynamic model as follows:

∆𝑿𝑘 = (∆𝑥𝑢𝑏
𝑘 ∆𝑦𝑢𝑏

𝑘 ∆𝑧𝑢𝑏
𝑘 𝑐∆𝑏𝑢𝑏

𝑘 ∆𝑥̇𝑢𝑏
𝑘 ∆𝑦̇𝑢𝑏

𝑘 ∆𝑧̇𝑢𝑏
𝑘 𝑐∆𝑏̇𝑢𝑏

𝑘)𝑇, (6)

∆𝑿𝑘,𝑘+1 = 𝑭𝑘,𝑘+1∆𝑿𝑘,𝑘, (7)

where 𝑭𝑘,𝑘+1 = (
𝟎4×4 ∆𝑡𝑘𝑬4×4
𝟎4×4 𝟎4×4

) , ∆𝑡𝑘 = 𝑡𝑘+1 − 𝑡𝑘,

∆𝑿𝑘,𝑘 denotes state vector in time 𝑡𝑘, and ∆𝑿𝑘,𝑘+1 denotes state prediction from 𝑡𝑘 to 𝑡𝑘+1.

Measurements update for the DVPLL navigation filter is performed at the end of integration period

in each channel. If navigation symbol location is found then integration interval is usually equal to the

navigation symbol length. Neglecting the impact of Doppler on the code frequency we will assume that

integration intervals for all channels are the same. However the ends of the integration intervals for

different channels generally do not match. Because the range between a satellite and a user varies from

satellite to satellite, different channels receive the same navigation symbol at different time.

Let’s define the measurements vector and measurement matrix as follows:

𝒁𝑘 = 𝜆(∆𝜑𝑘 ∆𝑓𝑘)
𝑇,

∆𝜑𝑘 =
1

2𝜋
arctg (

𝑄𝑘

𝐼𝑘
),

∆𝑓𝑘 =
1

2𝜋∆𝑡
arctg (

𝑄𝑘𝐼𝑘−𝑁−𝐼𝑘𝑄𝑘−𝑁

𝐼𝑘𝐼𝑘−𝑁+𝑄𝑘𝑄𝑘−𝑁
),

𝑯𝑘 = (
−𝑎𝑥

𝑘 −𝑎𝑦
𝑘 −𝑎𝑧

𝑘 1 0 0 0 0

0 0 0 0 −𝑎𝑥
𝑘 −𝑎𝑦

𝑘 −𝑎𝑧
𝑘 1

), where

∆𝑡 – I&Q accumulation time (20 ms); 𝑎𝑥
𝑘 , 𝑎𝑦

𝑘 , 𝑎𝑧
𝑘 are the directive cosines for the satellite on the

current channel.

Note that 𝒁𝒌 corresponds to the difference between received signal and predicted one based on the

state vector at beginning of kth integration interval:

𝒁𝑘 = 𝑯𝑘(𝑿𝑘,𝑘 − 𝑭𝑘−𝑁,𝑘
′ 𝑿𝑘−𝑁,𝑘−𝑁), where (8)

𝑭𝑘−𝑁,𝑘
′ = 𝑬+ 𝑭𝑘−𝑁,𝑘 is the matrix of state transition from state 𝑿𝑘−𝑁,𝑘−𝑁 at time 𝑡𝑘−𝑁 to state

prediction 𝑿𝑘,𝑘 at time 𝑡𝑘.

However, for implementation of the DVPLL navigation filter in a standard form it is required to

have measurement in the following form:

𝒁𝑘
∗ = 𝑯𝑘(𝑿𝑘,𝑘 − 𝑭𝑘−1,𝑘

′ 𝑿𝑘−1,𝑘−1). (9)

These measurements are related as follows:

𝑭𝑘−1,𝑘
′ 𝑿𝑘−1,𝑘−1 =

𝑭𝑘−1,𝑘
′ (𝑿𝑘−2,𝑘−1 + ∆𝑿𝑘−1,𝑘−1) = 𝑭𝑘−2,𝑘

′ 𝑿𝑘−2,𝑘−2 + 𝑭𝑘−1,𝑘
′ ∆𝑿𝑘−1,𝑘−1 = ⋯

𝑭𝑘−N,𝑘
′ 𝑿𝑘−𝑁,𝑘−𝑁 + 𝑭𝑘−N+1,𝑘

′ ∆𝑿𝑘−𝑁+1,𝑘−𝑁+1 +⋯+ 𝑭𝑘−1,𝑘
′ ∆𝑿𝑘−1,𝑘−1. (10)

In (10) we used the equation for updated state estimate.

