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Abstract. These improvements open many possibilities in solving Natural Lan-

guage Processing downstream tasks. Such tasks include machine translation, 

speech recognition, information retrieval, sentiment analysis, summarization, 

question answering, multilingual dialogue systems development, and many more. 

Language models are one of the most important components in solving each of 

the mentioned tasks. This paper is devoted to research and analysis of the most 

adopted techniques and designs for building and training language models that 

show a state of the art results. Techniques and components applied in the creation 

of language models and its parts are observed in this paper, paying attention to 

neural networks, embedding mechanisms, bidirectionality, encoder and decoder 

architecture, attention, and self-attention, as well as parallelization through using 

transformer. As a result, the most promising techniques imply pre-training and 

fine-tuning of a language model, attention-based neural network as a part of 

model design, and a complex ensemble of multidimensional embedding to build 

deep context understanding. The latest offered architectures based on these ap-

proaches require a lot of computational power for training language models, and 

it is a direction of further improvement. Algorithm for choosing right model for 

relevant business task provided considering current challenges and available ar-

chitectures. 

Keywords: Natural Language Processing, NLP, Language Model, Embedding, 

Recurrent Neural Network, RNN, Gated Recurrent Unit, GRU, Long Short-Term 

Memory, LSTM, Encoder, Decoder, Attention, Transformer, Transfer Learning, 

Deep Learning, Neural Network. 

1 Introduction 

Natural Language Processing (NLP) is computer comprehension, analysis, manipula-

tion, and generation of natural language. NLP covers many different applications like 

machine translation, speech recognition, optical character recognition, part of speech 
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tagging, information retrieval, summarization, question answering, dialog systems 

building, and many more. Since the last decade, there have been a great number of 

breakthroughs towards making machines understand the language (text or voice) better 

that raised enormous interest in this field of scientific research. The highest goal for all 

scientists working in the area of NLP is to build such techniques that will allow com-

puters to comprehend natural language as text or voice at a human level which is not 

reached yet. Once achieved, computational systems will be able to understand and gen-

erate accurate human-like language, be it a text or an audible language. This paper 

analyses widespread techniques and components in building language models to give a 

scientist thorough information for further research and improvement. There have been 

a lot of discoveries of language models from computational linguistics scientists, and 

those new techniques showed great results on specific tasks. But when it comes to the 

broad spectrum of NLP tasks solved by the same language model not many show the 

same high results. The recent state of the art architectures (BERT, RoBERTa, Trans-

former-XL, XLNet, etc.) leverage the following approaches: contextual embedding, bi-

directionality, encoder-decoder architecture, attention mechanism and transformer, pre-

training modeling and fine-tuning. 

The structure of this paper includes language models architecture observation in 

Sect. 2. Word and contextual embedding techniques are described in Sect. 3 and en-

coder-decoder—in Sect. 4. Neural Networks applied as a part of encoder and decoder 

are observed in Sect. 5. Model choosing algorithm presented in Sect.6. Conclusion in 

Sect. 7 provides further promising areas of research in NLP. 

2 Common Approach of Natural Language Processing 

Downstream Tasks 

NLP downstream tasks (machine translation, sentiment analysis, question answering, 

part of speech tagging, and many more) usually are solved with some different ap-

proaches chosen for a specific task. Generally, it comes to supervised learning on task-

specific datasets, which is quite consuming in terms of research hours and computa-

tional resources. In addition to these inconveniences, systems that are built with this 

approach are very sensitive to task specifications and changes in the data distribution. 

Current trends move towards unsupervised universal models and transfer learning as 

pre-trained models with further fine-tuning. The techniques and components that are 

offered for observation in this article correspond to current trends and groundbreaking 

achievements in NLP [1]. It outlines the architectures of the state of the art pre-training 

models [2]. Everything starts with ready for training or test data. Input data runs through 

some techniques to result in word embedding [3, 4] or contextual embedding that could 

be described as multidimensional word knowledge embedding. Despite the use of the 

term word, readers should not be confused. Word embedding is a form of a vector that 

can be based on characters, subwords, words, sentences, or even longer sequences each 

of which is called a token. Contextual embedding [5] is used as input for an encoder 

which forms a context vector and forwards it to a decoder. A decoder in its turn forms 

a set of probabilities necessary to figure out an output. 



