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Abstract. When designing and using distributed storage systems with cloud technology, the 
security issues become crucial. One of the promising mechanisms is the computationally 
secure threshold secret sharing scheme. We propose a computationally secure secret sharing 
scheme based on the minimally redundant modular code. It reduces the computational 
complexity of data encoding and decoding and reduce data redundancy. We show that it is 
computationally secure and provides data redundancy equivalent to the redundancy of the 
Rabin system. We demonstrate that the minimally redundant modular code does not satisfy the 
criterion of compactness of a sequence, but it can be used as an asymptotically ideal secret 
sharing scheme. 

1.  Introduction 
The cloud technologies require users to take into account the increased risks of data security and 
reliability. To reduce the likelihood of theft, loss or distortion of data stored in clouds, two 
mechanisms can be used: secret sharing schemes and hash functions. Residue Number System (RNS) 
as the basis for the design of distributed storage systems combines these two mechanisms into one, 
since RNS on the one hand is a secret sharing scheme, and, on the other hand, it has properties of error 
detection and correction.  

Secret sharing schemes on RNS provide the same level of security as schemes built on Lagrange 
interpolation, however, have higher redundancy. To solve this problem, compact sequences as RNS 
moduli that satisfy the condition p" < p$ < ⋯ < p& < 2p& are proposed [1].  

Compact sequences highlight a class of asymptotically ideal Asmuth-Bloom secret sharing 
schemes [2, 3], which ensure a high level of data reliability and security. But this approach is not 
applicable in practice for storing big data, since data redundancy is higher than data replication and 
symmetric encryption.  

AC-RRNS [4] modification of the Asmuth-Bloom scheme uses compact sequences to reduce data 
redundancy while ensuring computational security. However, using a prime number 𝑝) as a key 
satisfying the condition: β	 = ∏ p./

.0" > p) > ∏ p&2./2$
.0) = α leads to increasing the complexity of the 



 
 
 
 
 
 

encoding and decoding algorithm from linear-logarithmic to quadratic. It does not allow its efficient 
use.  

An alternative solution to the problem is to use minimally redundant modular code, which, on the 
one hand, satisfies the criteria of compactness of a sequence, and, on the other hand, reduces the 
computational complexity of encoding and decoding while maintaining reliability and security at the 
same level. 

The rest of the paper is structured as follows. Section 2 discusses the properties of RNS. Section 3 
describes RNS-based minimally redundant code. Section 4 discusses our secret sharing scheme 
modification. Section 5 explores the security issues of the proposed scheme. Section 6 concludes the 
paper. 

2.  RNS and its properties 
RNS is a non-positional number system that allows splitting long numbers into a series of independent 
digits of small length, speeding up the calculations and organizing their parallelism. The main 
advantage of RNS is the ability to perform addition and multiplication operations fast compared to all 
other number systems. It causes a great interest in RNS in those areas in which large amounts of 
computation are required. 

RNS is defined by a system of mutually prime moduli β = {p", p$, … , p&}. The positive number X 
in the RNS for these moduli is represented as a tuple of numbers X = (x", x$, … , x&), where x. =
|X|=. = X	mod	p. [5] for i = 1,2, … , n. Such a representation of the number X is unique, if 0 ≤ X < P, 
where P = ∏ p.&

.0" , and is called the RNS range. 
The operations of addition, subtraction and multiplication in the RNS for the numbers A =

(a", a$, … , a&) and B = (b", b$, … , b&) are determined by the formulas: 

𝐴 ± 𝐵 = N|𝑎" ± 𝑏"|QR, . . . , |𝑎T ± 𝑏T|QUV  (1) 

𝐴 × 𝐵 = N|𝑎" × 𝑏"|QR, . . . , |𝑎T × 𝑏T|QUV  (2) 

The equalities (1) and (2) show the parallel nature of RNS, free from bitwise transfers. In addition, 
the numbers 𝑎X and 𝑏X have much smaller number of digits than the original numbers 𝐴 and 𝐵. 

In modern technology, one of the most popular properties of algorithms is their parallelism. This 
fact is due to the development of many parallel systems, from multiprocessor clusters to embedded 
systems for special purposes. 

The most common way to reconstruct the positional value of a number based on its residual 
representation is the Chinese Remainder Theorem (CRT), the classical form of which we will 
designate as CRTc.  

