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Abstract. This project is based on the data set that comprises several sensor da-

ta collected from a PMSM deployed on a test bench. The PMSM represents a 

German OEM’s prototype model. The LEA department at Padeborn University 

collected test bench measurement. The main purpose of the data set's recording 

is to be able to model the stator and rotor temperatures of a PMSM in real-time. 

Due to the intricate structure of an electric traction drive, direct measurement 

with thermal sensors is not possible for rotor temperatures, and even in case of 

the stator temperatures, sensor outage or even just deterioration cannot adminis-

ter properly without redundant modelling. In addition, precise thermal model-

ling gets more and more important with the rising relevance of functional safe-

ty. The main task in this project is to design a model with appropriate feature 

engineering that estimates four target temperatures casually. 
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1 Introduction 

Article purpose is predicted the temperature of a synchronous motor with a permanent 

magnet using machine-learning methods [1-6]. Object of research is permanent-

magnet synchronous motor (PMSM). Subject of research is forecasting the tempera-

ture of a synchronous motor with a permanent magnet using machine-learning meth-

ods based on a data set containing sensory data collected from PMSM placed on a test 

bench. PMSM is a German prototype model of OBO. The LEA department of the 

University of Paderborn assembled the measuring stand. The main task in this work is 
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to develop a model that predicts four target temperatures (permanent magnet surface, 

stator yoke, stator teeth and stator winding) at random. The main difference between a 

synchronous motor with permanent magnets and an induction motor is the rotor. In-

vestigations presented in [1-6] show that PMSM is approximately 2% more efficient 

than a premium-efficiency induction motor (IE3), where provided that the stator has 

the same design and the same variable frequency drive is used for control. In this 

case, PMSM has the best performance compared to other electric motors, which 

makes the PMSM study relevant today. 

Having accurate engine temperature estimates helps the automotive industry pro-

duce engines with lower material content and enables management strategies to use 

the engine to its maximum potential. 

An electric motor with implicit poles has equal inductance along the longitudinal 

and transverse axes, whereas an electric motor with explicit poles has a transverse 

inductance not equal to the longitudinal one [1, 7-12]. Also, on a design of a rotor of 

PMSM divide into such ones: 

 Electric motor with surface installation of permanent magnets. 

 Electric motor with built-in (incorporated) magnets. 

PMSM cannot started when directly connected to the network. To do this, the fol-

lowing options are used: 

 Start with an additional engine. To do this, the shaft is connected to the shaft of 

another electric machine. This method is expensive and practically not used; 

 Start in asynchronous mode. The rotors of such electric motors have a short-

circuited winding. The start-up takes place in asynchronous mode. After entering 

the synchronization, the rotor winding is disconnected; 

 Start with a frequency converter. The frequency converter is included in the stator 

winding circuit and supplies voltage to them by gradually increasing the frequency. 

2 Literature Review 

The study of a permanent magnet synchronous motor is conducted in the laboratory of 

the University of Paderborn, where the following results are presented in [2-5]: 

 Determination of rotor temperature for the inner part of the PMSM using an accu-

rate flow monitor [2]. This investigation presents an extended method for deter-

mining the temperature of the PMSM rotor during dynamic operations. The ap-

proach is based on the observed flow of the main wave and therefore largely does 

not depend on the conditions of the coolant. The measurement results prove satis-

factory results of the observer's device [2]. 

 Real-time methods for determining the temperature of PMSM [3]. The authors of 

[3] believe the PMSM is widely used in automotive traction drives with high oper-

ation and other industrial areas. The temperature of the magnet is of great interest 

in the service life of the device, safe operation and monitoring. Since direct meas-

urement of the magnet temperature is not possible in most cases, this contribution 



provides an overview of modern methods for determining the magnet temperature 

based on the model in the PMSM. This publication provides brief descriptions of 

these methods, followed by a direct comparison of the disadvantages and ad-

vantages, culminating in the prospect of further research in this area [3]. 

 Synthesis of methods of direct and indirect temperature estimation for PMSM [4]. 

Maximizing the degree of thermal use of PMSM reduces the weight, volume and 

cost of the engine. For this reason, real-time temperature information is required. 

However, this cannot obtain solely by measuring sensors due to costs and design 

flaws. Thus, in recent years, several methods of direct temperature modelling have 

investigated, such as heat networks with concentrated parameters (LPTN), as well 

as methods of indirect temperature estimation based on accurate models of electric 

motors that detect changes in temperature-sensitive parameters. Because these 

methods are usually independent of each other, fusion methods can used to in-

crease the accuracy and reliability of the joint assessment. In this study, a Kalman 

filter (KF) is successfully combined with a low-order LPTN, an electric model 

permanent magnet temperature monitor, and a built-in winding temperature sensor 

to achieve this goal. Measurement results for PMSM with a capacity of 50 kW 

confirm the increased productivity of KF in comparison with individual assessment 

methods [4]. 

