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Abstract. Several player typologies have emerged as a result of needing to un-

derstand the role of personal preferences when selecting and playing games. 

However, experimental investigations into whether these preferences affect psy-

chophysiological responses when playing have been scarce. In this study, two 

groups of active gamers (N=24) played and watched a gameplay video of a first-

person shooter game. The two groups consisted of players who either preferred 

or disliked game dynamics prominent in first-person shooter games, such as kill-

ing and shooting. While playing and watching, the participants’ electrodermal 

activity and heart rate were monitored as indexes of autonomic arousal. The re-

sults suggest that playing preferences and autonomic arousal are related. Those 

who preferred the content showed a stable arousal state across time when playing, 

whereas those who disliked the content showed a rising tendency in autonomic 

arousal state. The effects were similar when participants were watching a video 

of gameplay. 
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1 Introduction 

Changes in electrodermal activity (EDA) and heart rate (HR) indicate arousal of the 

nervous system [1, 2]. Because EDA and HR are relatively easy to measure while par-

ticipants are playing without interrupting them, there is a growing body of research 

about electrodermal activity and heart rate during playing [3, 4, 5, 6]. So far, however, 

there are no studies on the differences in EDA and HR activity between player groups 

with differing preferences for game dynamics. 

 Players are known to have preferences for game contents: several player typolo-

gies and player trait models that use game dynamics as their components have been 

identified [7, 8, 9]. Game dynamics, that is player-game interactions such as dancing, 

killing, or taking care of pets, seem to divide people [9, 10] and may therefore influence 

how a game is experienced. 

 Even though player typologies have been formed, there have been hardly any at-

tempts to experimentally validate any of these player types. Instead, the most ambitious 

validation efforts have so far focused on whether there are overlaps between different 

player categorizations [11] or whether gaming preferences predict game choice [12]. 
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Tondello, Mora, and Nacke [13] have also explored whether different player types have 

particular preferences for certain gameful design elements. To our knowledge, no stud-

ies have focused on whether player typologies are in line with emotional responses 

during actual playing, i.e. whether players react accordingly to their player type when 

confronted with game material that is in line or discordant with their preferences. In 

other words, it is unclear whether self-reported likes and dislikes for certain game con-

tents actually make a difference when playing, or whether they are just abstract self-

conceptualizations. 

 In this study, we focus on first-person shooter games. These types of games are 

filled with “assault dynamics” [9] such as wrecking, crushing, destroying, and blowing 

things up; killing and murdering; shooting enemies and avoiding enemy fire; surprising 

an opponent or enemy by sneaking, et cetera [9]. According to Vahlo et al. [9], assault 

dynamics tended to divide participants quite strongly. First-person shooter games cor-

porate mostly assault dynamics and little else, which makes them a preferable choice 

for a game for this purpose compared to other types of games that tend to have a mix 

of several types of dynamics. These types of games are also particularly suitable to 

study psychophysiological effects because they are likely to be visceral enough to gen-

erate strong emotions [14]. Arousal related to emotional reactions can be detected with 

electrophysiological evaluation methods, such as heart rate and electrodermal activity. 

The present aim was to further explore the association between gaming preferences 

and physiological arousal in terms of EDA and HR measurements. We formed the fol-

lowing research questions: RQ1. Does physiological arousal to a violent videogame 

and a gameplay video depend on game dynamics preferences? RQ2. Are there differ-

ences between videos and gameplay in how different individuals respond to them? 

2 Method 

2.1 Participants 

Participants were recruited from an internet survey that focused on their preferred game 

dynamics, i.e. player-game interaction modes. The final dataset consisted of 24 partic-

ipants (20 men, 4 women, Mage = 28.67, SDage = 6.18) who were all active videogam-

ers. 

 Participants were invited to the laboratory experiment based on their preference 

for violent gaming dynamics. In order to create two matched groups, we created pairs 

of players with similar experience of playing but opposite preferences for violent dy-

namics: those who particularly preferred them and those who disliked them. For this 

division, we used an updated 50-item version of the Gameplay Activity Inventory 

(GAIN) [10] scale. More specifically, we used only items pertaining to dynamics asso-

ciated with what could be termed as violent. The items included, for example: “Firing 

enemies and avoiding enemy fire in a high speed” and “Close-combat by using fighting 

techniques and by performing combo attacks”. There were altogether 12 of these items. 