Let the number 𝑋 be given in the form (𝑥", 𝑥$, … , 𝑥T) in the CRT by moduli (𝑝", 𝑝$, … , 𝑝T). Then: 

𝑋 = [∑ ]𝑃X2"]Q_
T
X0" 𝑃X𝑥X[

`
    (3) 

where 𝑃X = 𝑃/𝑝X, ]𝑃X2"]Q_ is the multiplicative inversion of 𝑃X modulo 𝑝X for 𝑖 = 1, . . . , 𝑛. 
This method is computationally complex, since it leads to calculations that fall outside the range of 

𝑃, and its implementation requires the operation of calculating the residue of the division by a large 
number of 𝑃, which greatly complicates the calculation scheme. The calculation of the residue of the 
division in any computer system is traditionally one of the most expensive operations. The 
implementation of this operation on the FPGA leads to a significant increase in the hardware costs of 
the algorithm and an increase in the delay in operation. 

One approach to get rid of calculating the residue of dividing by the RNS range is an approach 
using a Mixed-Radix System (MRS) [6-8]. By MRS with moduli 𝑝", 𝑝$, … , 𝑝T we mean a system in 
which the integer 𝑋 is represented as:  

𝑋 = 𝑎T𝑝T2"𝑝T2$. . . 𝑝$𝑝" + 𝑎T2"𝑝T2$𝑝T2e. . . 𝑝$𝑝"+. . . +𝑎$𝑝" + 𝑎", 



 
 
 
 
 
 

where 𝑎f are the numbers 0,1, … , 𝑝f2". MRS numbers 𝑎f can be found by the formulas. 

𝑎" = 𝑥"	𝑚𝑜𝑑	𝑝"; 
𝑎$ = (𝑥$ − 𝑎")𝑐"$	𝑚𝑜𝑑	𝑝$ 
…. 
𝑎e = N(𝑥e − 𝑎")𝑐"e − 𝑎$V𝑐$e	𝑚𝑜𝑑	𝑝e 
𝑎T = N. . . N(𝑥T − 𝑎")𝑐"T − 𝑎$V𝑐$T−. . . −𝑎T2"V𝑐T2",T	𝑚𝑜𝑑	𝑝T 

The constants 𝑐Xf are multiplicative inverse elements for 𝑝X modulo 𝑝f for all 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, i.e. 
𝑐Xf ∙ 𝑝X = 1	𝑚𝑜𝑑	𝑝f for 1 ≤ 𝑖 ≤ 𝑛, and can be calculated, for example, using the Euclidean algorithm. 

The main advantage of MRS is the transition to the use of low-bit operations. Most operands for 
addition and multiplication operations are numbers whose bit capacity is equal to the capacity of the 
moduli, which allows constructing simpler schemes than when using CRT. In addition, the considered 
method can be presented in parallel form [9]. However, a decrease in the capacity of operands leads to 
an increase in the number of operations, including operations for calculating the residue of the 
division, which leads to an overall decrease in the operating time of the algorithm. 

Next, we consider a modification of the Chinese remainder theorem using fractional quantities, 
which we will denote CRTd [10-12]. If both parts of formula (3) are divided by 𝑃, then we obtain the 
relation 

𝑋o = p
`
= q∑

] _̀
rR]s_
Q_

T
X0" 𝑥Xq

"
    (4) 

where the operation | ∙ |" means discarding the integer part of the number and the numbers 

𝑘X =
] _̀
rR]s_
Q_

, 𝑖 = 1,2, … , 𝑛    (5) 

are constants of RNS and can be calculated in advance. In this case, the value of each sum will be in 
the range [0,1), which gives enough information to evaluate the sign and value of the number 
represented in the RNS. 

Such a transition allows replacing the exact number with its fractional characteristic, making it 
possible to control the accuracy of the presentation depending on the available resources and the task. 
The value 𝑋o can be considered as a positional characteristic of the number 𝑋, while the number 𝑋 can 
be found by the formula 

𝑋 = 𝑋o𝑃     (6) 