Therefore,

𝒁𝑘
∗ = 𝒁𝑘 −𝑯𝑘 ∑ 𝑭𝑚,𝑘

′ ∆𝑿𝑚,𝑚
𝑘−1
𝑚=𝑘−𝑁+1 . (11)

Note that equation (11) was obtained for the Channel 1. Let’s determine adjustment vector 𝒆𝑖 for ith

channel as follows:

𝒆𝑖 = ∑ 𝑭𝑚,𝑘
′ ∆𝑿𝑚,𝑚

𝑘+𝑖−2
𝑚=𝑘+𝑖−𝑁 . (12)

Then,

𝒁𝑘+𝑖−1
∗ = 𝒁𝑘+𝑖−1 −𝑯𝑘+𝑖−1𝒆𝑖. (13)

Computation of the adjustment vectors is performed iteratively each time when new measurement

is available. After adjustment is applied the corresponding vector is zeroed.

Let’s define estimated relative vector as follows:

𝑿𝑘 = (𝑥𝑢𝑏
𝑘 𝑦𝑢𝑏

𝑘 𝑧𝑢𝑏
𝑘 𝑐𝑏𝑢𝑏

𝑘 𝑥̇𝑢𝑏
𝑘 𝑦̇𝑢𝑏

𝑘 𝑧̇𝑢𝑏
𝑘 𝑐𝑏̇𝑢𝑏

𝑘)𝑇.

The algorithm of navigation filter consists of the following steps:

Step 1 (initialization)

𝑿0 = 𝑿𝑓𝑖𝑥𝑒𝑑; ∆𝑿0 = 0,𝑷0 = 𝑷𝑓𝑙𝑜𝑎𝑡; 𝒆𝑖 = 𝟎, 𝑖 = 1…𝑁

Step 2 (prediction)

𝑿𝑘−1,𝑘 = 𝑿𝑘−1,𝑘−1 + 𝑭𝑘−1,𝑘𝑿𝑘−1,𝑘−1,

∆𝑿𝑘−1,𝑘 = 𝑭𝑘−1,𝑘∆𝑿𝑘−1,𝑘−1,

𝑷𝑘−1,𝑘=𝑭𝑘−1,𝑘𝑷𝑘−1,𝑘−1𝑭𝑘−1,𝑘
𝑇 +𝑸𝑘, 𝑸𝑘 – see Appendix B,

𝒆𝑖 = 𝑭𝑘−1,𝑘
′ 𝒆𝑖, 𝑖 = 1…𝑁.

Step 3 (measurement update)

𝑮𝑘 = 𝑷𝑘−1,𝑘𝑯𝑘
𝑇(𝑯𝑘𝑷𝑘−1,𝑘𝑯𝑘

𝑇 + 𝑹𝑘)
−1, 𝑹𝑘 = (

𝜎𝜑
2 0

0 𝜎𝑓
2),

𝒁𝑘
∗ = 𝒁𝑘 −𝑯𝑘𝒆,

∆𝑿𝑘,𝑘 = ∆𝑿𝑘−1,𝑘 + 𝑮𝑘(𝒁𝑘
∗ −𝑯𝑘∆𝑿𝑘−1,𝑘),

𝑷𝑘,𝑘 = (𝑬 − 𝑮𝑘𝑯𝑘)𝑷𝑘−1,𝑘,

𝒆 = 𝟎, where 𝒆 is the corresponding adjustment vector

𝒆𝑖 = 𝒆𝑖 + ∆𝑿𝑘,𝑘, 𝑖 = 1…𝑁, excepting the channel corresponding to 𝒆.

𝑿𝑘,𝑘 = 𝑿𝑘−1,𝑘 + ∆𝑿𝑘,𝑘.

Step 4

Propagate 𝑿𝑘,𝑘 to the end of next integration period and compute predicted carrier frequency for the

corresponding channel.

5. Performance Analysis

At the moment only the first test results are obtained. The results basically show that the DVPLL

implementation provides anticipated results.

Figure 1 below shows a carrier-to-noise density for a static user. Figure 2 demonstrates that vector

PLL has higher accuracy than scalar PLL, especially for low levels of signal power. One can see from

Figure 3 that the accuracy of vector PLL for the simulated scenario, i.e. down to about 24 dBHz remains

in ±1Hz range. Further tests will follow soon.

Figure 1 Carrier-to-noise density as a function of time in a static user scenario

Figure 2 Doppler frequency error as a function of carrier-to-noise density for scalar and vector PLLs

-8

-6

-4

-2

0

2

4

6

8

43.5 40.7 37.7 34.7 31.7 28.0 25.6

D
op

pl
er

 e
rr

or
 ,

 H
z

C/No, dBHz

Scalar PLL

Vector PLL

Figure 3 Doppler frequency error as a function of carrier-to-noise density for vector PLL

6. Conclusions

The paper provides a detail analysis of a DVPLL including, concept, design, implementation and

first test results. It is planned to present the results of full DVPLL testing in ION conference in

September 2020.

