
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0)

Automated tools for the development of microservice

compositions for hybrid scientific computations

G A Oparin, V G Bogdanova and A A Pashinin

Matrosov Institute for System Dynamics and Control Theory of SB RAS, Lermontov

St. 134, Irkutsk, Russia, 664033

bvg@icc.ru

Abstract. In recent years, a significant amount of research is focused on the development of

tools for creating composite web-services for solving both business and scientific complex

problems. This study discusses tools for building compositions or ensembles of microservices

(depending on the method of integration) developed based on the HPCSOMAS framework.

These tools are oriented on the application in a package of applied microservices for solving

computationally complex problems of structural analysis and parametric synthesis of

controlled dynamic systems in a heterogeneous high-performance computing environment. In

particular, binary dynamic systems are studied using the Boolean constraint method for both

their qualitative analysis and synthesis of laws to control these systems. Creating and executing

composite services is carried out on a semantic peer-to-peer network of agents. The

HPCSOMAS framework supports two modes of these processes, both the static creation and

application of a composite service based on the procedural formulation of the problem and

dynamic, based on the declarative formulation. In the first case, agents deployed on the

network perform hierarchical control over the execution of the composition of microservices,

in the second case, decentralized asynchronous management of the ensemble of microservices.

Both operating modes are automated, and the validity of the resulting composite service is

checked based on a logical approach. The tools are aimed both at a professional programmer

and the end-user, a specialist in the subject domain. The HPCSOMAS framework supports the

execution of composite microservices in a hybrid computing infrastructure, which includes

both cloud and on-premises resources.

1. Introduction

The complexity of the modern heterogeneous distributed computing environment (HDCE) prevents

the widespread use of its capabilities by specialists in the subject domain. Therefore, the demanded

trend is the development of specialized approaches that free the end-user from the need to study the

technical details for the creation of distributed service-oriented applications. As a result, in recent

years, a considerable number of research efforts focus on the development of frameworks for creating

composite web services for solving both business and scientific complex problems [1]. One of the

advantages of service-oriented computing is the ability to combine several services to get more

meaningful and complex ones [2, 3]. A composite web service can be created either proactively or

reactively [4]. In the first case, components of the composite web service are assembled in advance,

before runtime. In the second case, a composite web service is created dynamically at the request of

the user. This request is executed in the ever-changing HDCE, so users need more adaptive and

personalized services [5]. The most general standards and research approaches developed over the last

years for web service composition are described in [6]. New challenges concerning this problem are

mentioned in this publication also, in particular, challenges of automated RESTful services

composition and its orientation to the subject domain.

Our research is focused on the development of service-oriented applications based on HPCATAMP

technology. These applications are designed for solving computationally complex problems of the

subject domain of structural analysis and parametric synthesis of controlled dynamic systems in

HDCE [7]. In particular, binary dynamic systems (BDS) are studied using the Boolean constraint

method [8] for both their qualitative analysis and synthesis of laws to control these systems. Currently,

there is an intensive development and complication of controlled dynamic systems. Despite a large

number of existing methods [10], the problem of synthesis of control laws for various classes of these

systems remains relevant.

The above HPCATAMP technology is implemented based on the HPCSOMAS platform [10], the

basic version of which is periodically modified based on experience in solving problems from the

above domains, for example, [11-13]. In this study, we describe the multi-agent tools of the cloud

version of this HPCSOMAS-MSС platform (version HPCSOMAS 3.2) for creating composite services

in the form of an ensemble of microservices implemented based on the RESTful architectural style.

Compositions and ensembles of microservices are used when performing computations in the package

of applied microservices (AMP [7]). As an illustrative example, we describe the application of

composite services of the AMP for solving problems of qualitative analysis of BDS.

2. Related work

In review papers [3, 15-20], various issues of the development of composite services are considered.