However, in the case of machine calculations, we can use only limited accuracy, which requires 
rounding or discarding the least significant bits of the fraction. Let us estimate the number of bits that 
make it possible to uniquely determine the fractional characteristic of the number 𝑋. Let 𝑘vw  be a finite 
fraction containing 𝑁 bits that coincide with the first 𝑁 bits of the number 𝑘X for all 𝑖 = 1,2, … , 𝑛. In 
other words 𝑘vw = ⌊𝑘X⌋$r{, where the operation means rounding the number down. The approximate 
value of the number 𝑋o will not be more accurate, since 𝑘X ≥ 𝑘vw . The exact value of 𝑋 can be restored 
by multiplying 𝑋o by 𝑃, discarding the fractional part with rounding up. Let us estimate the required 
calculation accuracy 𝑁, at which the value 𝑋o reconstructed using 𝑘vw  will not lead to errors when 
restoring the exact value of 𝑋. For this, the relation 

p2"
`
< ]∑ 𝑘vw𝑥XT

X0" ]" ≤
p
`
    (7) 

shows the uniqueness of the positional characteristic 𝑋o for different numbers of RNS. The 
transformation of expression (7) using formula (4) leads to the inequality 

0 ≤ ]∑ N𝑘X − 𝑘vw V𝑥XT
X0" ]" <

"
`
    (8) 



 
 
 
 
 
 

Since 𝑘X − 𝑘vw =
] _̀
rR]s_
Q_

−
${] _̀

rR]s_
2}${] _̀

rR]s_
}
s_

${∙Q_
=

}${] _̀
rR]s_

}
s_

${∙Q_
, then 

∑ N𝑘X − 𝑘vw V𝑥XT
X0" = ∑

}${] _̀
rR]s_

}
s_

${∙Q_
𝑥XT

X0" .   (9) 

Considering 𝑥X ≤ 𝑝X– 1, the left side of equality (9) satisfies the inequality: 

∑
}${] _̀

rR]s_
}
s_

${∙Q_
𝑥XT

X0" ≤ "
${ �∑ [2�]𝑃X2"]Q_[Q_

− ∑
}${] _̀

rR]s_
}
s_

Q_
T
X0"

T
X0" �  (10) 

It follows from (8) and (10) that 𝑁 satisfies the inequality: 

2� ≤ 𝑃 �∑ [2�]𝑃X2"]Q_[Q_
− ∑

}${] _̀
rR]s_

}
s_

Q_
T
X0"

T
X0" � ≤ −SQ + 𝑃∑ (𝑝X − 1)T

X0" .  (11) 

where 𝑆𝑄 = ∑ 𝑃XT
X0" . 

Denoting 𝜌 = ∑ (𝑝X − 1)T
X0" , from formula (11) we get that when choosing 𝑁 equal to 𝑁 =

⌈log$(𝑃 ∙ 𝜌 − 𝑆𝑄)⌉, the resulting estimate is the estimate refinement obtained in [12], where 𝑁 =
⌈log$(𝑃 ∙ 𝜌)⌉. Using the approximate method allows getting away from calculating the residue of the 
division by the RNS range, by increasing the dimension of the coefficients. An alternative solution is 
to use minimally redundant code, which imposes additional restrictions on the moduli, but at the same 
time reduces the complexity of decoding. 

3.  Minimally redundant code and its properties 
In the following, we assume that the RNS moduli are ordered in increasing order 𝑝" < 𝑝$ < ⋯ < 𝑝T. 
The number 𝑋 can be restored using the properties of the modular code, according to the following 
formula: 

𝑋 = ∑ 𝑀X]𝑀X
2" ⋅ 𝑥X]Q_

T2"
X0" + 𝑃T ⋅ 𝐼(𝑋),    (12) 

where for any 𝑖 ∈ [1, 𝑛 − 1]: 𝑀X = 𝑃T/𝑝X, and 𝐼(𝑋) is an interval characteristic that is determined 
using the following Theorem 1. 

Theorem 1 [13]. If the RNS moduli satisfy the condition 𝑝T ≥ 2𝑝" + 𝑛 − 2, then the interval 
characteristic 𝐼(𝑋) is calculated using the following formula: 

𝐼(𝑋) = � 𝐼�(𝑋)	𝑖𝑓	𝐼�(𝑋) < 𝑝"
𝐼�(𝑋) − 𝑝T		𝑖𝑓	𝐼�(𝑋) ≥ 𝑝T − 𝑝" − 𝑛 + 2

  (13) 

where 𝐼�(𝑋) = q[�U
Ù
[
QU
−⋅ ∑ [ "

Q_
[
QU
⋅ ]𝑀X

2" ⋅ 𝑥X]Q_
T2"
X0" q

QU

. 