-1.5

-1

-0.5

0

0.5

1

1.5

1 101 201 301 401 501 601 701 801 901 1001 1101 1201 1301

D
o

p
p

le
r

e
rr

o
r,

H
z

Time,s

7. References

[1] J. Brewer and J. Raquet, "Differential Vector Phase Locked Loop," IEEE Transactions on Aerospace and

Electronic Systems, pp. 1046-1055, June 2016.

[2] S. M. Martin, D. M. Bevly, R. G. Keegan and S. F. Rounds, "RTK Vector Phase Locked Loop

Architecture". USA Patent 20190120973, 11 10 2019.

[3] A. Shafaati, T. Lin, A. Broumandan and G. Lachapelle, "Design and Implementation of an RTK-based

Vector Phase Locked Loop," Sensors, March 2018.

[4] M. Lashley and D. M. Bevly, "Comparison in the Performance of the Vector Delay/Frequency Lock Loop

and Equivalent Scalar Tracking Loops in Dense Foliage and Urban Canyon," in Proceedings of the 24-th

ITM of the Satellite Division of the Institute of Navigation, Portland, OR, 2011.

[5] M. Lashley, "Modelling and Performance Analysis of GPS Vector Tracking Algorithms. Ph.D. Thesis.,"

Auburn University, Auburn, 2009.

[6] P. Teunissen, "A least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambuity

estimation," Journal of Geodesy, pp. 65-82, 1985.

[7] Y. Bar-Shalom, R. L. X. and T. Kirubarajan, Estimation with Application to Tracking and Navigation:

Theory Algorithms and Software, New York: John Wiley & Sons, 2001.

[8] M. Scott, "GPS Carrier Phase Tracking in Difficult Environments Using Vector Tracking for Precise

Positioning and Vehicle Attitude Estimation Tracking in GNSS. Ph.D. Thesis," Auburn University,

Auburn, USA, 2017.

8. Appendix A: Relative Positioning Algorithm

For the basic relative positioning algorithm, the pseudorange and carrier phase measurements are

modelled as:

𝝆𝒖
𝒌 = 𝒓𝒖

𝒌 + 𝑰𝒖
𝒌 + 𝑻𝒖

𝒌 +𝑴𝒖
𝒌 + 𝒄(𝒃𝒖 + 𝒃

𝒌) + 𝜺𝝆,𝒖
𝒌 ,

𝜑𝑢
𝑘 =

1

𝜆
(𝑟𝑢
𝑘 − 𝐼𝑢

𝑘 + 𝑇𝑢
𝑘 +𝑀𝑢

𝑘 + 𝑐(𝑏𝑢 + 𝑏
𝑘)) + 𝑁𝑢

𝑘 + 𝜀𝜑,𝑢
𝑘 ,

where the notation is analogue to the one given in section Error! Reference source not found. and

additionally:

𝐼𝑢
𝑘 – ionospheric delay, m

𝑇𝑢
𝑘 – tropospheric delay, m

𝑀𝑢
𝑘 –

multipath error, m.

Neglecting the multipath error we use the measurement differences 𝝋𝑢𝑏 from eq. (1) and the

pseudorange differences

𝜌𝑢𝑏
𝑘 = 𝑟𝑢𝑏

𝑘 + 𝑐𝑏𝑢𝑏 + 𝜀𝜌,𝑢𝑏
𝑘

in a Kalman filter to, at first, estimate the state vector

𝑿 = (𝑥𝑢𝑏 𝑦𝑢𝑏 𝑧𝑢𝑏 𝑐𝑏𝑢𝑏 𝑥̇𝑢𝑏 𝑦̇𝑢𝑏 𝑧̇𝑢𝑏 𝑐𝑏̇𝑢𝑏 𝑁𝑢𝑏
1 … 𝑁𝑢𝑏

𝑀)𝑇.

Here, the ambiguities 𝑁𝑢𝑏
𝑖 are contained with relaxed float constraints. Using a system transition

model as in eq. (7) with additional identity transition on the ambiguities, the measurement vector 𝒁,

observation matrix 𝑯 and measurement noise matrix 𝑹 for this filter are as follows:

𝒁 = (𝜌𝑢𝑏
1 𝜌𝑢𝑏

2 …𝜌𝑢𝑏
𝑀 𝜆𝜑𝑢𝑏

1 𝜆𝜑𝑢𝑏
2 …𝜆𝜑𝑢𝑏

𝑀)
𝑇

𝑯 = (
−𝑨𝑀×3 𝑰𝑀×1 𝟎𝑀×4 𝟎𝑀×𝑀
−𝑨𝑀×3 𝑰𝑀×1 𝟎𝑀×4 𝜆𝑬𝑀×𝑀

).