As noted in [3], most approaches are based on the composition of the workflow (WF) or methods of

artificial intelligence (AI), in particular, AI-planning. The paper [3] mainly addresses the issues of

comparing dynamic composition based on these two approaches. In general, the WF approach is used

in the situation when a process model is already defined in the user request, so the search for atomic

services may be automated. AI-planning methods are used when the user request does not have a

process model but has many constraints and user preferences. In this case, a process model is

automatically generated. In [15], a consolidated structure of the analysis of models, languages,

methods, platforms, and tools for the composition of services is presented. Several representative

systems (in particular, [21-23]) that automate the composition of services were analyzed in [15] based

on criteria of application, notation (visual or textual), paradigm (Flow-based, Rule-based, Query-

based), composition constructs, and the target user. Most systems are based on the Flow paradigm,

focused on business processes. The target users of the analyzed systems are mainly professional

programmers, and only three of the twelve systems are aimed at the end user-programmer, an expert in

the subject area. In [15], there is a need for the development of compositional tools that can be

mastered not only by professionals. The necessity of extending the composition of services and

developing composition methods to ensure the integration of cloud resources with heterogeneous high-

performance environments is substantiated. Despite the variety of tools based on the WF approach

presented in later publications [24–26], some questions remain relevant, in particular, the target user

qualification, decentralized control, adaptive execution models, high-level composition tools, fault-

tolerance. An alternative to the WF approach is the approach based on AI-planning [3]. In [16], the

advantages and disadvantages of AI methods are considered. In particular, it is noted that AI-planning

is suitable for dynamically creating web services with incomplete information, but the main problem

in planning is scalability. Also, this planning is unsuitable for web services composition based on

choreography, which implies decentralized control, parallel workflows, and unexpected

circumstances. Issues related to the compatibility and the provision of portability for the efficient

composition of web services in heterogeneous and decentralized environments also remain open. In

[17, 18], AI-planning is performed based on decentralized multi-agent control. However, after the

construction of the plan, its execution is centralized. In [19], the development of a service composition

system based on the declarative description and usage of the peer-to-peer (P2P) paradigm that

provides the execution of the resulting composite services based on decentralized control is presented.

In [20], a review of existing methods, approaches, and standards for web services discovery and

composition development were performed. As noted in this publication, the verification of

composition validity is unused in most of the considered approaches for composition development, so

the composition specifications in the form of mathematical formalisms are desirable for such

verification.

Given the above advantages and disadvantages of existing approaches, we use a hybrid approach,

providing the developed tools with the ability to carry out the microservices composition in both static

and dynamic ways. This approach is based on the multiagent-based P2P network and microservice-

oriented technology. Under the composite service, we mean the composition of microservices in static

mode and the ensemble of microservices in dynamic. Composite services based on the proposed

approach are designed to solve the above scientific problems and are focused on the use in a hybrid

computing infrastructure, which includes both on-premises and cloud resources.

3. Creating composite service based on HPCSOMAC-MSC

Depending on the particular computing problems of the subject domain, as well as the requirements

and preferences of the user, the HPCSOMAS-MSC platform provides two modes for creating a

composite service, static and dynamic (figure 1). In the first case, based on the procedural formulation

of the problem, a composite service is fully prepared, and only then it is launched. In the second case,

for the non-procedural problem statement (NPS), the ensemble of microservices is composed

dynamically in the process of computing. The dynamic composition of web services is a promising

approach [8]. This approach is in demand when changes to the runtime requirements are frequent, and

when a complete set of services cannot be specified during development [6]. The dynamic

composition provides automating problems associated with the assembly of microservices. However,

it limits the freedom of users in the process of this assembly [6]. The static one is suitable in the case

of the functional requirements for the composite service remain unchanged for a long time [6]. When

solving problems in the subject domain mentioned in the introduction, both of these cases may occur.

Therefore, the HPCSPMAS-MSC framework supports both the two modes, static and dynamic

creation and execution of composite services. The static mode is provided by the AMP manager-agent

(AMPMA) and computational microservices agents (CMA). For dynamic one, the AMPMA initializes

distributed computational agents (DCA). All agents are created during the AMP development based on

HPCSOMAS-MSC programming or automating tools.

Figure 1. The HPCSOMAS-MSC architecture and AMP components.