As shown in Chernyavsky & Kolyada, 2009 [13], for RNS moduli to be minimally redundant 
modular code, it is necessary and sufficient that 

𝑝T = 2𝑝" + 𝑛 + |𝑝T − 𝑛|$ + 2   (14) 

We consider four cases: 
Case 1, 𝑝T and 𝑛 are even numbers, 𝑝T = 2𝑝" + 𝑛 + 2, 
Case 2, 𝑝T and 𝑛 are odd numbers, 𝑝T = 2𝑝" + 𝑛 + 2, 
Case 3, 𝑝T is even number and 𝑛 is odd number, 𝑝T = 2𝑝" + 𝑛 + 3, 
Case 4, 𝑝T is odd number and 𝑛 is even number, 𝑝T = 2𝑝" + 𝑛 + 3. 



 
 
 
 
 
 

Considering four cases, we can conclude that if 	𝑝T > 2𝑝", then the minimally redundant code does 
not satisfy the compactness criterion.  

Using (12) we can reduce the computational complexity of the data decoding algorithm. 

4.  Modification of the secret sharing scheme 
To formalize the proposed scheme, we use the following notations. 𝑆 ∈ 𝑍� is a secret, 𝑝", 𝑝$, … , 𝑝T are 
prime numbers (RNS moduli set), with properties of the minimum redundant modular code, where 
Q = 𝑞", 𝑞$, … , 𝑞� is secret key and 𝑞X is prime numbers and compact sequence, i.e. 𝑞" < 𝑞$ < ⋯ <
𝑞� < 2𝑞".  

We perform a masking transformation that translates 𝑆 to �̅� = 𝑆 + 𝑄 ⋅ 𝑟𝑎𝑛𝑑, where 𝑟𝑎𝑛𝑑 is a 
random number and 𝑆̅ < ∏ 𝑝X�

X0" . To calculate the chunks, we get 𝑐X = |𝑆̅|Q_. 
It follows from the condition �̅� < ∏ 𝑝X�

X0" = 𝛽 that 𝑆 + 𝑄 ⋅ 𝑟𝑎𝑛𝑑 < 𝛽, which means that 𝑆 < 𝛽 −
𝑄 ⋅ 𝑟𝑎𝑛𝑑. Let 𝑟𝑎𝑛𝑑 be bounded above 𝑟𝑎𝑛𝑑 ≤ 𝑟. We have 

𝑆 < 𝛽 − 𝑄 ⋅ 𝑟    (15) 

On the other hand, 𝑆 = |𝑆̅|� so that we can uniquely decode data if 

𝑆 < 𝑄     (16) 

Multiplying inequality (16) by 𝑟 and adding to (15), we have 

(𝑟 + 1) ⋅ 𝑆 < 𝛽    (17) 

Hence, 

𝑆 < �
��"

     (18) 

Since 𝑆 must satisfy two conditions (16) and (18), therefore: 

𝑆 < min  𝑄, �
��"

¡    (19) 

We consider two cases: 
Case 1: 𝑄 < �

��"
, then 𝑆 < 𝑄 and redundancy is equal to 

𝑅 ≈ ¤¥¦§ ∏ Q_U
_¨R

¤¥¦§ �
> ¤¥¦§ ∏ Q_U

_¨R
¤¥¦§ ∏ Q_©

_¨R 	2¤¥¦§(��")
= 1 + ¤¥¦§(��")�¤¥¦§ ∏ Q_U

_¨©ªR
¤¥¦§ ∏ Q_©

_¨R 	2¤¥¦§(��")
 (20) 

Case 2: 𝑄 ≥ �
��"

, then 𝑆 < �
��"

 

𝑅 ≈ ¤¥¦§ ∏ Q_U
_¨R

¤¥¦§ �2¤¥¦§(��")
= ¤¥¦§ ∏ Q_U

_¨R
¤¥¦§ ∏ Q_©

_¨R 	2¤¥¦§(��")
= 1 + ¤¥¦§(��")�¤¥¦§ ∏ Q_U

_¨©ªR
¤¥¦§ ∏ Q_©

_¨R 	2¤¥¦§(��")
  (21) 

From (20) and (21), it follows that the secret sharing scheme has optimal redundancy (21). If the 
condition 𝑄 ≥ �

��"
 is fulfilled, then (𝑟 + 1)𝑄 ≥ 𝛽. On the other hand, from (15) 𝑟 ⋅ 𝑄 ≤ 𝛽 follows, 

therefore 𝛽 satisfies the condition: 

𝑟 ⋅ 𝑄 ≤ 𝛽 ≤ (𝑟 + 1)𝑄   (22) 

Dividing (22) by 𝑄, we get: 

𝑟 ≤ �
�
≤ 𝑟 + 1    (23) 

From (23), it follows that the value 𝑟 = «�
�
¬. Since, from the point of view of safety, 𝑟 satisfies the 

condition 𝑟 ≥ 1, then 𝑄 < 𝛽/2. Therefore, the scheme parameters must satisfy the following 
conditions:  



 
 
 
 
 
 

Condition 1: β	 > ∏ 𝑝T2X/2$
.0)  (determines that the proposed scheme is a threshold) 

Condition 2: 𝑄 < �
$
 and gcd(𝑄, 𝛽) = 1. 

