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Abstract. The goal of this research is to build a machine-learning model, as well 

as preliminary data process and feature extraction algorithms that would allow to 

successfully identify signs of propaganda in text data and to solve a binary clas-

sification task. The task is presented in two forms: article level propaganda de-

tection and sentence level propaganda detection. The propaganda detection da-

taset for this level of task consists of 35 993 articles (including headlines) written 

in English. Each article is marked as either “propaganda” or “non-propaganda”. 

The dataset also contains unique identifier for each article. 

Keywords: Content, Text Data, Propaganda Detection, Data Classification, 

Machine Learning. 

1 Introduction 

Before we start feature extraction process, we need to perform a few particular opera-

tions on the data to clean and prepare it for the extraction. First, we need to convert 

every word in the dataset to lowercase so that in the process of vectorization two se-

mantically identical words, one uppercase and one lowercase, would not considered as 

separate tokens. In order to do so, we perform the following transformation: 

data['article'] = data['article'].apply(lambda x: " 

".join(x.lower() for x in x.split())) 

Data is presented in the form of text file that consist of tab-separated article content, 

assigned class and unique article identifier. After the file is loaded and the identifier 

attribute is deleted, we convert our dataset to pandas.DataFrame format. 

As is clearly presented on the graph, data is not balanced and the non-propagandistic 

articles are in majority. To be more specific, data contains 31 972 non-propagandistic 

and 4 201 propagandistic articles. After this, we need to view whether the data is evenly 

distributed by category. 
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Fig. 1. Article-level dataset in pandas.DataFrame format. 

 

Fig. 2. Data distribution by category. 



The next step is to remove punctuation symbols from the dataset, since on the task level 

it would not be a very informative feature, but it will also be counted as a separated 

token during vectorization process which can lead to data being noisy. 

In order to do so, we perform the following transformation: 

data['article'] = data['article'].str.replace('[^\w\s]','') 

Lastly, we need to extract and remove so-called stop words. Stop words are usually the 

most common words in a language that do not contribute anything to the data semanti-

cally. Moreover, so will be no use for us in the process of building a model. We are 

using nltk library in-built corpora and remove them from the data in a loop. 

stop = nltk.stopwords.words('english') 

data['article'] = data['article'].apply(lambda x: " ".join(x for 

x in x.split() if x not in stop)) 

After this, we can split our data into separate training and test sets. 

X = data['article'] 

y = data['label'] 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

2 Feature Extraction 

The raw data by itself does not carry any useful attributes and is not suitable for apply-

ing them in the machine-learning model, so we need to extract those features before we 

can run any machine-learning algorithm. 

The first step in this process is text vectorization. 

During the vectorization process, every word (term) in the corpus is assigned a 

unique number. Text data transforms into N-dimensional vector, where N is a number 

of words in the corpus. The value of each vector element is a term frequency of the 

corresponding word. We are going to use CountVectorizer class from scikit-learn li-

brary to implement text vectorization. 

vectorizer = CountVectorizer(analyzer='word', 

token_pattern=r'\w{1,}', ngram_range=(1,2), 

strip_accents='unicode', min_df=3, max_df=0.5) 

X_train = vectorizer.fit_transform(X_train) 

X_test = vectorizer.transform(X_test) 

The return value of CountVectorizer fit and transform methods is a sparse matrix, the 

size of which equals to a number of unique words in corpus. 

We need to make sure that, after the vectorization is applied, the number of features 

of training set and the number of features of test set are equal. 



 

Fig. 3. Checking the training and test set dimensions. 

The nest step of our feature extraction process is TF-IDF transformation [1-5]. 

TF-IDF (Term Frequency-Inverse Document Frequency) is a numerical statistic that 

is intended to reflect how important a word is to a document in a collection or corpus. 

TF is a ratio of a raw count of a term in a document (the number of times the word 

𝑡 occurs in a document 𝑑) and the overall number of words in a document [6-9]. TF 

evaluates the importance of a particular word 𝑡𝑖 in a document scope [10-14]. 

𝑇𝐹 =  
𝑛𝑖

∑ 𝑛𝑘𝑘
,  

where 𝑛𝑖 is the number of occurrences of the word 𝑛, while the denominator represents 

the overall number of words in a document [15-21]. 

𝐼𝐷𝐹 = log
|𝐷|

|(𝑑 ∈𝐷∶𝑡 ∈𝑑)|
, 

where |𝐷| is the number of documents in the collection, while |𝑑 ∈ 𝐷 ∶ 𝑡 ∈ 𝑑| repre-

sents the number of documents that contain the word 𝑡 [22-27]. 

𝑇𝐹𝐼𝐷𝐹 =  𝑇𝐹 × 𝐼𝐷𝐹. 