3.1. Static composition of the microservices

The static composition is performed in several stages in the procedural formulation of the problem

(figure 2):

 The user sends a request to the AMPMA, in which the sequence of microservices for solving

the problem (microservice composition scheme) is given. The description of AMP

microservices functionality is provided by the AMPMA. Additionally, the user specifies non-

functional requirements.

 Based on the semantic description of microservices stored in the knowledge base (KB) in the

form of fragments of the relations MPIn  and PMOut  of microservices (M) with

parameters (P), the AMPMA performs information planning, which is a verification of the

admissibility of the microservice composition scheme. In the scheme

)};(),;(),...,;(),(;{ 11
1

22
2

1
1

n
n

nn
n AMBAMBAMAM 
 , where n is the number of

microservices, the AMPMA adds two microservices 1M and nM for, correspondently,

sending input data (the set iA) and receiving output data (the set iB).

 The search for the microservices required by the scheme is performed on the AMPMAs

installed on the HDCE nodes.

The validity of the microservices composition is checked according to the following condition. A

composition scheme is admissible if, for any input parameter of any microservice in this scheme, there

is exactly one previous microservice with the same output parameter. The following Boolean equation

corresponds to this condition of the composition admissibility [27]:

0)(12   ystp
n
p

n
t , (1)

where























 

.0 if ,0

))0)((()0(if ,1

))0)((()0(if ,)(

'

'
11

1
1)(

p

qpp

qppr
l
rgr

l
rg

l
rAq

A

BAqA

BAqAzzz

y

p

In equation (1), the matrix S is a matrix of the dimension nn of Boolean variables ijs . The S

describes the execution scheme of the composite microservice. The element 1ijs if the

microservice MM j  (nj ,1) is in the i-th string of the matrix S. Matrices A and B are Boolean

matrices of the dimension mn . Elements of these matrices are formed as follows: 1ija (1ijb) if

the parameter jP is the input (output) one for the microservice jM . Let ii BA , and '' , ii BA (ni ,1)

are correspondently the strings and columns of matrices A and B. The m is the number of parameters

of the execution scheme S. The values of strings and columns are zero if unit values are absent in these

matrices elements. The z is the array of the length l consisting of elements of the matrix S. The array z

is formed as follows:

},1,1:{ '
qij Bjtisz  .

Microservices have the following types:

 Atomic, performing one specific computational function,

 Simple, consisting of an atomic microservices sequence,

 Flow Pattern, used by the computational microservices agent (CMA) to control the flow of

tasks,

 Composite, consisting of a composition of the above microservices and embedded composite

microservices.

The microservice composition scheme describes a plan for conducting a computational experiment to

solve a specific problem of a subject domain. This scheme is built based on a computational model of

a subject domain and organizes the logic of execution of the microservice composition using task flow

control templates. As templates, ones similar to basic control flow patterns and advanced branching

and synchronization patterns [28] are used. A hierarchical control system is used to interpret the

composite service. CMAs that run Flow Pattern microservices distribute tasks on the computational

layers during execution. For example, for the parallel split template, the parallel subtasks are executed

at this layer. Double numbering (<layer number>.<New layer number>) allows the dynamic creation

of a new layer between two existing layers. Control by layer subtasks execution is carried out by the

agent creating this layer. After the layer subtasks are completed, the agent returns control higher in the

hierarchy.

3.2. Dynamic creating the microservices ensemble

Based on the dynamic approach, the microservice ensemble is assembled by a group of Distributed

Computational Agent (DCA) deployed in a P2P semantic network. When registering a microservice

on DCA, the description of the microservice interface is recorded in the local agent KB. All DCAs

have the same behavioral model based on the agent’s knowledge and reactions to external and internal

events. The dynamic assembly of microservices is performed as follows (figure 3):

 The user performs an NPS in the AMPMA interface.

 The AMPMA checks the admissibility and redundancy of the NPS. At the first stage, by a

distributed logical inference method developed by the authors based on the “direct wave”

method, the possibility of solving the problem on a distributed on HDCE nodes KB is

checked. In the case of solvability, an active DCA group is formed. Agents of this group

control the launch of microservices from the ensemble of microservices corresponding to this

group. The set of ensemble microservices are redundant if some input parameters of the NPS

do not affect the achievement of the goal. In the second stage, such parameters are excluded

from the NPS using the distributed backward-wave method applied to the set of output

parameters. The implementation of the distributed logical inference method based on the

discrete-event finite-state model FSMwVW (Finite State Machine with Variables and Works)

Figure 2. The static composition.

of an agent behavior is presented in [29]. The modified model FFSMwVW is described in

[30].