 Deep residual convolutional and recurrent neural networks for temperature estima-

tion in PMSM [5]. Most traction drive applications that use PMSM do not have 

precise temperature control capabilities, so safe operation is ensured by expensive, 

oversized materials and their efficient use. In this paper, deep recurrent and convo-

lutional neural networks with residual connections are empirically evaluated for 

their applicability to solve the problem of sequential learning of the forecast of la-

tent high-dynamic temperatures inside the SPDM. The search for the model hyper 

parameter is performed sequentially using Bayesian optimization on different cores 

of the random number generator in order to assess the consistency of model learn-

ing and probabilistic search of promising topologies, as well as optimization strate-

gies. It is found that the root mean square error and normal characteristics of 

trained neural networks correspond to the established methods of real-time model-

ling, such as thermal networks with concentrated parameters, without requiring for 

their design special knowledge in the field [5]. 

To implement the main task of this study, the method of machine learning Random 

Forest is chosen [13-21]. 

Random forest is an ensemble machine learning method for classification, regres-

sion, and other tasks that operate by constructing numerous decision-making trees 

during model training and producing fashion for classes (classifications) or averaged 

prediction (regression) of constructed trees [22-29]. The algorithm combines two 

main ideas: the Braiman method of begging and the method of random subspaces 

proposed by Хо. Advantages of the Random Forest method [30-38]: 

 High quality of the received models, in comparison with SVM and boosting, and 

much better, than at neural networks; 

 Ability to efficiently process data with numerous characteristics and classes; 



 Insensitivity to scaling (and in general to any monotonous transformations) of val-

ues of signs. 

 Both continuous and discrete features are treated equally well. There are methods 

of constructing trees according to data with omitted values of features. 

 High scalability of the method. 

Disadvantages of the Random Forest method [39-48]: 

 The algorithm tends to relearn on some tasks, especially with a lot of noise in the 

data set; 

 Learning large numbers of deep trees can be costly (but can be parallel) and use a 

lot of memory. 

3 Data Set Description 

This study uses a data set that contains sensory data collected from the PMSM placed 

on a test bench. PMSM is a German prototype model from the original equipment 

manufacturer. The LEA department of the University of Paderborn assembled the 

measuring stand. The main purpose of recording a data set is to be able to simulate the 

temperature of the stator and rotor of the SPD in real time. Due to the complex design 

of the traction drive, direct measurement of the rotor temperature by thermal sensors 

is not possible, increase in stator temperature, sensor shutdown or even simply deteri-

oration of the quality of work cannot properly monitor without excessive simulation. 

In addition, accurate thermal modelling is becoming increasingly important with the 

importance of functional safety. The main features of the selected data set are the next 

ones: 

 ambient - The ambient temperature is measured by a temperature sensor located 

close to the stator; 

 coolant - The temperature of the coolant. The motor is cooled by water. The meas-

urement is performed at the outflow of water; 

 u_d - Voltage of the d-component; 

 u_q - Q-component voltage; 

 motor_speed - Engine speed; 

 torque - Torque induced by current; 

 i_d - Current d-component; 

 i_q - Current of the q-component; 

 profile_ID - Each measurement session has a unique identifier. 

Target features of the selected data set are the next ones: 

 pm – The surface temperature of the permanent magnet, which is the temperature 

of the Rotor; 

 stator_yoke – The stator yoke temperature is measured using a temperature sensor; 

 stator_tooth – The temperature of the stator teeth is measured using a temperature 

sensor; 



 stator_winding – The temperature of the stator winding is measured using a tem-

perature sensor. 

Additional information about the data set are the next ones: 

 All recordings are selected at a frequency of 2 Hz (One row in 0.5 seconds). The 

data set consists of several measurement sessions, which can distinguished from 

each other by the column "profile_id". The measurement session can last from one 

to six hours. The number of sessions: 52. 

 The engine is accelerated by manually designed driving cycles, indicating the ref-

erence engine speed and reference torque. 

 Currents in the d / q coordinates (columns “i_d” and “i_q”) and voltages in the 

coordinates d / q (columns “u_d” and “u_q”) are the result of a standard control 

strategy that tries to follow the reference speed and torque. 

 The columns “motor_speed” and “torque” are the resulting values achieved by this 

strategy, obtained from the specified currents and voltages. 