3 Word and Contextual Embedding Approaches 

For a neural network to be able to complete its task there is a necessity to provide a 

numerical token representation of input sequence. Word embedding techniques create 

vectors out of tokens. Vectors comparison results in tokens semantic similarity. Em-

bedding techniques such as GloVe and Word to vector explain the concept of modeling 

input sequence through representation [4]. 

The main idea and task are to represent and map words (documents, phrases, context, 

a piece of a word, or a character) as a vector of numbers to use probability distributions 

or likelihoods of tokens in language corpora to separate semantic similarity categories. 

Hence different words with similar meanings will have similar vectors and different by 

meaning groups of words should be separable in vector space. The underlying idea that 

“a word is characterized by the company it keeps” was popularized by Firth [2]. Cur-

rently, the area of representation of input sequence advances far ahead of initial papers 

and new approaches appear. Contextual embedding [5] creates a representation for each 

token taking into account its context, meaning getting information of a token usage in 

different contexts and encode knowledge that is transferable to some other languages. 

4 High-Level Encoder-Decoder Architecture 

The neural network encoder-decoder model significantly improved the performance of 

language models. Quite simple Recurrent Neural Network (RNN) architecture to pro-

cess input and output sequences of variable lengths was offered. The input sequence of 

words [“How,” “are,” “you,” “?”] go through the embedding layer to get numerical 

representation, after which numerical representation goes sequentially to RNN. RNN 

process input embedding sequentially (from left to right) passing to the next timestamp 

RNN hidden state calculated in the current timestamp RNN. After all inputs proceed to 

the final time stamp, the final timestamp RNN produces output representing all input 

sequences in one hidden state. This part called encoder as the main task is not to gen-

erate predictions but to encode input sequences. After encoder finishes to encode, hid-

den state passes to the decoder which task is to decode and generate predictions based 

on input hidden state. Decoder process sequentially taking as input to each current 

timestamp output activation of previous timestamp RNN and output prediction of pre-

vious timestamp RNN. For the first timestamp, it takes a beginning of sentence token 

(BOS) as a prediction of the previous layer. The decoder generates predictions until it 

generates end of sentence token (EOS, depending on implementation can be until some 

length or different parameter). 

The strongest part of this approach is the ability to train an end-to-end model right 

on the source and target data as well as the possibility to handle input and output se-

quences of different lengths. Therefore, that it resolves the problem of different lengths 

of an input and an output sequence in Neural Machine Translation. 

The encoder-decoder architecture consists of two RNNs or more often Long Short-

Term Memory (or Gated Recurrent Unit) to avoid the problem of vanishing gradient 



covered later in this article. The encoder encodes all input sequences and stores all in-

formation in context or encoder vector (in simplest architecture last hidden state used) 

that is input to decoder, which decodes by result predictions. 

5 Neural Networks for Natural Language Processing 

Tasks 

Progress in the application of Neural Networks to NLP tasks brings huge improvements 

in both science and business areas. 

5.1 Recurrent Neural Networks 

RNNs [6] is the main starting point in the deep learning NLP area. Deep neural net-

works uncover a second life for RNNs. A strong RNN advantage for the NLP area is 

that RNN can store the conditions of all cells that processed language data before se-

quentially. 

The main idea behind RNNs [7] is very simple, the network takes an input vector X 

and produces an output vector Y. Each RNN cell takes as input current xt and previous 

hidden state (activation) ht-1. It learns weights (parameters) Wh, Wx, and bias ba through 

the weights learning process. At each iteration of Forward Propagation, nonlinear acti-

vation function g such as tanh (or rarely ReLU) applied to calculate output hidden state 

(activation) ht: 

  1   . t h t x t ah g W h W x b    (1) 

If output predictions needed by task then activation function g (or softmax function) 

with learned weights Wy and bias by might be applied to current output ht to make 

output prediction yt: 

   .t y t yy g W h b    

Especially important for NLP areas is that the output vector’s contents are calculated 

not only by the one current input but based on the entire history of inputs that network 

processed in the past. RNN cells take the output of the previous cell as an input to the 

current cell, and the previous cell contains information of its previous cell and so on. 