 A cooperative solution of the problem is performed by agents based on decentralized

asynchronous control (on input data readiness) by direct P2P interactions defined by

fragments of the In and Out relations specified in the local DCA KB.

Figure 3. The dynamic composition.

4. Illustrative example

In an illustrative example, composite services are used in the developed by authors AMP BCM-

QABDS for qualitative analysis of BDS based on the Boolean constraint method (BCM, [8]). The

computations are performed in a hybrid infrastructure, resources of which are given in table 1. The

resource integration in this infrastructure is carried out by the installation of AMPMAs on this

resource. The AMPMA must be configured after the installation. This configuration is set in the

MSCDT [31] agent editor (figure 3). In figure 3, the configuring the AMPMA on the VDS resource is

shown. The AMPMA has neighboring (connected agents) AMPMAs, the set of CMAs that can be

seen in the scrolling list (Compute services list in figure 4).

Table 1. HDCE infrastructure.

Resource Resource type
Installed software

Agents Additional software

Nodes of cluster «Akademik

V.M. Matrosov» [32]

On-premises AMPMA

Tomcat Server

VDS [33] Private Cloud AMPMA

SageMath VirtualBox

Docker Server

Docker Container

VDS [33] Public Cloud CRA Kernel Virtual Machine

Tomcat Server

PC On-premises Dew-AMPMA Tomcat Server

AMPMA with the microservice for building the Boolean model, verifying its feasibility (sequential

SAT and 2QBF solvers), and post-processing the results can be installed on on-premises computers.

Parallel solvers are installed on on-premises high-performance clusters. Additional resources are

allocated using Cloud Resources Agent (CRA) from the public cloud (VDS for the example).

Figure 4. The interface for agents configuring.

As an example of applying a composite service created based on a dynamic approach, we consider the

problem of searching for attractors and their basins in an autonomous asynchronous BDS.

In [1], we consider a synchronous autonomous BDS, the vector-matrix equation of which has the form

)(1 tt xFx , (2)

where x is the state vector of the dimension n (nBx , }10{ ,B ), }21{ ,...,k,Tt  is the discrete

time, and the F(x) is the vector-function of logic algebra called the transition function (nn BBF :).

Let us define the trajectory),(0xtx of (1) for each initial state
nBx 0

 as the finite sequence of states

kxxx ,...,, 10
 from the set nB . The state xi is a successor of the state xi-1, and xi-1 is a predecessor of the

state xi. In an autonomous BDS, each state has only one successor, and the number of predecessors of

this state can vary from zero to 2n-1. A cycle of the length k is a closed trajectory (x0 = xk) in which all

other states are pairwise distinct. An equilibrium state is the cycle of the length k=1. A cycle is called

an isolated if predecessors are absent for it.

The non-isolated cycle is called an attractor. Let X* be the attractor. The region of attraction (basin) of

an attractor of the radius k is the set of all states, from which the set X* is reachable in i  k time steps.

Equation (2) is equivalent to a single Boolean equation of the form

 0))(()(Φ 1
11

10  


t
i

t
i

n
i

k
t

k
k xFx,...,x,xx , (3)

where
t
ix and iF are i-th components of vectors tx and F;  denotes modulo-2 addition. For one-step

transition (k = 1), equation (3) takes the form

 0))(()(Φ 01
1

10
1   xFx,xx ii

n
i . (4)

Taking into account (4), equation (3) can be rewritten as:

 0)(Φ)(Φ 1
11

10  


ttk
t

k
k ,xx,...,x,xx .

Problem statement. It is required to find attractors and their basins for the given BDS.

The Boolean models of BDS dynamical properties required for solving this problem are given in table

2. These models were constructed based on the BCM. In figure 4, the fragment of the computation

model for solving the above problem is given.