 Most motion cycles denote random wanderings in the velocity-torque plane to 

simulate real motion cycles more accurately than constant excitements and difficul-

ties. 

Given that, the main task of this project is to develop a model that predicts the tem-

perature values of such SPDM elements as stator and rotor according to already col-

lected sensory data from the SPD prototype model, this project should not consider as 

a development of a global SPD control system in cars or other mechanisms. It is bet-

ter to consider it as a part of this system (hereinafter: component), which is responsi-

ble for predicting stator and rotor temperatures using sensor data from other elements 

of PMSM, because to obtain data from stator or rotor using temperature sensors is 

unreliable and commercially unprofitable.  

The following are two UML diagrams, namely an activity diagram that describes 

the process of the machine-learning model and a sequence diagram that describes the 

interaction between the control system and the model [10-17] (Fig. 1-2). 

This diagram on Fig. 1-2 shows the following activities [18-23]: 

 Receiving a request from the system to learn the model - the system sends a re-

quest to the component of learning the model. 

 Getting data for model training - the component receives data from PMSM sensors 

for training. 

 Conducting model training - machine learning model training is performed using 

the obtained data. 

 Saving the trained model - after completion of training the model is saved. 

 Receiving a request from the system for forecasting - the system sends a request 

for forecasting the model. 

 Predicting - using the model, the stator temperature values are predicted. 

 Sending the forecast result to the system - the forecast results are sent back to the 

system. 



 Expecting new requests from the system - the component expects new requests to 

learn the model or predict temperature values. 

 

Fig. 1. Activity diagram 

The control system sends a request to the component responsible for sensors on the 

PMSM for data; this component reads data from the sensors and sends data to the 

control system. The control system requests model training and sends sensor data 

from the component responsible for the model (hereinafter: CM). The CM performs 

Random Forest Regression model training and stores the trained model, then sends a 

message to the model control system ready for forecasting. 



 

Fig. 2. Sequence diagram. 

4 Case Study 

4.1 Obtained Results Implementation and Analysis Description 

Fig. 3 shows upload data to the format pandas dataframe: 

 

Fig. 3. The first ten lines of the data set. 



Fig. 4 shows checking the dataset for NaN (empty) values: 

 

Fig. 4. The number of NaN values for each feature of the data set. 

Fig. 5-6 show descriptions of the features of the data set. 

 

Fig. 5. Description of the features of the data set (part 1). 

 

Fig. 6. Description of the features of the data set (part 2). 

Features described above: 

 Count is reported the number of non-empty rows in the column. 

 Mean is reported as the average value of the data in the column. 

 Std specifies the default value of the data deviation in the column. 

 Min is reported as the minimum value of data in the column. 

 25%, 50%, and 75% are represent the percentile/quartile of each sign. 



 Max is reported as the maximum value in the column. 

Fig. 7 shows swing charts for all signs. Fig. 8 shows the correlation matrix. 

 

Fig. 7. Swing charts for signs. 

 

Fig. 8. Correlation matrix of features. 



A list of all test runs(profile_id) is presented in Fig.9.  

 

Fig. 9. List of test runs or profile_id values. 

After studying the data set, the following conclusions can be drawn: 

 The data set does not contain NaN values; 

 Indicators for test cycles are not incremental. 

 The description of the data set does not provide references to the units of meas-

urement used for each of the samples, which complicates the interpretation of the 

measured values. 

 A statistical review of the data set and histograms shows that the data set already 

has some normalization. 

 As is already known, the ambient temperature is measured by a thermal sensor 

located close to the stator. Therefore, it can be assumed that this will affect the 

ability of the motor to cool itself. Higher ambient temperatures are likely to in-

crease the temperature for both the motor stator and the rotor. 

 The correlation matrix shows that there is a significant correlation between three 

different stator temperatures. 

4.2 The Predicted Sign Determination 

As mentioned above, there is a significant correlation between the temperature of the 

stator winding, the stator yoke, and the stator teeth. This is, of course, because the 

stator winding is wound around the stator tooth, which in turn is connected to the 

stator yoke. For better understand the relationship between the three traits, we plot the 

values of the traits for different randomly selected test cycles. 

 

Fig. 10. Graphs of values of stator temperature signs for profile id: 74. 



 

Fig. 11. Graphs of values of stator temperature signs for profile id: 70. 

 

Fig. 12. Graphs of values of stator temperature signs for profile id: 46. 

 

Fig. 13. Graphs of values of stator temperature signs for profile id: 72. 



 

Fig. 14. Graphs of values of stator temperature signs for profile id: 75. 