This type of connection is called a recurrent connection. 

Despite the wide adoption, RNN possesses significant drawbacks [7]. Unidirectional 

learning leads to the problem that the model cannot rely on information from the later 

part of a sequence while working on the beginning of a sequence. For RNNs it is hard 

to capture mid and long-term connections/dependencies inside a sequence—this issue 

is known as long-range dependencies problem or Gradient Vanishing. This was a trig-

gering point to search for a solution that resulted in further useful findings like GRU 

and LSTM. 



5.2 Gated Recurrent Unit and Long Short-Term Memory 

In response to medium and long-range dependency problems researchers propose two 

architectures, with the core idea of Cell State (kind of residual connection). 

The main idea in Gated Recurrent Unit (GRU) [1, 8] is to capture long-term depend-

encies by adding Memory Cell (Ct) which in GRU is equal to hidden state (activation) 

%
1(1 ) .tt t th z h z h      And each time stamp cell considers rewriting this cell 

with Candidate Value % 1tanh( [ , ]),t t t th W r h x    using two Gates described by equa-

tions (Update Gate 1( [ , ]),t z t tz W h x    and Reset Gate 
1( [ , ])t r t tr W h x   ) as 

shown in Fig. 1. Update gate (z) takes a value between 0 and 1 (most times close to 0 

or 1), computed by application of sigmoid activation function to current timestamp in-

put xt and previous time stamp hidden state (activation) ht-1 with learned weights (pa-

rameters) Wz through the weights learning process. This Update Gate is the main deci-

sion-maker of updating the hidden state as shown in equations. Update Gate decides 

how much information from the previous timestamp should be saved for the future. 

Reset gate, on the other hand, decides how much information from the previous 

timestamp should be removed. 

These Update and Reset Gates are the key concepts behind GRU and dealing with 

dependencies problems of basic RNNs. 
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Fig. 1. A scheme of GRU cell. 

Another type of architecture that can capture mid-term dependencies, even more pow-

erfully than GRU, is Long Short-Term Memory (LSTM) [9]. In a difference to GRU 

that has two gates, LSTM possesses three gates. An important concept in LSTM is that 

Memory Cell (Ct) is not anymore equal to output hidden state (activation) ht. Output 

hidden state of the current timestamp in LSTM carry on to the next cell not alone but 

with updated Memory Cell value. 



LSTM, also, uses two separate gates (Update Gate and a Forget Gate) to update 

Memory Cell value, instead of using single Update Gate in GRU (that either keep or 

forget previous memory cell value). And instead of using Reset Gate in Candidate 

Value, it uses element-wise multiplied with Memory Cell value as shown in Fig. 2. 

Input Gate 
1( ),i i

t t ti x U h W    decides which information crucial to keep and For-

get Gate 
1( ),f f

t t tf x U h W    decides which and how much information not to keep, 

in other words, to forget (which might be intersecting or not with input gate). Input and 

Forget gates do this using previous time step hidden state ht-1 and current input xt. Both 

gates using sigmoid activation function, which gives possibility in most cases to have 

values of gates either close to 0 or 1. 

Usage of separate Update Gate and Forget Gate to calculate Memory Cell value  

𝐶𝑡 =  𝜎(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃) gives Memory Cell the possibility not only to store new 

information in the current time step Memory Cell by using Candidate Memory Cell 

(𝐶𝑡̃), but also the option to keep some amount of information from previous time step 

Memory Cell (Ct-1). Output Gate 0 0
1( ),t t to x U h W    at the end uses to calculate 

the current time step output hidden state tanh( ) ,t t th C o   based on updated Memory 

Cell value calculated before. 

The state of a cell is straight forward. It flows down the whole unit with minor linear 

changes. This is why two proposed architectures were very good at memorizing long-

term dependencies. 
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Fig. 2. A scheme of LSTM cell. 

These networks are quite consuming for computational resources. Moreover, this type 

of architecture cannot be parallelized: hence, it is very expensive to train on a big corpus 

of data. And despite the fact it works much better with longer sequences there is a 

noticeable loss in sequences with more than 20 words. Retrospectively application of 

RNN, GRU, and LSTM was the major stage in modern NLP that significantly affected 

future development of the area. 