Table 2. Required Boolean models.

Problem Boolean model Result of the

satisfiability

checking

Interpretation of the

result

Searching for

equilibrium states
0),(01

10
1 

xx
xx SAT (UNSAT)

Equilibrium states are

found (is not found)

Searching all

immediate

predecessors x0 of the

state nBs

0),(1

10
1 

sx
xx SAT (UNSAT)

The s is an attractor

(isolated equilibrium

state)

Searching the attraction

region (basin) of the

attractor X* of the

radius k

0)(),...,,(*10  kk
k xGxxx

concerning to variables
021 ,...,, xxx kk 

SAT (UNSAT)
The basin is found (is

not found)

In table 2, the equation 0)(* kxG determines a set of goal states [8].

For the dynamic approach, the following NPS is formulated using the web-interface of the AMPMA:

T1 = (})_,,_{};,{ 0
1

0
1 BASYABASIPABkLA  .

The meanings of input parameters 0
1A and output parameters 0

1B are given in figure 5. As a result of

the forming ensemble stage, the microservices ensemble is assembled from the following

microservices: {1, 2, 5, 6, 8, 9, 12, 13}.

Figure 4. The fragment of the computational model.

We use the NPS T1 for searching basins of attractors for the given BDS of the dimension n=11 using

the example of gene regulator network from [34], dynamic of which is described by the following

equations:

.,,

,

,

(5)

,

,

,,,,

1
9

1
8

1
10

1
9

1
10

1
811

1
9

1
810

1
8

1
69

1
9

1
7

1
6

1
5

1
10

1
9

1
6

1
5

1
10

1
9

1
7

1
6

1
10

1
9

1
7

1
5

1
10

1
7

1
6

1
5

1
10

1
9

1
8

1
6

1
10

1
9

1
8

1
5

1
10

1
9

1
8

1
7

1
10

1
8

1
6

1
5

1
10

1
8

1
7

1
6

1
10

1
8

1
7

1
5

1
9

1
8

1
6

1
5

1
9

1
8

1
7

1
6

1
9

1
8

1
7

1
5

1
8

1
7

1
6

1
58

1
10

1
8

1
6

1
4

1
10

1
8

1
6

1
4

1
10

1
8

1
7

1
4

1
10

1
8

1
7

1
6

1
8

1
7

1
6

1
47

1
10

1
5

1
3

1
6

1
5

1
3

1
10

1
6

1
3

1
10

1
6

1
56

1
10

1
8

1
6

1
4

1
11

1
10

1
6

1
4

1
11

1
10

1
8

1
4

1
11

1
10

1
8

1
6

1
11

1
8

1
6

1
4

1
11

1
10

1
5

1
4

1
11

1
10

1
6

1
5

1
11

1
10

1
8

1
5

1
11

1
6

1
5

1
4

1
11

1
8

1
5

1
4

1
11

1
8

1
6

1
5

1
10

1
6

1
5

1
4

1
10

1
8

1
5

1
4

1
10

1
8

1
6

1
5

1
8

1
6

1
5

1
45

1
24

1
8

1
3

1
3

1
1

1
8

1
33

1
8

1
1

1
2

1
1

1
8

1
22

1
11





















































ttttttttttttt

tttttttttttt

tttttttttttttttt

tttttttttttttttt

ttttttttttttttttt

tttt

ttttttttttttttttt

ttttttttttttt

tttttttttttt

tttttttttttttttt

tttttttttttttttt

ttttttttttttttttt

tttttttttttttttttt

xxxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx

In (5), the indexes of the components 0
ix of the Boolean state vector x in the time t=0 corresponds the

following order of the gene regulator network [34, 35]: Cln3; SBF; MBF; Cln1,2; Sic1; Cln5,6; CDh1;

Clb1,2; Mcm1; Cdc20; Swi5. The sign “  ” denotes logical conjunction.

As a result, seven equilibrium states were found, including an isolated fixed point and six attractors

(table 3). The presented results are consistent with those obtained in [34, 35]. The decimal code of the

attractor state is calculated by the formula 


n

i

i
ia

1

12 .