Participants were to rate how much their level of satisfaction depended on these game 

dynamics either based on their earlier experiences or on their experiences in trying a 
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new game. Ratings were given on a 5-point Likert scale (1= Very Dissatisfying, 2 = 

Dissatisfying, 3 = Neither, 4 = Satisfying, 5 = Very Satisfying).  

 Based on the responses to the 12 items, the participants were divided into two 

groups: those who had a high preference for violent dynamics (n = 12, 3 women, Mage 

= 28.58 years, SDage = 9.22 years) and those who had a low preference for violent dy-

namics (n = 12, 1 woman, Mage = 28.75 years, SDage = 10.1 years). Those with a pref-

erence for violent dynamics played on average 15.67 hours weekly (SD = 9.2), and 

those with a low preference for violent dynamics played an average of 18.75 hours 

weekly (SD = 10.1). 

2.2 Apparatus 

The PlayStation 3 gaming console (Sony Computer Entertainment) attached to a 24” 

and 144 Hz screen (Benq XL2420Z) was used for gaming. The participants sat at a 

distance of 90 cm from the screen and the volume was kept on the same comfortable 

level for all the participants. 

Biopac® MP150 (Biopac Systems, Inc., Santa Barbara, CA) with added EMG100C, 

GSR100C and PPG100C modules were used for data collection. The data was recorded 

using AcqKnowledge 4.4.0 software (Biopac Systems, Inc., Santa Barbara, CA).  

 Two different sets of electrodes were used for measuring electrodermal activity 

(EDA). For the first 14 participants, we used two 8 mm Ag/Ag-Cl electrodes that were 

attached to the participants’ right foot’s index and middle toe using wrap-around bands 

(Biopac TSD203). For the rest of the participants, recordings were made using two 4 

mm electrodes that were attached to the participants’ right foot’s sole using tape. The 

electrodes were filled with isotonic gel (Biopac GEL 101). They were attached to the 

participants’ feet in order to keep their hands free for using a gaming pad and to de-

crease artefacts that might have resulted from pressure to the electrodes if they were 

attached to fingers. The EDA signal was relayed to the Biopac GSR100C module. The 

raw signal was amplified (gain = 5 μΩ/V) and bandwith filtering was set between 0.5 

to 1 Hz. 

 For recording heart rate, we used a photoplethysmogram (PPG) transducer (Bi-

opac TSD200C) that was attached to the earlobe using a clip. The signal from the trans-

ducer was relayed to the PPG100C module and amplified (gain = 100). A bandwith 

filter was set between 0.5 and 10 Hz. 

2.3 Materials 

Call of Duty: Modern Warfare 2 (Activision, 2009) was chosen to represent a violent 

dynamics game. As a first person shooter (FPS) game it contains all of the game dy-

namics included in the participant selection criteria. Therefore we had reason to assume 

that the participants would react differently to the game based on their self-reported 

preferences for such game dynamics. 
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2.4 Design 

The experiment followed a 2x2 design, in which there were 2 preference groups and 2 

conditions (video watching and playing). The conditions of playing and watching were 

chosen because we wanted to make sure that it was the content instead of, for example, 

difficulty of the playing that generated the particular responses in the participants. Fur-

thermore, we wanted to compare the overall effects of playing and video watching. 

 We used two different levels for both the video watching and the playing condition. 

For the video condition, we recorded two videos from the campaign mode of the game 

(levels A and B) of a player playing the same levels with the same frame rates and 

volume as in the playing condition. Level A was the mission “Team Player” and Level 

B the mission “Wolverines!”. Both videos were 6 minutes long and taken from the 

beginning of the mission without the intros. The playing and watching conditions were 

counterbalanced so that every other participant played level A and every other played 

level B. Likewise, every other participant watched a gameplay video of level A, and 

every other watched a video of level B. This was done to ensure that everyone was 

exposed to the same levels, either by playing or by watching. Every other player started 

by playing the level A and every other started by watching the video of level A. The 

same screen was used for both watching and playing conditions. 