5.3 Bidirectionality in Recurrent Neural Networks 

Additionally, there was a significant amount of work on the bidirectionality of RNN to 

provide models with the possibility to capture and use information from both earlier 

and later in the sequence. 

If to express in simple words Bidirectional RNN (BRNN) [9] is a modification to 

RNN, GRU, LSTM consists of two RNNs capturing information simultaneously in op-

posite directions and only then making predictions. BRNN has forward recurrent layer 

(component) S that takes as input current X and feeds the output to help predict current 

output Y forward in time. On the other hand, backward recurrent layer (component) 
iS   

which takes as input current X and feeds the output to help predict current output Y 

backward in. 

To construct even more powerful models researchers propose to stack units of 

RNN/LSTM/GRU. This type of architecture is called Deep RNN. The bottleneck of 

BRNN is that it needs the entire sequence of data before making any predictions. Deep 

RNN is also much more expensive in computation. All of the networks presented had 

problems in neural machine translation as the input and output sequences regularly were 

of different lengths because of different language semantics. 

5.4 Attention Concept 

The focus of researchers was the problem of long sentences (sentence contained more 

than 20 words) which cannot be stored effectively in one output vector of 

RNN/GRU/LSTM. In [11] demonstrated significant improvement of BLEU score re-

sults using attention mechanisms. As a solution to the problem, Attention Mechanism 

was proposed. 

The main intuition behind Attention is that humans do not read and memorize whole 

long sentences at once, but part by part. And for a decoder, it would be valuable to 

know while decoding (for example translation), to which part of the input sequence it 

should pay more attention. An idea of attention: at each step, the decoder focuses on 

some particular part of the source. Decoder focuses only on particular words at each 

step (increased saturation represents more attention), not on the full input sequence. 

Attention mechanism uncovers such possibility to a decoder by Attention Weights 

and Context Vector. 

In addition to BRNN (which can also be BGRU, BLSTM) Attention concept utilizes 

the idea of alignment scores and attention weights (the amount of attention decoder 

should pay while calculating current time step prediction). 

The all-time step hidden states of encoder pass with the last layer hidden state of 

encoder to the decoder. Central processing occurs in the decoder. Each time step of 

decoder, a set of features (about words and surrounding words) computes and called 

Alignment Scores 
1,( )ij i je a s h  (differences between encoder and decoder hidden 

states), which are used to calculate Attention Weights 

1

exp( )
,

x
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ij T

ij jk
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h
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 by softmax 

function. 



Context Vector 
1

,
Tx

i ij jj
c h


   is calculated for each time step of Decoding by com-

bining Attention Weights with the previous decoder outputs to be passed to decoder 
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Although amazingly, such a simple and generic architecture as bidirectional LSTM 

with attention (just a few equations and few tens lines of code) can predict (translate, 

classify) with such a great result this architecture admits mistakes and has bottlenecks 

[12]. This type of architecture cannot be parallelized—attention mechanism provided 

for sequential RNNs helped solve long-term dependencies issues by using more appro-

priate context at each step, but the problem of parallelization of computation raised 

even more. 

Additionally if to analyze the NLP area not only through the prism of translation 

where most time machines just translate sentence by sentence and focus on Natural 

Language Understanding area RNNs do not show good results in overall context un-

derstanding and modeling, especially during text generation tasks. This is exactly where 

the architecture of the transformer can do better. 

5.5 Self-Attention and Transformer 

In the paper [12] researchers from Google introduced transformer, a novel neural net-

work architecture for Language Understanding based on a self-attention mechanism. 

High-level architecture of encoder and decoder of the transformer are presented in 

Fig. 3 and described in detail below. 

The main novelty was that to build a language model there is no need for any recur-

rent (RNN) or convolutional (CNN) layers at all. Solely self-attention and feed-forward 

layers are enough. 
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Fig. 3. Encoder-decoder architecture applied in the transformer. 



The transformer includes a lot from what was described before: bidirectionality; en-

coder-decoder architecture, to support the different length of input-output; self-atten-

tion in addition to attention, researchers develop the idea of attention and presented 

self-attention in the transformer; parallelization (at least on Feed-Forward step which 

is most expensive) by completely replacing sequential computation (RNNs or Convo-

lutional based) to Attention-based network. 