For example, the decimal code of the attractor (01010000000) (table 3, no. 1) is calculated as

0*1+1*2+0*4+1*8+0*16+0*32+0*64+0*128+0*256+0*512+0*1024+0*2048=10. Attractor basins

(ABAS) of the maximum radius k (RAB) are used for the visualization (figure 6-11). For this, the NPS

T2= (0
2A = {ABAS, Y_BAS};

OB2 = {PDAB}) is formulated. Using the resulting parameter PDAB

(plotter data) of the NPS T2 that stores in the user folder on the AMPMA resource, the developed by

authors graphical microservice (Grapher) of the BCM-QABDS visualizes online a basin for the

attractor no.1 from table 3 (figure 6).

Table 3. Equilibrium states for the BDS (4).

No Equilibrium state Basin size Max radius (r)

1 01010000000 151 2

2 00101000000 7 2

3 00101010000 109 6

4 00000000000 7 1

5 00001000000 9 2

6 00000010000 1 Isolated

7 00001010000 1764 16

Figure 6. The visualization of the basin of attractor number 1.

The Grapher interface allows the choice of visualization options (figure 6). For example, the first two

options set the horizontal increasing radius of the basin tree and the absence of marks (the decimal

attractor state code) at the graph vertices. Other basins of attractors (table 3) with labeled vertices of

the graph are shown in figures 7-10. In the case of a large basin size, its structure is visualized using a

radial tree (set by Graph type in the interface). Attractor number 7 from table 3 is shown in the form of

a radial tree (Fig. 11). The attractor is marked in red. The service Grapher was developed using the

static microservice composition because requirements to its functionality are unchanged.

Solving complex problems is carried out by formulating NPSs in the AMPMA interface with the

subsequent creation and execution of the corresponding ensembles of microservices. In the presented

example, NPSs T1 and T2 were used for finding the equilibrium states of a given BDS, determining

whether they are attractors, finding attractor basins, and the post-processing of results for the

visualization.

BCM-based approach to solving problems of qualitative analysis of BDS functioning on a finite time

interval is achieved by constructing Boolean models of dynamic properties, checking their

satisfiability by SAT or 2QBF solvers, and post-processing solutions. Unlike other SAT-oriented

approaches, Boolean models contain constraints describing both dynamics of BDS and the

specification of the dynamical property. BCM is a declarative method that provides the possibility of

data parallelism by splitting the Boolean model and distributed solving the obtained independent

subtasks. Thus, this approach allows us to significantly increase the dimension of the BDS state vector

and the period of its functioning when solving the problems of the qualitative analysis of BDS in the

HDCE.

Mathematical editors, converters, simplifiers, and generators are required for building Boolean

models. Boolean model verification programs are sequential and parallel solvers that have different

system requirements. The integration of the above heterogeneous software in the form of

microservices is carried out based on presented HPCSOMAS-MSC tools for the development and

execution of microservice compositions. The microservices are implemented based on RESTful style.

This approach provides independence, replicability, the autonomy of used software, and its interaction

through the lightweight message transfer mechanism.

Agents of the semantic P2P network perform decentralized asynchronous control of the microservice

ensemble execution. This approach provides adaptability, reliability, and scalability of computations.

The openness of this agent network allows the allocation of additional resources in the case of its lack

or failure.

HPCSOMAS-MSC tools for microservice composition development provide for creation

microservices and agents both the class library and configurable ready-made patterns. Also, the system

MSCDT for automation of these processes is provided. Thus, these tools are oriented on both

professional programmers and end-users, specialists in a subject domain.

5. Conclusion

Based on the HPCSOMAS-MSC framework, tools were developed to automate the construction and

execution of composite services in the form of a composition of microservices and an ensemble of

microservices based on respectively static or dynamic approaches. Composite service is performed in

the first case based on hierarchical control, in the second - based on decentralized asynchronous

control according to data readiness. The absence of a central control node increases the reliability of

the calculations. Using a P2P agent network allows agents to be mobilized if it is necessary to attract

additional resources due to their shortage or failure. These situations are handled in the behavioral

model of agents [30]. The developed tools were tested on several problems from the previously

mentioned research domain (for example, [11, 13, 14, 30]). As the development of research, the

possibility of adapting behavioral models of agents oriented to different HPCSOMAS-MSC

Figure 7. The basin of

attractor number 4.