𝑹 = diag(𝑅1, … , 𝑅2𝑀), 𝑅𝑖 = {
𝜎
𝜌𝑢
𝑖
2 + 𝜎

𝜌𝑏
𝑖
2 , 𝑖 ≤ 𝑀

𝜎
𝜑𝑢
𝑖
2 + 𝜎

𝜑𝑏
𝑖
2 , 𝑖 > 𝑀

.

Variances 𝜎𝜌
2 and 𝜎𝜑

2 are determined for each channel on the basis of signal to noise ratio and

DLL/PLL parameters. The default Kalman filter equations apply for generating a float ambiguity

solution.

In a follow-up step, the float solution is refined using the LAMBDA method [6] for an integer

ambiguity resolution.

The known integer ambiguities 𝑵𝑢𝑏 are then forwarded to estimate 𝑿𝑢𝑏 through the equations:

𝑯𝒓𝑿𝑢𝑏 = 𝜆(𝝋𝑢𝑏 −𝑵𝑢𝑏),

𝑯𝒓 = (

−𝑎𝑥
1 −𝑎𝑦

1 −𝑎𝑧
1 1

⋮
−𝑎𝑥

𝑀 −𝑎𝑦
𝑀 −𝑎𝑧

𝑀 1
).

Here, an ordinary least-squares estimation yields the fixed solution, i.e. the solution with resolved

integer ambiguities providing the foundation and initialization for the DVPLL computations.

9. Appendix B: System Dynamic Model

The system dynamics are based on [7] which provides a detailed discussion and deduction including

the transformation of the continuous to the discrete system representation. In short, a continuous white

noise acceleration model (CWNA) transformed into discrete time is employed in this work. The

resulting system transition is given in equation (7). The respective noise matrix 𝑸𝑘 as a result from the

discretization is composed of a motion dynamic part 𝑸𝑑𝑦𝑛 and a clock dynamic influence 𝑸𝑐𝑙𝑘 :

𝑸 = 𝑸𝑑𝑦𝑛 +𝑸𝑐𝑙𝑘,

 𝑸𝒅𝒚𝒏 =

(

𝜎𝑥
2 ∆𝑡

3

3
0 0 0 𝜎𝑥

2 ∆𝑡
2

2
0 0 0

0 𝜎𝑦
2 ∆𝑡

3

3
0 0 0 𝜎𝑦

2 ∆𝑡
2

2
0 0

0 0 𝜎𝑧
2 ∆𝑡

3

3
0 0 0 𝜎𝑧

2 ∆𝑡
2

2
0

0 0 0 0 0 0 0 0

𝜎𝑥
2 ∆𝑡

2

2
0 0 0 𝜎𝑥

2∆𝑡 0 0 0

0 𝜎𝑦
2 ∆𝑡

2

2
0 0 0 𝜎𝑦

2∆𝑡 0 0

0 0 𝜎𝑧
2 ∆𝑡

2

2
0 0 0 𝜎𝑧

2∆𝑡 0

0 0 0 0 0 0 0 0)

𝑸𝒄𝒍𝒌 =

(

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 𝜎𝑏
2∆𝑡 + 𝜎𝑑

2
∆𝑡3

3
0 0 0 𝜎𝑑

2
∆𝑡2

2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 𝜎𝑑
2
∆𝑡2

2
0 0 0 𝜎𝑑

2∆𝑡)

The noise constants need to reflect the respective motion behavior of the receiver. In this work, the

acceleration parameters are fixed to

 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 10.

The terms 𝜎𝑏
2 and 𝜎𝑑

2 in 𝑸𝒄𝒍𝒌 can be approximated by [4] :

𝜎𝑏
2 = 𝑐2

ℎ0

2
,

 𝜎𝑑
2 = 𝑐22𝜋2ℎ−2,

where the parameters ℎ0 and ℎ−2 are the power spectral density coefficients for the clock’s

oscillator:

𝑆𝜙(𝑓) = 𝑁
2 (ℎ0 +

ℎ−1

𝑓
+
ℎ−2

𝑓2
+
ℎ−3

𝑓3
+
ℎ−4

𝑓4
).

𝑁 is the ratio the frequency of interest (for example, GPS L1) to the nominal frequency of oscillator.

Power spectral density coefficients can be obtained using polynomial fit of the data from the oscillator

specifications. For TCXO the following coefficients can be used [4]:

 ℎ0 = 2 × 10-19, ℎ−1 = 7 × 10-21, ℎ−2 = 2 × 10-20.