The main components and concepts of this architecture will be presented and de-

scribed below. 

Encoder. The encoder consists of multiple stacked Self-Attention and Feed Forward 

layers with Residual Connections and Positional Encoder. As usual, the embedding 

layer is applied in the bottom to convert input sequence to numerical representation. 

Feed Forward Network does not have dependencies and thus can be parallelized. This 

is an important concept behind the transformer possibility to learn on a truly big amount 

of data that LSTM and GRU cannot afford.  

Self-Attention Layers help to understand the model, which parts of the input se-

quence (words) to focus on while encoding sequence. The most important novelty is 

using three vectors: Query vector, Key vector, and Value vector to create “query,” 

“key,” and “value” projection of each word in the input sentence. 

Decoder. The decoder also consists of multiple (equal to the encoder) stacked Self-

Attention, Feed Forward layers with Residual Connections, and additionally encoder-

decoder attention layer in the middle. In comparison to the encoder, Decoder’s Self-

Attention layer differs. The main idea here is Masking Future Positions. In the encoder, 

each position can attend to all positions, but in the decoder to prevent leftward infor-

mation flow to preserve the auto-regressive property, each position can attend only to 

early positions in the output sequence. 

Another important layer of the decoder is Encoder-Decoder Attention layer which 

gets outputs of the last Attention layer of the encoder as an input and uses Key and 

Value attention vectors to focus on appropriate places in the input sequence. 

6 Comparison Concepts and Architectures Usage 

Embedding. Almost everyone nowadays uses some kind of embedding technique to 

tokenize input sequences. If your task is not domain-specific, you will probably end up 

using one of the pre-trained embeddings with dimensionality (300–512). And if you 

use domain-specific tasks, the choice would be simply based on available computa-

tional resources. Starting from simple Word2Vec and Glove and moving to advanced 

Contextual embedding techniques and increased dimensionality can solve your tasks 

with high accuracy. 

Architecture. As of today, the transformer is the most powerful architecture, which 

can be trained on enormous amounts of training data with billions of parameters. It is 

clear that it is impractical to train such a big network from scratch every time, and for 

every particular task (even today, it will cost hundreds of thousands of USD and enor-

mous computational GPU power). Hence, such a big model comes as pre-trained mod-

els, which can then be fine-tuned for various scenarios and tasks. It can be achieved by 



an additional layer of neurons on the end that was not trained in the pre-training and 

train them as a part of the new model for specific tasks. 

A key advantage of models built using the transformer architecture is that it does not 

need to be trained with labeled data, so it can learn using any cleaned raw text. This 

provides the possibility to work with very big datasets and leads to even better accuracy. 

The current leaderboard in different NLP competition more and more narrowing to 

big tech corporations and not universities. That is because of the availability of compu-

tational power. On the other hand, leaderboard results and practical implementation is 

different. Even today, many production-based services use RNN (LSTM and GRU 

modifications) with attention e.g., for intent classification in widespread chatbot frame-

works. 

In Fig 4. proposed algorithm for choosing modern approach to solve business NLP 

tasks considering domain specification of task and availability of resources. Also, it is 

a good idea to compare BLSTM with Attention and Transformer based architectures 

results in terms of accuracy, consumption of resources, time to train (hence to improve), 

interpretability. 

 

Fig. 4. Algorithm for choosing a suitable NLP architecture for a business task. 

7 Conclusions and Future Work 

Significant progress was made in the last decade in the NLP area. Application of deep 

learning changed rules and uncovered new possibilities with RNNs, BLSTMs, and At-

tention. Architectures based on Transformers advances even further and show state-of-

the-art results on most of the NLP tasks. 



The introduction of deep pre-trained language models in the last couple of year’s sig-

nificant shift to transfer learning in NLP. At the same time, many of the latest ap-

proaches are too demanding in computational resources and algorithms for choosing 

the right model for the business task presented in current work. 

The authors see demand in the sentence boundary detection task. They will research 

the current area in nearest future using the algorithm provided in the current work to 

choose models and compare obtained results. 
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