Figure 8. The basin of attractor

number 2.

Figure 9. The basin of attractor

number 5.

Figure 10. The basin of

attractor number 3.

Figure 11. The basin of attractor number 7.

functioning modes is considered to provide a hybrid functioning, for example, launching an ensemble

of microservices on a computational layer in the hierarchy of microservices composition.

Acknowledgments

The present investigation was supported by Russian Foundation of Basic Research, projects no. 18-07-

00596. The authors would like to thank the Irkutsk Supercomputer Center of SB RAS for providing

access to cluster computational resources.

References

[1] Tan W, Zhou M 2013 Business and Scientific Workflows: A Web service-oriented approach,

Wiley, IEEE Press

[2] Huhns M N, Sing M P 2005 Service-oriented computing: key concepts and principles, IEEE

Internet Computing 9 (1) pp 75–81

[3] Rao J and Su X 2005 A Survey of Automated Web Service composition methods Semantic Web

Services and Web Process Composition. SWSWPC, LNCS vol 33872004 ed J Cardoso and A

Sheth (Berlin, Heidelberg: Springer) pp 43-54

[4] Maamar Z and Wives L K 2010 Social networks and Web services-based systems. [Online].

Available: https://www.igi-global.com/chapter/social-networks-web-services-based/41252.

[5] Seheon Song and Seok-Won Lee 2013 A goal-driven approach for adaptive service composition

using planning Mathematical and Computer Modelling 58 261–273

[6] Sheng Q Z, Qiao X, Vasilakos A V, Szabo C, Bourne S and Xu X 2014 Web services

composition: A decade’s overview Information Sciences 280 218–238

[7] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A 2019 Microservice-oriented

approach to automation of distributed scientific computations Proc. of the 42st Int.

Convention on Information and Communication Technology, Electronics and

Microelectronics, MIPRO 2019, Opatija, Croatia, May 2019 pp 253-258

[8] Oparin G, Bogdanova V and Pashinin A 2019 Qualitative analysis of autonomous synchronous

binary dynamic systems MESA 10(3) 407-419

[9] Nemirovskii A A 1993 Several NP-hard problems arising in robust stability analysis

Mathematics of Control, Signals, and Systems 6 99 – 105

[10] Somov Ye I, Butyrin S, Oparin G A and Bogdanova V G 2016 Methods and software for

computer-aided design of the spacecraft guidance, navigation and control systems MESA

7(4) 613-624

[11] Bychkov I V , Oparin G A , Bogdanova V G, Pashinin A A and Gorsky S A 2017 Automation

Development Framework of Scalable Scientific Web Applications Based on Subject Domain

Knowledge Parallel Computing Technologies. PaCT 2017. LNCS vol 10421 ed V

Malyshkin (Cham: Springer)

[12] Oparin G, Feoktistov A, Bogdanova V and Sidorov I 2016 Automation of multi-agent control

for complex dynamic systems in heterogeneous computational network AIP Conference

Proceedings. ICNPAA-2016, July 5-8, La Rochelle, France vol 1798(1) p 020117

[13] Bychkov I, Oparin G, Feoktistov A, Bogdanova V and Sidorov I 2017 The Service-Oriented

Multiagent Approach to High-Performance Scientific Computing Numerical Analysis and Its

Applications. NAA 2016. LNCS vol 10187 ed I Dimov I et. al (Cham: Springer) pp 261-268

[14] Oparin G, Bogdanova V, Gorsky S and Pashinin A 2019 The synthesis of stabilizing feedback

for binary dynamic systems: a logical approach MESA 10(3) 477-486

[15] Angel Lagares Lemos, Florian Daniel and Boualem Benatallah 2015 Web service composition:

A survey of techniques and tools ACM Computing Surveys 48(3) article 33

[16] Rodríguez G, Soria Á and Campo M 2016 AI-based Web Service Composition: A Review IETE

Technical Review vol 33(4) pp 378-385

[17] Farnaghi M, Mansourian A 2018 Multi-Agent Planning for Automatic Geospatial Web Service

Composition in Geoportals ISPRS Int. J. Geo-Inf 7 404

[18] Hioual O and Boufaida Z 2011 An agent based architecture (using planning) for dynamic and

semantic web services composition in an ebxml context Computer Science [Online].

