
Techniques Comparison for Natural Language

Processing

Olena Iosifova1[0000-0001-6507-0761], Ievgen Iosifov1[0000-0001-6203-9945], Oleksandr Rolik2[0000-

0001-8829-4645], and Volodymyr Sokolov3[0000-0002-9349-7946]

1 Ender Turing OU, Tallinn, Estonia
{oi,ei}@enderturing.com

2 National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine
o.rolick@kpi.ua

3 Borys Grinchenko Kyiv University, Kyiv, Ukraine
v.sokolov@kubg.edu.ua

Abstract. These improvements open many possibilities in solving Natural Lan-

guage Processing downstream tasks. Such tasks include machine translation,

speech recognition, information retrieval, sentiment analysis, summarization,

question answering, multilingual dialogue systems development, and many more.

Language models are one of the most important components in solving each of

the mentioned tasks. This paper is devoted to research and analysis of the most

adopted techniques and designs for building and training language models that

show a state of the art results. Techniques and components applied in the creation

of language models and its parts are observed in this paper, paying attention to

neural networks, embedding mechanisms, bidirectionality, encoder and decoder

architecture, attention, and self-attention, as well as parallelization through using

transformer. As a result, the most promising techniques imply pre-training and

fine-tuning of a language model, attention-based neural network as a part of

model design, and a complex ensemble of multidimensional embedding to build

deep context understanding. The latest offered architectures based on these ap-

proaches require a lot of computational power for training language models, and

it is a direction of further improvement. Algorithm for choosing right model for

relevant business task provided considering current challenges and available ar-

chitectures.

Keywords: Natural Language Processing, NLP, Language Model, Embedding,

Recurrent Neural Network, RNN, Gated Recurrent Unit, GRU, Long Short-Term

Memory, LSTM, Encoder, Decoder, Attention, Transformer, Transfer Learning,

Deep Learning, Neural Network.

1 Introduction

Natural Language Processing (NLP) is computer comprehension, analysis, manipula-

tion, and generation of natural language. NLP covers many different applications like

machine translation, speech recognition, optical character recognition, part of speech

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:%7d@kubg.edu.ua

tagging, information retrieval, summarization, question answering, dialog systems

building, and many more. Since the last decade, there have been a great number of

breakthroughs towards making machines understand the language (text or voice) better

that raised enormous interest in this field of scientific research. The highest goal for all

scientists working in the area of NLP is to build such techniques that will allow com-

puters to comprehend natural language as text or voice at a human level which is not

reached yet. Once achieved, computational systems will be able to understand and gen-

erate accurate human-like language, be it a text or an audible language. This paper

analyses widespread techniques and components in building language models to give a

scientist thorough information for further research and improvement. There have been

a lot of discoveries of language models from computational linguistics scientists, and

those new techniques showed great results on specific tasks. But when it comes to the

broad spectrum of NLP tasks solved by the same language model not many show the

same high results. The recent state of the art architectures (BERT, RoBERTa, Trans-

former-XL, XLNet, etc.) leverage the following approaches: contextual embedding, bi-

directionality, encoder-decoder architecture, attention mechanism and transformer, pre-

training modeling and fine-tuning.

The structure of this paper includes language models architecture observation in

Sect. 2. Word and contextual embedding techniques are described in Sect. 3 and en-

coder-decoder—in Sect. 4. Neural Networks applied as a part of encoder and decoder

are observed in Sect. 5. Model choosing algorithm presented in Sect.6. Conclusion in

Sect. 7 provides further promising areas of research in NLP.

2 Common Approach of Natural Language Processing

Downstream Tasks

NLP downstream tasks (machine translation, sentiment analysis, question answering,

part of speech tagging, and many more) usually are solved with some different ap-

proaches chosen for a specific task. Generally, it comes to supervised learning on task-

specific datasets, which is quite consuming in terms of research hours and computa-

tional resources. In addition to these inconveniences, systems that are built with this

approach are very sensitive to task specifications and changes in the data distribution.

Current trends move towards unsupervised universal models and transfer learning as

pre-trained models with further fine-tuning. The techniques and components that are

offered for observation in this article correspond to current trends and groundbreaking

achievements in NLP [1]. It outlines the architectures of the state of the art pre-training

models [2]. Everything starts with ready for training or test data. Input data runs through

some techniques to result in word embedding [3, 4] or contextual embedding that could

be described as multidimensional word knowledge embedding. Despite the use of the

term word, readers should not be confused. Word embedding is a form of a vector that

can be based on characters, subwords, words, sentences, or even longer sequences each

of which is called a token. Contextual embedding [5] is used as input for an encoder

which forms a context vector and forwards it to a decoder. A decoder in its turn forms

a set of probabilities necessary to figure out an output.