 

Fig. 15. Graphs of values of stator temperature signs for profile id: 56. 

 

Fig. 16. Graphs of values of stator temperature signs for profile id: 11. 



 

Fig. 17. Graphs of values of stator temperature signs for profile id: 62. 

These line charts show that all three temperatures correspond to the same trend. The 

temperature of the stator winding shows the largest changes, followed by the tempera-

ture of the stator teeth and the stator yoke. This is especially noticeable in those dia-

grams where the stator winding temperature varies greatly. In this case, the tempera-

ture of the tooth and the stator yoke increases and decreases more smoothly compared 

to the temperature recorded on the stator winding. In other words, the heat dissipated 

by the stator windings requires some time to heat the teeth and the stator yoke due to 

the thermal inertia of both parts of the stator. 

The second observation that can made from these line diagrams is that sometimes 

the stator yoke temperature is higher than the stator winding. Nor can we determine 

whether this is related to the normalization method used previously mentioned, or 

whether these values represent higher temperatures measured per stator yoke. 

Line diagrams for comparing stator temperatures with torque and motor speed are 

presented in Fig.18-21. 

 

Fig. 18. Graph of stator yoke temperature change for profile_id: 6. 



 

Fig. 19. Graph of stator teeth temperature change for profile_id: 6. 

 

Fig. 20. Graph of stator winding temperature change for profile_id: 6. 

 

Fig. 21. Graph of changes in torque and engine speed for profile_id: 6. 

In the second part of the above test cycle, you can see that there is a relationship be-

tween stator temperature, torque, and motor speed. With increasing torque and/or 

engine speed, the stator temperature increases, and vice versa decreases with decreas-

ing. However, look at the first part of the test run; it is clear that this dependence is 

not always fulfilled. Even at constant torque and motor speed, the stator winding tem-



perature shows several sudden temperature changes. One or more other variables 

affect the stator temperature more significantly than torque and motor speed. 

4.3 Stator Winding Temperature Prediction 

Since the measurement of torque, rotor, and stator temperature of an electric motor is 

not reliable and economically feasible in commercial programs, we will predict the 

stator temperature using other available functions in the data set. To do this, remove 

the torque, rotor and stator temperature from this data set, and use the stator winding 

temperature as the target value. After that, we train the Random Forest Regressor 

model to predict the correct stator winding temperature as the output value for the 

specified input variables. Input variables are:  

 Ambient temperature; 

 Coolant temperature; 

 Voltage of the d-component (u_d); 

 Q-component voltage (u_q); 

 Engine speed (motor_speed); 

 D-component current (i_d); 

 The current of the q-component (i_q). 

Target variable: stator winding temperature (stator_winding). Rejectable variables 

are: 

 Engine torque; 

 Rotor temperature (pm); 

 Stator yoke temperature (stator_yoke); 

 Stator teeth temperature (stator_tooth). 

At the end of the model learning process, the values of the Mean Absolute Error 

(MAE) and the Mean Square Error (MSE) are calculated. 

The MAE is a loss function used for regression. Loss is the average value for the 

absolute differences between true and predicted values, deviations in any direction 

from the true values are treated the same. The MAE for this model 

is: . 

The MSE, like the MAE too, treats the deviation in any direction the same. The 

difference between MSE and MAE is that MSE is more likely to notice large errors 

because it squares all errors. The closer the values of MAE and MSE to zero, the 

closer the predicted values of the algorithm to the true ones. Comparing diagrams of 

the predicted and true values of several test runs are shown in Fig.22-25. 



 

Fig. 22. Comparing diagram of predicted and true values for profile_id: 27. 

 

Fig. 23. Comparing diagram of predicted and true values for profile_id: 45. 

 

Fig. 24. Comparing diagram of predicted and true values for profile_id: 60. 



 

Fig. 25. Comparing diagram of predicted and true values for profile_id: 74. 

In these comparing diagrams, it can seen that the model is able to capture the global 

trend in the stator winding values, but there is still a lot of noise in the predicted val-

ues, especially when the true signal shows a large number of changes. To filter the 

noise generated by the model, apply the smoothing method to the output signal. MSE 

and MAE values and linear diagram of the output signal for test run id_72 without 

smoothing:  

 

Fig. 26. Comparing diagram of predicted and true values for profile_id: 72, without smoothing. 

MSE and MAE values and linear diagram of the output signal for test run id_72 with 

smoothing:  

 

Fig. 27. Comparing diagram predicted and true values for profile_id: 72, with smoothing. 