We will use TfidfTransofrmer class from scikit-learn library to implement TF-IDF 

transformation. 

transformer = TfidfTransformer(use_idf=True, smooth_idf = True) 

X_train = transformer.fit_transform(X_train) 

X_test = transformer.transform(X_test) 

The transformation is performed on the previously formed sparse matrix of vectorized 

text data. 

3 Building a Model 

For this classification task, we will use the logistic regression model [26-39]. 

Logistic regression uses logistic function to model binary dependent variable. It can 

described with the following mathematical equation: 

𝑃 =  
𝑒𝑎+𝑏𝑋

1 +  𝑒𝑎+𝑏𝑋
 



where 𝑃 is a dependent variable that varies in the scope of [0, 1], while 𝑋 is a matrix of 

independent variables, and 𝑎 і 𝑏 are numeric coefficients of logistic model. 

We will use LogisticRegression class from scikit-learn library to implement logistic 

regression model. 

model = LogisticRegression(penalty='l2', 

class_weight='balanced', solver='lbfgs') 

model.fit(X_train, y_train) 

 

Fig. 4. Logistic regression model. 

The parameters specified are: penalty=’l2’, which indicates that for the purpose of reg-

ularization our model will use Ridge regression approach, while the parameter 

solver=’lbfgs’ indicates that for the purpose of optimization our model will be using 

the limited memory Broyden–Fletcher–Goldfarb–Shanno algorithm. 

4 Model Evaluation 

To evaluate our model, we will use it to predict values for the test set data. 

predictions = model.predict(X_test) 

Then we’ll build a confusion matrix. 

n = len(conf_matrix) 

plt.figure(figsize = (n, n)) 

sns.heatmap(conf_matrix, annot=True) 

plt.title("Confusion Matrix") 

plt.ylabel("Actual Value") 

plt.xlabel("Predicted Value") 

plt.show() 

 

Fig. 5. Article level model confusion matrix 



The interpretation of the confusion matrix indicates that our model has successfully 

classified 6097 non-propaganda articles & 694 propaganda articles, but failed to clas-

sify 123 propaganda articles and 285 non-propaganda articles. 

To view the model score: 

model.score(X_test, y_test) 

The achieved model score equals to 0.9433254618697041. 

5 Sentence Level Propaganda Detection Task 

The dataset for this type of task contains approximately 540 articles in English, includ-

ing headlines. The articles are broken up into separate sentences. Each sentence is la-

belled as either “propaganda” or “non-propaganda”. The dataset also includes unique 

identifier for each article, as well as a unique identifier for each sentence on the article 

scope. The dataset contains a total of 14263 sentences. 

Data is stored in a form of text file collection, with a separate file for each article. 

The data attributes are also stored separately. After each file collection is loaded, we 

concatenate them and form a single pandas.DataFrame, while also elimination articles 

and sentences unique identifiers from the data. 

 

Fig. 6. The sentence level dataset. 

The next step is to once more build a plot to see how our data is distributed in the terms 

of category and to evaluate the level of balance in the data. 



 

Fig. 7. Sentence-level data distribution according to category. 

As is evident from the plot, the data is once again not evenly distributed and unbalanced. 

The number of non-propaganda articles outweighs propaganda articles in this dataset 

as well. Specifically, the dataset contains 10 325 non-propaganda articles and 3938 

propaganda articles. First, we repeat the approach we have taken while solving the pre-

vious task and remove all stop words from the data. 

stop = stopwords.words('english') 

data['sentence'] = data['sentence'].apply(lambda x: " ".join(x 

for x in x.split() if x not in stop)) 

After that, we convert our text data to lowercase once again. 

data['sentence'] = data['sentence'].apply(lambda x: " 

".join(x.lower() for x in x.split())) 

We do not eliminate punctuation symbols this time, since we will need them at during 

a feature extraction process. At the beginning of this process, we perform a POS (Part-

of-Speech) tagging operation. In order to do so, we use the spacy library. 

nlp = spacy.load('en') 

def tag(sentence): 

    global nlp 

    doc = nlp(sentence) 

    return " ".join([f'{x.text}_{x.tag_}_{x.lemma_}' for x in 

doc]) 

sentences_pos = copy.deepcopy(data['sentence']) 



tagged = pos_tagging(sentences_pos) 

data['tagged'] = tagged 

After this operation, our data has a new column called “tagged” that presents every 

word in a sentence in the following format: “%word%_%part of speech 

tag%_%lemma%”.  

The next step is to perform a few manual feature extraction technique. 

Firstly, we need to mark every sentence as either containing or not-containing quo-

tations to identify the “Appeal to authority” propaganda technique. 

In order to do so, we initialize the corresponding function. 

def get_quotations(sentences): 

    result = [] 

    for sentence in sentences: 

        match = 1 if '"' in sentence else 0 

        result.append(match) 

    return np.array(result).reshape(-1, 1) 

The next step is to check each sentence for the presence of so-called glitter words. These 

are the words like “patriotism”, “democracy”, “duty”, “power” etc. We do this to iden-

tify “Slogan” and “Flag Waving” propaganda techniques. 

