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Abstract

In this paper we continue development of formal verification tools for
algorithms using the framework of nominative data and Floyd-Hoare
logic with partial pre- and postconditions in the Mizar proof assistant.
We define operations of sequential composition of several programs,
formalize and show soundness of new inference rules which can be used
to prove partial correctness of programs involving these operations in
the context of partial pre- and postconditions. A process of verification
of the partial correctness of exemplary algorithms is described.

1 Introduction
We live in times of very fast changes. Every day we can see how computer programs and any kind of applications
affect our life more and more. Architects of buildings, designers of cars decide to take part of control from humans
and give it to machines and A.I. Human can make a mistake and computer – assuming that its algorithms are
written correctly – can not. Therefore researchers in computer science are interested in creating tools allowing
us to verify the correctness of those algorithms.

There are three major formal semantics which can be helpful in creating abstract models of algorithms:
operational, denotational and axiomatic [NN92]. Each of them have different fundamental ideas. First one
focuses on how to produce effect of a computation. Second one leaves behind how and describes only the effect,
and the third one describes specific properties of the execution in assertions. Everything is done on a high level
of abstraction, in isolation from any specific computer model.

Many approaches to formal verification of properties of programs and algorithms based on different logics and
algebra systems have been developed. Researchers were trying to achieve the best formal model – some of them
wanted to invent logic that would allow partiality of programs, which is very common, and others were trying
to eliminate it and consider only total functions and predicates.

As an example, we can consider a logical framework for formal verification of programs using an extended
Floyd-Hoare-style rules with pre- and postconditions and loop invariants defined by partial predicates [KNS13].
This framework consists of: a) a two-sorted program algebra (an extension of Glushkov algebra [Glu65]) over
partial predicates and binominative functions on nominative data [SNI14] (programs and assertions are written
as terms of the algebra); and b) an inference rules system based on classical Floyd-Hoare logic [Flo67, Hoa69]
with new rules that allow reasoning over partial pre- and postconditions.
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The framework is intended to be used for practical verification of the correctness of programs. One of its
implementations is done in the Mizar proof assistant [BBG+15, GKN15]. Nominative data with simple names
and complex values and basic operations on them are defined in [INKK17]. An algebra of programs over partial
predicates and binominative functions on nominative data including among others operators of a programming
language (e.g. assignment, skip, conditional if statement and a while loop) are defined in [KIN18, IKN18b,
IKN18c]. An inference system of an extension of Floyd-Hoare logic for partial predicates and soundness of the
rules are formalized in [IKN18a]. An example – the subtraction-based version of Euclid’s algorithm computing
the greatest common divisor of natural numbers – how to use all this stuff is presented in [IKN18d].

In this paper we report on our continuation [KKNI17a, KKNI17b, KKNI17c] of formalization of the framework
in Mizar including three more inference rules for unconditional composition of 3, 4, and 5 programs and proofs of
the correctness of two algorithms: computing the natural power of a complex number and factorial of a natural
number.

2 Mizar Formalization
Having mathematical tools mentioned above we have proved in Mizar the correctness of two algorithms: the
natural power of a complex number [Jas19] and factorial of a natural number [JK19] with the following pseu-
docodes:

Pseudocode of factorial algorithm:
i := val.1; j := val.2;
n := val.3; s := val.4;
while ( i <> n )

i := i + j;
s := s * i;

return s;

Pseudocode of power algorithm:
i := val.1; j := val.2;
b := val.3; n := val.4; s := val.5;
while ( i <> n )

i := i + j;
s := s * b;

return s;

Both algorithms consist of three parts: the initialization of variables, the main while loop, and the result
returning statement. Moreover, in factorial we have only one input value and in power two input values: base
and exponent. At the end we return s as the results of algorithms.

Formalization of the algorithms in Mizar has been divided into few separate parts. Because both algorithms
are similar, we can take a closer look into just one of them, let us choose the power algorithm. To formulate
it we introduced several Mizar functors representing various components of the algorithm: the initialization of
variables:

definition let V,A,loc,val;
func power_var_init(A,loc,val) -> SCBinominativeFunction of V,A equals
PP_composition(

SC_assignment(denaming(V,A,val.1), loc/.1), SC_assignment(denaming(V,A,val.2), loc/.2),
SC_assignment(denaming(V,A,val.3), loc/.3), SC_assignment(denaming(V,A,val.4), loc/.4),
SC_assignment(denaming(V,A,val.5), loc/.5) );

end;

the loop body:

definition let V,A,loc;
func power_loop_body(A,loc) -> SCBinominativeFunction of V,A equals

