
Definedness Reasoning
in Formal Mathematics
and Theorem Proving

Jonas Betzendahl
Dept. of Computer Science

Erlangen
jonas.betzendahl@fau.de

FAU Erlangen-Nürnberg

Motivation
Formal systems are on the rise! From the design of safety-critical hardware chips to operating system kernels,
more and more fields and researchers in industry and academia are relying on formal methods to detect errors
and verify results.

This trend is also present in mathematics, including both the development of software systems to formalise
mathematics in (such as Coq, Isabelle/HOL and numerous others), and the construction and verification of
proofs. Successful ventures in the latter category include the proof of the Kepler conjecture and the classification
theorem for finite simple groups.

One part of mathematics that has so far not been widely incorporated into formal systems is undefinedness,
the notion of terms or expressions that are well-formed but cannot be assigned a value. This typically arises
when applying a partial function (or predicate, or operator, . . . ) to a value that lies outside of its domain.

Many formal systems circumnavigate the issue entirely by defaulting back to option types for all or most
results of function application or by allowing only functions that are provably total and so do not give rise to
undefinedness.

There are many reasons to take undefinedness seriously, however. The problem has been discussed academi-
cally for more than a century and it is clear that the assumption that all expressions can be treated as defined
(even though it may be terribly convenient) is ultimately indefensible both for mathematical terms and natural
language. Equation 1 is especially interesting because it clearly demonstrates the split opinions about how to
deal with undefinedness.

∀x, y, z : R . x =
z

y
⇒ x · y = z (1)

This equation is brought up in more than one context in the available literature, with opposite connotations.
One source claims that Equation 1 should be considered true as is, without qualification as to z 6= 0. Another
paper by different authors claims that without such a qualification, it would simply be false. Interestingly, both
sources refer back to “mathematical consensus” in one form or another to justify their particular position. It
becomes obvious from this, that there is more than one perspective on what undefinedness “ought” to be and
how to get there.

During my PhD, I want to contribute to the development of a general and foundation-independent approach
to handling undefinedness in formal systems for mathematics. Undefined terms are common in mathematics as

Copyright © by the paper’s authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: C. Kaliszyk, E. Brady, J. Davenport, W.M. Farmer, A. Kohlhase, M. Kohlhase, D. Müller, K. Pąk, and C. Sacerdoti Coen (eds.):
Joint Proceedings of the FMM and LML Workshops, Doctoral Program and Work in Progress at the Conference on Intelligent
Computer Mathematics 2019 co-located with the 12th Conference on Intelligent Computer Mathematics (CICM 2019), Prague,
Czech Republic, July 8–12, 2019, published at http://ceur-ws.org



practised on paper or blackboard by mathematicians, yet few of the many systems for formalising mathematics
that exist today deal with it in a principled way or allow explicit reasoning with undefined terms.

The other topic I hope to tackle that of a soft type system for mathematics. Like undefinedness, soft type
systems have the potential to capture the realities of mathematics as performed by mathematicians. A structure
is defined one way but can later be proven to also meet the criteria (axioms) of another structure. Both of these
perspectives (and any that follow) can be used in proofs and for further definitions. This has been one of the
reasons behind the success of the remarkable Mizar library.

Yet, in that system, the user is committed to one particular meta-logic (although the choice of axiom system
is technically free, even if heavily influenced by the fact that the library uses Tarski-Grothendiek set theory
axioms). It would be beneficial if they could switch between logics easily without having to give up the benefits
of a soft type system. As with undefinedness, I want to make it possible for soft types to be one of many building
blocks a user (of MMT) can (easily and without much hassle) chose from to build exactly the right logic for any
given effort.

We expect both of these endeavours to generate a lot of relatively minor proof obligations (terms being
defined, complying with certain type predicates, . . . ) that are unavoidable in a rigorous environment, yet do not
contribute substantially to the creative effort in a mathematical proof. These “busywork” obligations need to be
dealt with, but ideally not manually by human users of the system.

So, furthermore, I hope to extend the MMT framework with additional capabilities for automated and inter-
active theorem proving, both for reasoning in and outside the domain of undefinedness, with a special focus on
the automated reasoning necessary in the context of type-checking.

Related Work
As mentioned above, there are a lot of systems for formalising mathematics, both in an out of development, such
as Coq, Lean, Agda, HOL-Light, Isabelle/HOL, and many others. They all have their strengths and weaknesses
and they all have lessons to teach that will hopefully be informative and of influence to my work. Let me single
out two of them that are especially relevant to the topics at hand.

The Mizar system (invented by Andrzej Trybulec) is one of the most prominent and successful instances of a
soft type system in the realm of formal mathematics with an astonishing amount of formalised knowledge readily
available.

First-class undefinedness reasoning as well as the ability to switch easily between meta-logics for any given
effort are, however, unlikely to be introduced.

The IMPS (developed by Farmer, Guttman and Thayer) stands out as one of the only proof assistants to make
reasoning about (un)definedness a first-class concern. It was also one of the first systems to bring the small
theories approach to mathematical formalisation.

However, the system has been out of development for roughly thirty years and so it is not useful as a target
for future formalisation efforts as it can not adapt to moving targets of requirements.

Effort & Evaluation
Catching up to the state of the art (i.e. developing a full reasoning system that has all the features we discussed
so far) in the timespan of one PhD-thesis is not feasible, so I will focus particularly on the two major building
blocks of foundation-independent notions of undefinedness and soft type systems, as well as automated theorem
proving support for proof obligations that pop up during the process of type-checking and the best ways to
discard them automatically.

MMT as of today has support for annotating declarations so that the simplifier is able to use them as additional
rules. However, MMT does not support such annotations for rules that would have premises, only simple
equalities. So one task would be to implement support for premises, definedness judgements and other such
constructs as well.

One way of evaluating the success of the foundation-independent “building blocks” for undefinedness and soft
types that we discussed above, is to re-implement already existing set theories with soft types or logics that
introduce undefinedness themselves (such as the logic underlying IMPS) in terms of that foundation-independent
approach and see whether it can be easily achieved and yields the expected results.