3 Word and Contextual Embedding Approaches

For a neural network to be able to complete its task there is a necessity to provide a

numerical token representation of input sequence. Word embedding techniques create

vectors out of tokens. Vectors comparison results in tokens semantic similarity. Em-

bedding techniques such as GloVe and Word to vector explain the concept of modeling

input sequence through representation [4].

The main idea and task are to represent and map words (documents, phrases, context,

a piece of a word, or a character) as a vector of numbers to use probability distributions

or likelihoods of tokens in language corpora to separate semantic similarity categories.

Hence different words with similar meanings will have similar vectors and different by

meaning groups of words should be separable in vector space. The underlying idea that

“a word is characterized by the company it keeps” was popularized by Firth [2]. Cur-

rently, the area of representation of input sequence advances far ahead of initial papers

and new approaches appear. Contextual embedding [5] creates a representation for each

token taking into account its context, meaning getting information of a token usage in

different contexts and encode knowledge that is transferable to some other languages.

4 High-Level Encoder-Decoder Architecture

The neural network encoder-decoder model significantly improved the performance of

language models. Quite simple Recurrent Neural Network (RNN) architecture to pro-

cess input and output sequences of variable lengths was offered. The input sequence of

words [“How,” “are,” “you,” “?”] go through the embedding layer to get numerical

representation, after which numerical representation goes sequentially to RNN. RNN

process input embedding sequentially (from left to right) passing to the next timestamp

RNN hidden state calculated in the current timestamp RNN. After all inputs proceed to

the final time stamp, the final timestamp RNN produces output representing all input

sequences in one hidden state. This part called encoder as the main task is not to gen-

erate predictions but to encode input sequences. After encoder finishes to encode, hid-

den state passes to the decoder which task is to decode and generate predictions based

on input hidden state. Decoder process sequentially taking as input to each current

timestamp output activation of previous timestamp RNN and output prediction of pre-

vious timestamp RNN. For the first timestamp, it takes a beginning of sentence token

(BOS) as a prediction of the previous layer. The decoder generates predictions until it

generates end of sentence token (EOS, depending on implementation can be until some

length or different parameter).

The strongest part of this approach is the ability to train an end-to-end model right

on the source and target data as well as the possibility to handle input and output se-

quences of different lengths. Therefore, that it resolves the problem of different lengths

of an input and an output sequence in Neural Machine Translation.

The encoder-decoder architecture consists of two RNNs or more often Long Short-

Term Memory (or Gated Recurrent Unit) to avoid the problem of vanishing gradient

covered later in this article. The encoder encodes all input sequences and stores all in-

formation in context or encoder vector (in simplest architecture last hidden state used)

that is input to decoder, which decodes by result predictions.

5 Neural Networks for Natural Language Processing

Tasks

Progress in the application of Neural Networks to NLP tasks brings huge improvements

in both science and business areas.

5.1 Recurrent Neural Networks

RNNs [6] is the main starting point in the deep learning NLP area. Deep neural net-

works uncover a second life for RNNs. A strong RNN advantage for the NLP area is

that RNN can store the conditions of all cells that processed language data before se-

quentially.

The main idea behind RNNs [7] is very simple, the network takes an input vector X

and produces an output vector Y. Each RNN cell takes as input current xt and previous

hidden state (activation) ht-1. It learns weights (parameters) Wh, Wx, and bias ba through

the weights learning process. At each iteration of Forward Propagation, nonlinear acti-

vation function g such as tanh (or rarely ReLU) applied to calculate output hidden state

(activation) ht:

  1 . t h t x t ah g W h W x b   (1)

If output predictions needed by task then activation function g (or softmax function)

with learned weights Wy and bias by might be applied to current output ht to make

output prediction yt:

   .t y t yy g W h b 

Especially important for NLP areas is that the output vector’s contents are calculated

not only by the one current input but based on the entire history of inputs that network

processed in the past. RNN cells take the output of the previous cell as an input to the

current cell, and the previous cell contains information of its previous cell and so on.

This type of connection is called a recurrent connection.

Despite the wide adoption, RNN possesses significant drawbacks [7]. Unidirectional

learning leads to the problem that the model cannot rely on information from the later

part of a sequence while working on the beginning of a sequence. For RNNs it is hard

to capture mid and long-term connections/dependencies inside a sequence—this issue

is known as long-range dependencies problem or Gradient Vanishing. This was a trig-

gering point to search for a solution that resulted in further useful findings like GRU

and LSTM.