2.5 Procedure  

Every participant completed a practice level before moving onto playing/watching. The 

practice level did not end before it was successfully completed, ensuring that the par-

ticipant had enough practice of using the controls. After completing the practice level, 

the game automatically set a difficulty level appropriate for the participant. This diffi-

culty level was used during the playing condition. This was done because half of the 

participants did not like assault dynamics and therefore were more likely to be inexpe-

rienced in playing first-person shooter games. We therefore had reason to assume that 

these players might get frustrated if the perceived difficulty was too high, and this frus-

tration might affect the psychophysiological measures instead of the actual content. 

The participants had a chance to play for 15 minutes, or less if they completed the 

level before that. However, data was only collected from the first six minutes of the 

playing condition, which was in accordance with the length of the video condition. 

 

Data preparation and processing. The recorded data was processed using the Ac-

qKnowledge 4.4.0 software (Biopac Systems, Inc., Santa Barbara, CA). 

For EDA, we resampled the signal to 62.5 samples per second and then used median 

smoothing, with a median of 50 samples per second. A low pass filter of 1 Hz was 

utilized. 

For the PPG signal, we removed the comb band stop frequency of 50 Hz and used 

the waveforms created by the PPG signal to measure heartbeat. For this, we used the 

“find rate” option of the software and inspected the data manually for artefacts. We 

then converted the signal to the “beats per minute” form provided by the software. 
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After processing the raw data, it was divided into one second epochs, each containing 

the mean values for the signals. 

3 Results 

3.1 Statistical analyses 

Analyses were carried out with linear mixed-effects models (LMM) using the lme4 

package [15] in the R statistical software (Version 3.3.2; R Core Team, 2016). Time, 

condition and preference group were entered as fixed effects. Time was centered, and 

condition (video vs. playing) as well as preference (liking or disliking violent dynam-

ics) were contrast coded. Playing was coded as 1 and video watching as -1. The group 

with no preference for violent dynamics was coded as 1 and the violent dynamics pref-

erence group as -1. Participants and random slopes for condition were included in the 

models as random effects. Three-way interactions of time, condition and preference 

were further examined by computing model estimates at different levels of preference 

group. 

Measures for both EDA and heart rate (HR) were log-transformed to normalize the 

data. The percentage of outliers removed from the data after using a criterion of 2.5 SD 

was .95% for EDA and .66% for HR. Descriptive statistics for both measures as a func-

tion of condition (playing vs. video) and preference group (preference for vs. dislike of 

violent dynamics) can be found in Table 1. Both models are reported in Tables 2 and 3.  

A threshold value of t > 1.96 was used for statistical significance.  

Table 1. Means and Standard Deviations for each variable in each preference group. 

Condition 

 Watching Playing 

 M SD M SD 

EDA (in μS)     

Non-Violent Preference Group 10.21 7.82 10.77 8.10 

Violent Preference Group 11.43 6.46 11.69 6.12 

HR (in beats per minute)     

Non-Violent Preference Group 81.57 10.41 84.48 12.99 

Violent Preference Group 80.25 15.58 80.31 16.23 

3.2 Electrodermal activity (EDA) 

For EDA, there was a main effect of time (b = 4.79 × 10-5, 95% CI [3.90 × 10-5, 5.67 

× 10-5], t = 10.55), indicating that participants had an overall rising tendency in elec-

trodermal activity – i.e. as the watching or playing progressed, their electrodermal ac-

tivity increased. There was also a main effect of condition (b = 2.42 × 10-2, 95% CI 

[6.92 × 10-3, 0.04], t = 2.75), signaling that playing generated higher electrodermal 

activity than watching a video. 
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As for interaction effects, we found an interaction between time and preference (b = 

4.29 × 10-5, 95% CI [3.40 × 10-5, 5.18 × 10-5], t = 9.45), indicating that the player 

groups’ EDA state developed differently during the course of the experiment. When 

compared to players who liked violent dynamics, players with a dislike had a steeper 

increase in electrodermal activity across time, as seen in Fig. 1. There was also an in-

teraction between time and condition (b = -2.16 × 10-5, 95% CI [-3.05 × 10-5,  -1.27 × 

10-5], t = -4.77), showing that there was a steeper increase in EDA in the watching than 

the playing condition. However, there was a three-way interaction between time, pref-

erence and condition (b = -8.97 × 10-6, 95% CI [-1.79 × 10-5, -7.80 × 10-8], t = -1.98), 

illustrating that EDA effects changed differently in the video and gaming conditions 

across time in the two preference groups. 