Available: http://arxiv.org/abs/1103.0632v1.

[19] Benatallah B, Dumas M, Sheng Q Z and Ngu A H H 2002 Declarative composition and peer-to-

peer provisioning of dynamic Web services Proc. 18th Int. Conf. on Data Engineering, San

Jose, CA, USA, 2002 pp 297-308

[20] Shah Tejas R, Patel S V A Survey on issues and challenges of Web service development,

composition, discovery VNSGU journal of science and technology 5(1), 134 - 153

[21] Casati F, Ilnicki S, Jin L, Krishnamoorthy V and Shan M 2000 Adaptive and dynamic service

composition in eFlow Proc. of 12th Int. Conf. CAiSE 2000, Stockholm, Sweden, June 5–9,

2000 Proceedings CAISE 13–31

[22] Pautasso C 2005 JOpera: An agile environment for web service composition with visual unit

testing and refactoring. Proc. of IEEE Symposium on Visual Languages and Human-Centric

Computing pp 311–313

[23] Hull D, Wolstencroft K, Stevens R et al. 2006 Taverna: a tool for building and running

workflows of services Nucleic Acids Research 34 729–732

[24] Deelman E, Vahi K, Rynge M, Juve G, Mayani R and Ferreira da Silva R 2016 Pegasus in the

cloud: science automation through workflow technologies IEEE Internet Computing 20(1)

70-76

[25] Talia D. Workflow systems for science: concepts and tools. ISRN Software Engineering. Vol.

2013, Article ID 404525, 15 pages. http://dx.doi.org/10.1155/2013/404525

[26] Wolstencroft K., Haines R., Fellows D., Williams A., Withers D., Owen S., Goble C. (2013).

The Taverna workflow suite: designing and executing workflows of Web Services on the

desktop, web or in the cloud. Nucleic Acids Research, 41(Web Server issue), W557–W561.

http://doi.org/10.1093/nar/gkt328

[27] Oparin G A , Novopashin A P 2008 Boolean models and planning methods for parallel abstract

programs Autom Remote Control 69 1423–1432

[28] van der Aalst W, ter Hofstede A, Kiepuszewsk B et al. 2003 Workflow patterns Distributed and

Parallel Databases 14 5–51

[29] Oparin G A, Bogdanova V G, Pashinin A A and Gorsky S A 2018 Distributed solvers of applied

problems based on microservices and agent networks Proc. of the 41st Int. Convention on

Information and Communication Technology, Electronics and Microelectronics (MIPRO),

Opatija, May, 2018 pp 1415-1420

[30] Bychkov I, Oparin G, Bogdanova V and Pashinin A 2019 Intellectual technology for

computation control in the package of applied microservices Proc. of the 1st International

Workshop on Information, Computation, and Control Systems for Distributed Environments,

Irkutsk, Russia, July 8-9, 2019 pp 15-28

[31] Oparin G, Bogdanova V and Pashinin A 2019 Automation of microservices creation for

qualitative analysis of binary dynamic systems Proc. of the 1st International Workshop on

Information, Computation, and Control Systems for Distributed Environments, Irkutsk,

Russia, July 8-9, 2019 pp 88-98

[32] Irkutsk Supercomputer Center of SB RAS. [Online]. Available: http://hpc.icc.ru/.

[33] First VDS. [Online]. Available: https://firstvds.ru/.

[34] Li F, Long T, Lu Y, Ouyang Q and Tang C The yeast cell-cycle network is robustly designed

PNAS April 6, 2004 vol 101(14) pp 4781-4786

[35] Boolean network model of the control of the budding yeast cell cycle regulation. [Online].

Available: https://people.kth.se/~dubrova/BooleNet/budding_yeast.net