PP_composition(
SC_assignment(addition(A,loc/.1,loc/.2),loc/.1),
SC_assignment(multiplication(A,loc/.5,loc/.3),loc/.5) );

end;

the entire loop:

definition let V,A,loc;
func power_main_loop(A,loc) -> SCBinominativeFunction of V,A equals
PP_while(PP_not(Equality(A,loc/.1,loc/.4)),power_loop_body(A,loc));

end;

the initialization composed with the loop:



definition let V,A,loc,val;
func power_main_part(A,loc,val) -> SCBinominativeFunction of V,A equals

PP_composition(power_var_init(A,loc,val),power_main_loop(A,loc));
end;

and finally the entire program where the returning statement is added:

definition let V,A,loc,val,z;
func power_program(A,loc,val,z) -> SCBinominativeFunction of V,A equals

PP_composition(power_main_part(A,loc,val), SC_assignment(denaming(V,A,loc/.5),z));
end;

Because we work in the paradigm of nominative data those definitions take sets V and A as names and values,
respectively. Moreover, V-valued functions loc represents formally locations in memory where variables are
stored, and functions val keep values of variables.

The partial correctness of programs in our framework is expressed as the validity of semantic Floyd-Hoare
triples [IKN18a] of the form <*p,f,r*> is SFHT of D, where p represents a precondition, f represents a pro-
gram, and r represents a postcondition, all defined over a set D. In the case of the power algorithm it takes the
form:

<* valid_power_input(V,A,val,b0,n0),
power_program(A,loc,val,z),
valid_power_output(A,z,b0,n0) *> is SFHT of ND(V,A)

where valid_power_input is the precondition representing the valid input and valid_power_output is the
postcondition representing the valid output, both involving the complex base b0 and the natural exponent n0.
All components of the triple are defined over the set ND(V,A) of all nominative data over sets V and A.

The discussed algorithm contains a while loop, which verification requires an invariant. For this purpose we
defined the predicate:

definition let V,A,loc,b0,n0,d;
pred power_inv_pred A,loc,b0,n0,d means
ex d1 being NonatomicND of V,A st
d = d1 & { loc/.1, loc/.2, loc/.3, loc/.4, loc/.5 } c= dom d1 &
d1.(loc/.2) = 1 & d1.(loc/.3) = b0 & d1.(loc/.4) = n0 &
ex S being Complex, I being Nat st I = d1.(loc/.1) & S = d1.(loc/.5) & S = b0|^I;

end;

which describes that every state d1 includes all required memory locations, initial values 1, b0 and n0 are always
in the same locations, and S is always equal to b0I. It is used to prove that initialization of variables and each
iteration of the loop fulfill the condition.

With this structure we could start proving the correctness of the algorithms. Detailed proofs are available in
the Mizar Mathematical Library [BBG+18, Jas19, JK19].

Apart from the formal verification of the correctness of mentioned algorithms we also defined operations
for composition of 3, 4 and 5 instructions. Moreover, we defined inference rules describing how to prove the
correctness of programs involving these operations and proved their soundness. In the case of the composition
of 3 instructions the rule is:

{p} f1 {q}, {q} f2 {r}, {∼ q} f2 {r}, {r} f3 {s}, {∼ r} f3 {s}
{p} f1 • f2 • f3 {s}

As one can notice, the rule above is different than in the standard Floyd-Hoare logic would be. The reason of
that is because we also consider a case where results of programs f1 and f2 do not belong to the domains of the
partial conditions q and r, respectively. In the standard case all pre- and postconditions would be total.

The operations and rules allowed us to use one composition instead of several binary compositions.

3 Conclusions and Future Work
In this paper we have shown how to verify the correctness of algorithms in the Mizar proof assistant using
nominative data and a variant of Floyd-Hoare logic on the example of algorithms computing the natural power



of a complex number and factorial of a natural number. On these simple examples it can be observed that
various algorithms have almost same structure and in many cases there are very similar formalization steps. In
the future we want to detect and define more general structures of algorithms written in our environment and to
use particular Mizar constructions, like structures and schemes, to formulate the algorithms and make reasoning
on them. For example, we can define a Mizar structure containing the input, output, constant values, the main
program, and possibly other components of programs as separate fields of the structure.

Another way of extension of our framework is to define new instructions in the language and new inference
rules about the instructions within our variant of logic. For example, we can introduce an instruction for
the composition of arbitrary n instructions instead of compositions of two, three, four and more instructions
separately, and for loop instruction and adequate inference rules. It will make easier writing algorithms with
sequences of compositions and make shorter proofs of properties of the algorithms.

The ultimate goal of the project is to build a complete formal tool for verifying the correctness of complex
algorithms. These algorithms could be then implemented, for example, in some safety-critical software. Soon,
almost every aspect of our life will be connected with computer programs, so it is important to make sure that
algorithms that they will be using are designed and implemented correctly.
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