5.2 Gated Recurrent Unit and Long Short-Term Memory

In response to medium and long-range dependency problems researchers propose two

architectures, with the core idea of Cell State (kind of residual connection).

The main idea in Gated Recurrent Unit (GRU) [1, 8] is to capture long-term depend-

encies by adding Memory Cell (Ct) which in GRU is equal to hidden state (activation)

%
1(1) .tt t th z h z h     And each time stamp cell considers rewriting this cell

with Candidate Value % 1tanh([,]),t t t th W r h x   using two Gates described by equa-

tions (Update Gate 1([,]),t z t tz W h x   and Reset Gate
1([,])t r t tr W h x  ) as

shown in Fig. 1. Update gate (z) takes a value between 0 and 1 (most times close to 0

or 1), computed by application of sigmoid activation function to current timestamp in-

put xt and previous time stamp hidden state (activation) ht-1 with learned weights (pa-

rameters) Wz through the weights learning process. This Update Gate is the main deci-

sion-maker of updating the hidden state as shown in equations. Update Gate decides

how much information from the previous timestamp should be saved for the future.

Reset gate, on the other hand, decides how much information from the previous

timestamp should be removed.

These Update and Reset Gates are the key concepts behind GRU and dealing with

dependencies problems of basic RNNs.

tanh

ht

zt

xt



1-

Reset

gate

ht
~

Update

gate

ht-1

rt

GRU cell

Fig. 1. A scheme of GRU cell.

Another type of architecture that can capture mid-term dependencies, even more pow-

erfully than GRU, is Long Short-Term Memory (LSTM) [9]. In a difference to GRU

that has two gates, LSTM possesses three gates. An important concept in LSTM is that

Memory Cell (Ct) is not anymore equal to output hidden state (activation) ht. Output

hidden state of the current timestamp in LSTM carry on to the next cell not alone but

with updated Memory Cell value.

LSTM, also, uses two separate gates (Update Gate and a Forget Gate) to update

Memory Cell value, instead of using single Update Gate in GRU (that either keep or

forget previous memory cell value). And instead of using Reset Gate in Candidate

Value, it uses element-wise multiplied with Memory Cell value as shown in Fig. 2.

Input Gate
1(),i i

t t ti x U h W   decides which information crucial to keep and For-

get Gate
1(),f f

t t tf x U h W   decides which and how much information not to keep,

in other words, to forget (which might be intersecting or not with input gate). Input and

Forget gates do this using previous time step hidden state ht-1 and current input xt. Both

gates using sigmoid activation function, which gives possibility in most cases to have

values of gates either close to 0 or 1.

Usage of separate Update Gate and Forget Gate to calculate Memory Cell value

𝐶𝑡 = 𝜎(𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃) gives Memory Cell the possibility not only to store new

information in the current time step Memory Cell by using Candidate Memory Cell

(𝐶𝑡̃), but also the option to keep some amount of information from previous time step

Memory Cell (Ct-1). Output Gate 0 0
1(),t t to x U h W   at the end uses to calculate

the current time step output hidden state tanh() ,t t th C o  based on updated Memory

Cell value calculated before.

The state of a cell is straight forward. It flows down the whole unit with minor linear

changes. This is why two proposed architectures were very good at memorizing long-

term dependencies.

tanh

ht

it

Xt



Foget

gate

Input

gate

Ct-1

ft

LSTM cell

Ct
~



tanh

ht

Ct

Output

gate

ht-1

Fig. 2. A scheme of LSTM cell.

These networks are quite consuming for computational resources. Moreover, this type

of architecture cannot be parallelized: hence, it is very expensive to train on a big corpus

of data. And despite the fact it works much better with longer sequences there is a

noticeable loss in sequences with more than 20 words. Retrospectively application of

RNN, GRU, and LSTM was the major stage in modern NLP that significantly affected

future development of the area.

5.3 Bidirectionality in Recurrent Neural Networks

Additionally, there was a significant amount of work on the bidirectionality of RNN to

provide models with the possibility to capture and use information from both earlier

and later in the sequence.

If to express in simple words Bidirectional RNN (BRNN) [9] is a modification to

RNN, GRU, LSTM consists of two RNNs capturing information simultaneously in op-

posite directions and only then making predictions. BRNN has forward recurrent layer

(component) S that takes as input current X and feeds the output to help predict current

output Y forward in time. On the other hand, backward recurrent layer (component)
iS 

which takes as input current X and feeds the output to help predict current output Y

backward in.

