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Abstract

In this paper a high-level outline of two research directions is presented,
aimed at improving current, automated proof systems.

1 Introduction
When it comes do doing mathematics—as opposed to communicating mathematics, for which LATEX, citeable
article databases and other instruments have become the standard—there do not exist general-purpose tools:
Various symbolic algebra programs, numerical analysis suites or other more specialized tools are employed, but
these are typically heavily domain-dependent. Compared to these, at the other end of the spectrum there are
automated theorem provers (ATPs), which work in full generality, and could be considered to be the ultimate
tool to a working mathematician; though currently they are far from being able to attain human level proving
performance.

Research in ATP can roughly be divided in two approaches: One works by encoding mathematics in a formal
language and reasoning on a formal level. Recently, machine learning has been successfully used in this regard
to augment existing ATP approaches (e.g., lemma selection) by improving the proof search mechanism through
learning; see, e.g., [7, 6] for reinforcement learning or [2] deep learning approaches.

The other approach works by completely discarding modeling mathematics with a purely formal language,
and building provers whose focus is not on soundness, but on proving more advanced statements, accepting a
non-zero probability that those proofs might be wrong. Here we mention [5] as a modern candidate. (We will
discuss why relaxing the soundness requirement might be meaningful at the end of the next section.)

In this text we will outline how advancements in either direction might be made.

2 Proposed research
Regarding the first approach, building on the literature review1 on reinforcement learning methods in automated
theorem proving, we propose to investigate end-to-end reinforcement learning pipelines for proof learning. It
is noticeable that the reward one can assign for a completed proof can be delayed for a very long time, since
for given a statement no bounds on the proof length can be derived a priori. This feature appears not to be
sufficiently exploited by current methods. In contrast, in the reinforcement learning community there has been
recent progress in learning from highly delayed rewards [4]. In line with current popular benchmarks, the authors
of [4] evaluate their approach on a set of Atari games. We propose the delayed reward system be adapted to
ATPs in order to account for the problem of highly varying proof lengths, from which it can be hard to learn a
proof strategy by standard reinforcement methods. As an initial starting point, we will adapt and evaluate the
methods from [4] to the theorem proving domain, which is likely to come with its own challenges and obstacles.
Large databases of (formalized) mathematical texts abound and can be helpful in assessing the agents choice.
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Examples of such are, e.g., [10] or proof libraries associated to interactive theorem provers, such as fragments
from Isabelle’s Archive of Formal Proofs (http://afp.sf.org), in addition to the existing libraries specifically
curated for reinforcement learning, that come with the mentioned papers above.

Regarding the second approach we propose to build a productivity tool, a mathematical knowledge miner, that
could be integrated in an ATP of the second kind, similar to [5]. The goal of the mathematical knowledge miner
is to map the content of a piece of stand-alone mathematical text, such as a research article, onto a knowledge
representation formalism, such as an ontology or a knowledge graph, and to thereby provide an understanding of
the main theorem of the text from context it is embedded in. The starting point of learning such a mapping could
be an approach as in [9] (combined with [1]). Different avenues in related fields of natural language processing
have to be explored in order to find the optimal approach; this will make heavy use of modern deep learning
methods from the field of natural language processing.

In case of knowledge graphs, every node could be either a definition, a theorem/lemma/proposition or an
example and arrows should indicate how these are related to each other. Because this is an ambitious undertaking,
it would be appropriate to first focus on an easy case, where the article in question is not a modern research
article, but an article as they can be found in the American Mathematical Monthly [3] magazine, which caters
to a wide, mathematically literate audience.

The novelty of the proposal does not lie in creating such knowledge graphs or ontologies per se, as similar
solutions that classify the contents of a research in terms already exist, see, e.g., [8]. Rather it lies in using them
in the context of an ATP. Such a “compressed view” of a mathematical text, captured by a knowledge graph or
an ontology, would cover a new, middle ground between the formulation of the contents of the article in natural
language and the formulation of the contents in a finely grained formal language, as would be necessary if one
would want current ATPs to parse the article.

It is conceivable, in order to build an ATP of the second kind, that a succession of tools that provide different
higher level features of a mathematical document should first be devised, as exemplified by a knowledge graph
or ontology tailored to ATP needs. Building modules that enable deep neural networks to be more successful
at understanding numeracy, a starting point being [11], would be a further possibility for a bottom-up approach
to work towards an ATP. Once such a succession of tools leading up to a prover would be in place, it seems
reasonable to assume that one could do high-level reasoning in such an ontology of mathematical objects and
infer high-level information. One—perhaps controversial—aspect of this approach will be to not require such a
prover to be sound. This might be unusual, but it is an approach that is worth exploring: Requiring soundness
is one of the reasons current ATPs are designed in a purely formal language, thereby producing only completely
rigorous theorems (unless the Trusted Computing Module an ATP uses to do the inference has bugs). But
experience shows that this approach leads to ATPs that have difficulty proving formalized versions of advanced
theorems (as they can be found, for example, in graduate textbooks). Another reason not to insist on soundness
is that mathematicians are also not concerned by being presented with a proof that might not be sound, since
they can check soundness for themselves. Rather, it is a matter of much greater importance to allow the ATP
to come up with any proof at all, that can be easily read (and checked) by a human.

3 Summary
We conclude this vision paper by underlining that machine learning is the prevalent method that will be used
to devise new approaches to advance ATPs. On one hand this could be accomplished by improving current
ATP systems that work on a fine-grained formal language, encoding mathematics. On the other hand machine
learning approaches could help pave the way towards non-formal ATPs.

Being still at the beginning of my doctoral research, it is clear that realizing the described approaches is
an ambitious undertaking, given the difficulty of the domain of automated theorem proving. However, these
approaches have not yet been fully explored, so there is reason to be optimistic that at least one of the approaches
will be fruitful.
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