 

Fig. 1. Electrodermal activity in playing vs. watching conditions as a function of 

time for the two player groups. The shaded areas represent 95 % confidence intervals. 

 

The three-way interaction was examined by fitting the model at different levels of 

preference (see Fig. 1). This revealed that there was a significant interaction between 

time and condition for those who disliked violent dynamics (b = -3.06 × 10-5, 95% CI 

[-4.32 × 10-5, -1.80 × 10-5], t = -4.77). When looking at Fig. 1, it can be seen that for 

this group the rising tendency in EDA activity was greater in the video as opposed to 

playing condition. For this group there was also a main effect of time (b = 9.07 × 10-5, 

95% CI [7.82 × 10-5, 1.03 × 10-4], t = 14.14) which showed that, overall, there was 

change in their EDA activity. Furthermore, the EDA activity for this group was in gen-

eral higher in the playing condition as opposed to watching (b = .03, 95% CI [3.17 × 

10-3, .05], t = 2.22).   

For the group preferring violent dynamics, the interaction between time and condi-

tion (playing vs. watching) was smaller but significant (b = -1.27 × 10-5, 95% CI [-2.52 
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× 10-5, -7.59 × 10-8], t = -1.97). For this group the main effect of time was not signif-

icant which showed that their EDA stayed stable over time (b = 4.981 × 10-6, 95% CI 

[-7.59 × 10-6, 1.76 × 10-5], t = .78). For the group that liked violent dynamics, there 

was no difference between the overall EDA while watching vs. playing (b = .02, 95% 

CI [-3.62 × 10-3, .05], t = 1.67). Therefore even though the interaction between time 

and condition was significant for both groups, the main effects of time and condition 

did not reach significance for those with a preference for violent dynamics, whereas 

they were both significant for the group that disliked such actions. 
 

Table 2. Model for EDA. 
 

Random effects n Variance SD Correlation 

Participant (Intercept) 24 .48 .69  

Participant (Condition)  1.86 × 10-3 .04 -.24 

Residual  .74 .86  

     

Fixed effects Estimate 95% CI t  

(Intercept) 2.20 1.92, 2.48 15.54  

Time 4.79 × 10-5 3.90 × 10-5, 5.67 × 10-5 10.55  

Group -7.72 × 10-2 -.35, .20 -.55  

Condition 2.42 × 10-2 6.92 × 10-3, .04 2.75  

Time x Group 4.29 × 10-5 3.40 × 10-5, 5.18 × 10-5 9.45  

Time x Condition -2.16 × 10-5 -3.05 × 10-5,  -1.27 × 10-5 -4.77  

Group x Condition 3.40 × 10-3 -.01, .02 .39  

Time x Group x Condition -8.97 × 10-6 -1.79 × 10-5, -7.80 × 10-8 -1.98  

Note. t-values > 1.96 are in boldface to indicate statistical significance. 

3.3 Heart rate (HR) 

For heart rate, there was a main effect of time (b = 5.67 × 10-5, 95% CI [4.84 × 10-5, 

6.50 × 10-5], t = 13.40). This means that participants’ heart rate increased as the game 

progressed.  

As for interaction effects, there was an interaction between time and preference (b = 

4.74 × 10-5, 95% CI [3.91 × 10-5, 5.57 × 10-5], t = 11.19), indicating that the player 

groups’ heart rate changed differently during the course of the experiment. When com-

pared to players who liked violent dynamics, players with a dislike had a steeper in-

crease in heart rate across time, as seen in Fig. 2. There was also an interaction between 

time and condition (b = -2.34 × 10-5, 95% CI [-3.17 × 10-5, -1.51 × 10-5], t = -5.53), 

showing that there was a steeper increase in heart rate in the watching rather than the 

playing condition. Most importantly, there was a three-way interaction between time, 

preference and condition (b = -2.59 × 10-5, 95% CI [-3.42 × 10-5, -1.76 × 10-5], t = -

6.11). This revealed that heart rate changed differently in the video and gaming condi-

tions across time in both groups.  
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Fig. 1. Heart rate in in playing vs. watching conditions as a function of time for the two player 

groups. The shaded areas represent 95 % confidence intervals. 