To construct even more powerful models researchers propose to stack units of

RNN/LSTM/GRU. This type of architecture is called Deep RNN. The bottleneck of

BRNN is that it needs the entire sequence of data before making any predictions. Deep

RNN is also much more expensive in computation. All of the networks presented had

problems in neural machine translation as the input and output sequences regularly were

of different lengths because of different language semantics.

5.4 Attention Concept

The focus of researchers was the problem of long sentences (sentence contained more

than 20 words) which cannot be stored effectively in one output vector of

RNN/GRU/LSTM. In [11] demonstrated significant improvement of BLEU score re-

sults using attention mechanisms. As a solution to the problem, Attention Mechanism

was proposed.

The main intuition behind Attention is that humans do not read and memorize whole

long sentences at once, but part by part. And for a decoder, it would be valuable to

know while decoding (for example translation), to which part of the input sequence it

should pay more attention. An idea of attention: at each step, the decoder focuses on

some particular part of the source. Decoder focuses only on particular words at each

step (increased saturation represents more attention), not on the full input sequence.

Attention mechanism uncovers such possibility to a decoder by Attention Weights

and Context Vector.

In addition to BRNN (which can also be BGRU, BLSTM) Attention concept utilizes

the idea of alignment scores and attention weights (the amount of attention decoder

should pay while calculating current time step prediction).

The all-time step hidden states of encoder pass with the last layer hidden state of

encoder to the decoder. Central processing occurs in the decoder. Each time step of

decoder, a set of features (about words and surrounding words) computes and called

Alignment Scores
1,()ij i je a s h (differences between encoder and decoder hidden

states), which are used to calculate Attention Weights

1

exp()
,

x

ij
ij T

ij jk

e

h


 


 by softmax

function.

Context Vector
1

,
Tx

i ij jj
c h


  is calculated for each time step of Decoding by com-

bining Attention Weights with the previous decoder outputs to be passed to decoder

RNN

1

exp(score(,))
.

exp(score(,))
s

st
t S

st

s

h h

h h 



 



Although amazingly, such a simple and generic architecture as bidirectional LSTM

with attention (just a few equations and few tens lines of code) can predict (translate,

classify) with such a great result this architecture admits mistakes and has bottlenecks

[12]. This type of architecture cannot be parallelized—attention mechanism provided

for sequential RNNs helped solve long-term dependencies issues by using more appro-

priate context at each step, but the problem of parallelization of computation raised

even more.

Additionally if to analyze the NLP area not only through the prism of translation

where most time machines just translate sentence by sentence and focus on Natural

Language Understanding area RNNs do not show good results in overall context un-

derstanding and modeling, especially during text generation tasks. This is exactly where

the architecture of the transformer can do better.

5.5 Self-Attention and Transformer

In the paper [12] researchers from Google introduced transformer, a novel neural net-

work architecture for Language Understanding based on a self-attention mechanism.

High-level architecture of encoder and decoder of the transformer are presented in

Fig. 3 and described in detail below.

The main novelty was that to build a language model there is no need for any recur-

rent (RNN) or convolutional (CNN) layers at all. Solely self-attention and feed-forward

layers are enough.

Feed Forward

Encoder

Decoder

Encoder-Decoder Attention

Feed Forward

Self-Attention

Self-Attention

Fig. 3. Encoder-decoder architecture applied in the transformer.

The transformer includes a lot from what was described before: bidirectionality; en-

coder-decoder architecture, to support the different length of input-output; self-atten-

tion in addition to attention, researchers develop the idea of attention and presented

self-attention in the transformer; parallelization (at least on Feed-Forward step which

is most expensive) by completely replacing sequential computation (RNNs or Convo-

lutional based) to Attention-based network.

The main components and concepts of this architecture will be presented and de-

scribed below.

Encoder. The encoder consists of multiple stacked Self-Attention and Feed Forward

layers with Residual Connections and Positional Encoder. As usual, the embedding

layer is applied in the bottom to convert input sequence to numerical representation.

Feed Forward Network does not have dependencies and thus can be parallelized. This

is an important concept behind the transformer possibility to learn on a truly big amount

of data that LSTM and GRU cannot afford.

Self-Attention Layers help to understand the model, which parts of the input se-

quence (words) to focus on while encoding sequence. The most important novelty is

using three vectors: Query vector, Key vector, and Value vector to create “query,”

“key,” and “value” projection of each word in the input sentence.

Decoder. The decoder also consists of multiple (equal to the encoder) stacked Self-

Attention, Feed Forward layers with Residual Connections, and additionally encoder-

decoder attention layer in the middle. In comparison to the encoder, Decoder’s Self-

Attention layer differs. The main idea here is Masking Future Positions. In the encoder,

each position can attend to all positions, but in the decoder to prevent leftward infor-

mation flow to preserve the auto-regressive property, each position can attend only to

early positions in the output sequence.