In order to do so, we compute the number of matches of words from a sentence with 

words from a glitter word lexicon and divide it by the overall number of words in a 

sentence in order to normalize the coefficient. We form a separate text file (a lexicon) 

with such words and initialize the corresponding function. 

def get_glitter(tagged): 

    filename = 'glitter_words.txt' 

    glitters = [] 

    append = glitters.append 

    with open(os.path.join(LEXICONS_PATH, filename), 

encoding='utf-8') as f: 

        for line in f.readlines(): 

            append(line.replace('\n', '')) 

    result = [] 

    for sentence in tagged: 

        words = 0 

        matches = 0 

        for wline in sentence.split(): 

            try: 

                w, t, l = wline.split("_") 

            except: 

                continue 

            w = w.lower() 

            l = l.lower() 

            words+=1 



            if l in glitters or w in glitters: 

                matches+=1 

        if words == 0: 

            result.append(0) 

        else: 

            result.append(matches/words) 

    return np.array(result).reshape(-1, 1) 

Then, with a similar approach, we check each sentence for the presence of intensifying 

words (“absolute”, “total”, “very”, “incredible” etc.) and absolute pronouns (“every-

one”, “nobody” etc.). While doing so, we try to identify such propaganda techniques as 

“Loaded language” and “Bandwagon”. 

We form similar lexicons for each task and initialize similar functions. Finally, we 

victories our text data using Word2Vec shallow two-layer neural net with pre-trained 

Twitter 200-dimensional pre-trained model to perform word embedding’s. 

In order to do so, we will use gensim library. 

w2v_file = os.path.join(WORD2VEC_PATH, 'twitter.27B.200d.txt') 

w2v_model = KeyedVectors.load_word2vec_format(w2v_file, 

binary=False) 

def w2v_vectorize(tagged): 

    global w2v_model 

    X = [] 

    ndims = 200 

    for sentence in tagged: 

        words = [] 

        for wline in sentence.split(): 

            try: 

                w, t, l = wline.split("_") 

            except: 

                continue 

            words.append(w) 

        row_data = np.mean([w2v_model[w] for w in words if w in 

w2v_model] or 

                           [np.zeros(ndims)], axis=0).tolist() 

        X.append(row_data) 

    X = np.array(X) 

    X_std = (X - X.min(axis=0)) / (X.max(axis=0) - 

X.min(axis=0)) 

    X_scaled = X_std * (1 - 0) + 0 

    return X_scaled 

Finally, we create a new pandas.DataFrame on the basis of the already existing one 

with the use of all aforementioned operations. 

word2vec_features = w2v_vectorize(data['tagged']) 

word2vec_columns = [f'dim{x}' for x in range(200)] 



glitter_words = get_glitter(data['tagged']) 

quotations = get_quotations(data['sentence']) 

intensifiers = get_intensifiers(data['tagged']) 

absolutes = get_absolutes(data['tagged']) 

X = pd.DataFrame(word2vec_features, columns=[word2vec_columns]) 

X['quotations'] = quotations 

X['glitter_words'] = glitter_words 

X['intensifiers'] = intensifiers 

X['absolutes'] = absolutes 

y = data['label'] 

Split dataset into training and test sets. 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

We will also use Logistic regression model for this task, as well as Grid Seacrh cross-

validation algorithm to find best parameters of our model. 

lr_model = LogisticRegression() 

penalty = ['l1', 'l2'] 

C = np.logspace(0, 4, 10) 

hyperparameters = dict(C=C, penalty=penalty) 

clf = GridSearchCV(lr_model, hyperparameters, refit='f1', cv=5) 

Best model parameters: penalty=’l2’, C=7.74. 

To evaluate the efficiency of our model, we predict values on test set. 

predictions = best_model.predict(X_test) 

Build confusion matrix. 

n = len(conf_matrix) 

plt.figure(figsize = (n, n)) 

sns.heatmap(conf_matrix, annot=True) 

plt.title("Confusion Matrix") 

plt.ylabel("Actual Value") 

plt.xlabel("Predicted Value") 

plt.show() 

 

Fig. 8. Confusion matrix. 



The confusion matrix can be interpreted in the following way: our model has success-

fully classified 1917 non-propaganda articles and 205 propaganda articles, but 585 

propaganda articles and 146 non-propaganda articles were misclassified. 

We can also view model score: 

best_model.score(X_test, y_test) 

Model score equals to 0.7437784787942516. 

6 Conclusions 

During the research conduction, two-machine learning models are built to identify 

propaganda – one for article level task and one for sentence level task. In the process 

vectorization, TF-IDF, POS-tagging, word embedding and manual feature extraction 

techniques are applied. Classification has performed with the use of Logistic Regres-

sion model and Grid Search cross-validation algorithm. The model received following 

scores: 0.94 for article-level model and 0.74 for sentence level model. 
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