In combination with smoothing, the Random Forest Regressor performs a fairly accu-

rate prediction of the stator winding temperature. Smoothing reduced the noise level 

in the predicted values and had a positive effect on MSE for this particular technolo-

gy. 

4.4 The accuracy of Random Forest Compared to Other Algorithms and the 

Learning Time of the Algorithm on Different PCs. 

Let's compare Random Forest with such algorithms as k-NN, SVM, and linear regres-

sion. 

The figures below show the following characteristics: model training time in sec-

onds, model accuracy for test set, MSE and MAE for test set. 

    

Fig. 28. Characteristics of the Random Forest model.  Fig. 29. Characteristics of the k-NN model. 

   

Fig. 30. Characteristics of the Linear Regression model.  Fig. 31. SVM model characteristics. 

The following are line graphs of several randomly selected test cycles depicting the 

models described above colours: black - original data, red - data predicted by Random 

Forest method, blue - data predicted by k-NN method, green - data predicted by SVM 

method, purple - data predicted by Linear Regression method. 



 

Fig. 32. Comparing diagram of predicted and true values: profile_id: 6. 

 

Fig. 33. Comparing diagram of predicted and true values: profile_id: 44. 

 

Fig. 34. Comparing diagram of predicted and true values. profile_id: 69. 



 

Fig. 35. Comparing diagram of predicted and true values: profile_id: 81. 

 

Fig. 36. Part of the comparing diagram of predicted and true values: profile_id: 81. 

Also, compare the work Random Forest method on different PCs. Below is a table of 

components of these PCs (Table 1) and a picture of the characteristics of the robots of 

the Random Forest method on these PCs. 

Table 1. Table of PC components. 

 PC 1 PC 2 PC3 

CPU name AMD FX-8350 Intel Core i3-6006U AMD A8-7050 

CPU cores 8 2 4 

CPU threads 8 4 4 

CPU rate 4.3 Ghz 2 Ghz 2.2 Ghz 

Memory 8 GB 8 GB 8 GB 

Drive Samsung SSD 860 EVO Hynix SC308 Toshiba MQ01ABD100 

Drive speed 555 MB/sec 500 MB/sec 225 MB/sec 



 

Fig. 37. Characteristics of the Random Forest model for PC1. 

 

Fig. 38. Characteristics of the Random Forest model for PC2. 

 

Fig. 39. Characteristics of the Random Forest model for PC3. 

Thus, comparing the characteristics of different models and line charts for different 

test runs, we can divide the above models into 2 groups: Random Forest and k-NN 

that show forecast accuracy above 90%, and Linear Regression and SVM with fore-

cast accuracy less than 65%. K-NN is 113 seconds faster than Random Forest, but 

3.1% less accurate. In addition, having tested the Random Forest model on different 

PCs, we can conclude that for faster learning and forecasting of the model it is neces-

sary to use faster data carriers. 

5 Received Results and Discussion 

Since the Random Forest Regressor with smoothing performs more than sufficient 

prediction at the stator temperature (as shown by the various line diagrams shown 

below), to use a relatively modest model like this is much better than more bulky and 



requiring more memory alternatives such as k-NN, Linear Regression, and various 

neural networks. 

 

Fig. 40. Comparing diagram of predicted and true values for profile_id: 53. 

 

Fig. 41 Comparing diagram of predicted and true values for profile_id: 31. 

 

Fig. 42. Comparing diagram of predicted and true values for profile_id: 69. 



 

Fig. 43. Comparing diagram of predicted and true values for profile_id: 76. 

 

Fig. 44. Comparing diagram of predicted and true values for profile_id: 81. 

6 Conclusions 

The purpose of this work was to predict the temperature of a synchronous motor with 

a permanent magnet using machine-learning methods. First of all, in this work, a 

study of the subject area and a review of publications with research established in the 

laboratory of the University of Paderborn SDPM. With the help of the unified UML 

language, diagrams are designed that show how the implemented model can act as a 

part of the control system of the mechanism that works on SDPM. To implement this 

project, the method of machine learning Random Forest Regression is chosen. The 

implementation tool is the Python programming language with add-ins such as 

NumPy, Pandas, Scikit-learn, Matplotlib, and Seaborn. A comparison of the machine 

learning method and the means of implementation with analogues is also performed. 

Because of this project, a study of data from the SDPM sensory data set is conducted, 

the predicted feature, which was the temperature of the stator winding, is determined, 

and this feature was predicted. After analysing the obtained forecasting results, we 

can conclude that the purpose and main objectives of this work are achieved and the 

trained model can be used to accurately estimate and predict the stator and rotor tem-

peratures of a synchronous motor on permanent magnets. 
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