Another important layer of the decoder is Encoder-Decoder Attention layer which

gets outputs of the last Attention layer of the encoder as an input and uses Key and

Value attention vectors to focus on appropriate places in the input sequence.

6 Comparison Concepts and Architectures Usage

Embedding. Almost everyone nowadays uses some kind of embedding technique to

tokenize input sequences. If your task is not domain-specific, you will probably end up

using one of the pre-trained embeddings with dimensionality (300–512). And if you

use domain-specific tasks, the choice would be simply based on available computa-

tional resources. Starting from simple Word2Vec and Glove and moving to advanced

Contextual embedding techniques and increased dimensionality can solve your tasks

with high accuracy.

Architecture. As of today, the transformer is the most powerful architecture, which

can be trained on enormous amounts of training data with billions of parameters. It is

clear that it is impractical to train such a big network from scratch every time, and for

every particular task (even today, it will cost hundreds of thousands of USD and enor-

mous computational GPU power). Hence, such a big model comes as pre-trained mod-

els, which can then be fine-tuned for various scenarios and tasks. It can be achieved by

an additional layer of neurons on the end that was not trained in the pre-training and

train them as a part of the new model for specific tasks.

A key advantage of models built using the transformer architecture is that it does not

need to be trained with labeled data, so it can learn using any cleaned raw text. This

provides the possibility to work with very big datasets and leads to even better accuracy.

The current leaderboard in different NLP competition more and more narrowing to

big tech corporations and not universities. That is because of the availability of compu-

tational power. On the other hand, leaderboard results and practical implementation is

different. Even today, many production-based services use RNN (LSTM and GRU

modifications) with attention e.g., for intent classification in widespread chatbot frame-

works.

In Fig 4. proposed algorithm for choosing modern approach to solve business NLP

tasks considering domain specification of task and availability of resources. Also, it is

a good idea to compare BLSTM with Attention and Transformer based architectures

results in terms of accuracy, consumption of resources, time to train (hence to improve),

interpretability.

Fig. 4. Algorithm for choosing a suitable NLP architecture for a business task.

7 Conclusions and Future Work

Significant progress was made in the last decade in the NLP area. Application of deep

learning changed rules and uncovered new possibilities with RNNs, BLSTMs, and At-

tention. Architectures based on Transformers advances even further and show state-of-

the-art results on most of the NLP tasks.

The introduction of deep pre-trained language models in the last couple of year’s sig-

nificant shift to transfer learning in NLP. At the same time, many of the latest ap-

proaches are too demanding in computational resources and algorithms for choosing

the right model for the business task presented in current work.

The authors see demand in the sentence boundary detection task. They will research

the current area in nearest future using the algorithm provided in the current work to

choose models and compare obtained results.

References

1. Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural ma-

chine translation: Encoder–decoder approaches. In SSST-8, Eighth Workshop on Syntax,

Semantics and Structure in Statistical Translation: 103–111 (2014). https://doi.org/10.3115/

v1/w14-4012

2. Firth, J. R.: A Synopsis of Linguistic Theory, 1930–1955 (1957).

3. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP): 1532–

1543 (2014). https://doi.org/1010.3115/v1/d14-1162

4. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations

in vector space. In First International Conference on Learning Representations: 1–13 (2013).

http://arxiv.org/abs/1301.3781

5. Peters, M., et al.: Deep contextualized word representations. In 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies 1: 2227–2237 (2018). https://doi.org/10.18653/v1/n18-1202

6. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating er-

rors. Nat. 323(6088): 533–536 (1986). https://doi.org/10.1038/323533a0

7. Goodfellow, I., Bengio, Y., Courville, A.: Sequence modeling: recurrent and recursive nets,

Deep Learning: 367–415 (2016).

8. Chung, J., Gulcehre, С., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural

networks on sequence modeling. In NIPS 2014 Workshop on Deep Learning and Represen-

tation Learning: 1–9 (2014). http://arxiv.org/abs/1412.3555

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8): 1735–

1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

10. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. In IEEE Transactions on

Signal Processing 45(11): 2673–2681 (1997). https://doi.org/10.1109/78.650093

11. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align

and translate. In International Conference on Learning Representations (ICLR): 1–15

(2015). http://arxiv.org/abs/1409.0473

12. Vaswani, A., et al.: Attention is all you need. In Advances in Neural Information Processing

Systems 30: 5998–6008 (2017). http://arxiv.org/abs/1706.03762

http://arxiv.org/abs/1706.03762