Table 3. Model for heart rate. 

  Random effects n Variance SD Correlation 

Participant (Intercept) 24 .03 .16  

Participant (Condition)  4.63 × 10-4 .02 .30 

Residual  3.32 × 10-3 .06  

     

  Fixed effects Estimate 95% CI t  

(Intercept) 4.39 4.32, 4.45 134.90  

Time 5.67 × 10-5 4.84 × 10-5, 6.50 × 10-5 13.40  

Group .02 -.04, .08 .61  

Condition 8.01 × 10-3 -6.45 × 10-4, .02 1.81  

Time x Group 4.74 × 10-5 3.91 × 10-5, 5.57 × 10-5 11.19  

Time x Condition -2.34 × 10-5 -3.17 × 10-5, -1.51 × 10-5 -5.53  

Group x Condition 8.04 × 10-3 -6.12 × 10-4,  .02 1.82  

Time x Group x Condition -2.59 × 10-5 -3.42 × 10-5, -1.76 × 10-5 -6.11  

Note. t-values > 1.96 are in boldface to indicate statistical significance. 

 

 The three-way interaction was examined by fitting the model at different levels of 

preference (see Fig. 2). This resulted for the finding of a significant interaction between 

time and condition for those who disliked violent dynamics (b = -4.93 × 10-5, 95% CI 

[-6.10 × 10-5, -3.75 × 10-5], t = -8.22). When looking at Fig. 2, it can be seen that the 
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rising tendency in heart rate was greater in the video than playing condition. Further for 

this group there was a main effect of time (b = 1.041 × 10-4, 95% CI [9.24 × 10-5, 1.16 

× 10-4], t = 17.37) showing that, overall, their heart rate increased during the course of 

the experiment. In general their heart rate was higher in the playing than watching con-

dition (b = .02, 95% CI [3.81 × 10-3, .03], t = 2.57). 

For those with a preference for violent dynamics, there was no interaction between 

time and condition (b = 2.473 × 10-6, 95% CI [-9.25 × 10-6, 1.42 × 10-5], t = 0.41). 

Because the effect of time for this group was not significant their heart rate was stable 

over time (b = 9.35 × 10-6, 95% CI [-2.37 × 10-6, 2.11 × 10-5], t = 1.56). Interestingly, 

as Fig 1 shows the heart rates of this group were practically identical in different con-

ditions. This was evidenced also by statistics showing no difference in the heart rate (b 

= -3.36 × 10-5, 95% CI [-.01, .01], t = -0.01). 

4 Discussion 

Players who liked game dynamics prevalent in first-person shooter games showed a 

relatively stable arousal state when playing such a game. Instead, those who disliked 

the content showed rising arousal. The results thus showed that self-reported likes and 

dislikes for game contents have a profound impact on players’ physiological arousal. 

 One possibly conflicting factor in our results may have been task difficulty. Namely, 

those who dislike and therefore play less first-person shooter games may have been 

more aroused because the task of playing was more difficult to them than to active 

players of first-person shooters. However, the results were similar when participants 

were watching a video of a first-person shooter game: those who liked the content ex-

hibited a stable arousal state, whereas those who disliked the content again showed 

rising arousal. As video watching is not a cognitively demanding task, the results are 

more likely to refer to preferences rather than task difficulty.  

 In future studies, participant selection should ideally include both more partici-

pants as well as include an equal amount of men and women. Future studies would also 

benefit from adding qualitative methods to correlate the quantitative data and gain a 

deeper understanding of player preferences. Future ventures might also explore whether 

players with preferences in different game genres react differently to FPS. 

 The results indicate that prior knowledge of players’ preferences are important when 

evaluating player experience. Namely, the results indicate that self-reported game dy-

namics preferences [7, 8, 9] are not just abstract beliefs – they do have an effect on 

physiological responses to game dynamics that are in line or discordant with said pref-

erences. This should be taken into account when considering target groups in game 

design and gamified solutions, as reactions when playing do not seem to be universal. 

Designers seeking to personalize games using emotional arousal and valence data, i.e. 

tailoring game experiences to individual players in the process of playing based on 

physiological responses [16] may also benefit from acknowledging that different player 

groups react differently. Of particular interest is the relatively stable arousal state of 

those players who self-report liking the content presented. 
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