Condition 3: 𝑟 = «�
�
¬. 

Condition 4. 2®2" < 𝑝" < 𝑝$ < ⋯ < 𝑝T is the minimum redundant modular code. 
In contrast to the Asmuth-Bloom scheme [14], the proposed scheme provides data security with 

minimum redundancy. 

5.  Properties of the proposed scheme 
In this section, we examine the security parameters of the proposed scheme. Condition 4 states that 
RRNS moduli set is a minimum redundant modular code. Hence, each user has approximately the 
same amount of information about the original data. Now, we show that proposed scheme minimizes 
the probability of access to data by collusion of adversaries. To this end, we prove the following 
statements, corollary, and theorem. 

Statement 1. In proposed (𝑘, 𝑛) secret sharing scheme, if an adversary coalition knows less than 𝑘 
secret shares and secret key 𝑄, then the probability obtaining the secret is less than 1/2(®2"). 

Proof. For the set 𝐼 ⊂ {1,2, … , 𝑛} with the cardinality less than 𝑘, we can compute the value 𝑆∗ that 
satisfies the equality 𝑆∗ = |𝑆|`±, where 𝑃² = ∏ 𝑝XX∈² . Therefore, 𝑆 can be represented as: 𝑆 = 𝑆∗ + 𝑃² ⋅
𝑤, where integer 𝑤 ∈ [0, ⌊𝛽/𝑃²⌋]. Each value of 𝑤 corresponds the value of 𝐶µ∗  calculated by the 
following formula: 𝐶µ∗ = |𝑆∗ + 𝑃² ⋅ 𝑤|Q¶. 

Taking into account Condition 1, 𝑃² satisfies the condition 𝑃² ≤ ∏ 𝑝T2X�2$
X0) . Consequently, the 

probability to compute 𝑆 with the known 𝑆∗, satisfies the equality 𝑃𝑟(𝐼) ≤ "

· ¸¹±
º
≤ "

QUr©ªR
< "

$»rR
 

Statement 2. In the proposed (𝑘, 𝑛) scheme, probability to obtain the secret based on known 𝑘 or 
more secret shares without secret key is less than $

¼(�)2$©ªR
, where 𝜙(𝑥) is Euler function. 

Proof. Knowing 𝑘 or more secret shares using the Chinese remainder theorem, we can restore the 
value of 𝑆̅. In order to calculate 𝑆 from 𝑆̅ it is necessary to sort out the whole set of possible values of 
𝑄. Since from Condition 2 gcd(𝑄, 𝛽) = 1 and 𝑄 < �

$
, then 𝑄 represented in RNS by the moduli 

𝑝", 𝑝$, … , 𝑝� should not contain a single residue from the division equal to zero. Let us consider the 
values of the form 𝑋¾, the smallest of the numbers which in the representation of the moduli 𝑃 
contains 𝑒 ≤ 𝑘 different zero values at the positions 𝐸 = {𝑖", 𝑖$, … , 𝑖Á}, respectively, then the number 
of numbers containing at the positions {𝑖", 𝑖$, … , 𝑖Á} zeros and �

$
 is « �

$pÂ
¬. Therefore, the number of 

non-coprime to 𝛽 numbers is ∑ « �
$pÂ

¬¾∈² . Considering that the cardinality of the set 𝐼 is 2�, then 

∑ « �
$pÂ

¬¾∈² < ∑ �
$pÂ¾∈² = "

$
∑ �

pÂ¾∈² − 2� < "
$
∑ « �

pÂ
¬¾∈² + 2�  (24) 

Since the number of numbers that are non-coprime to 𝛽 and smaller 𝛽 is, on the one hand, equal to 
∑ « �

pÂ
¬¾∈² , on the other hand, substituting 𝛽 − 𝜙(𝛽) in (24), we find that the number of numbers non-

coprime to 𝛽 and less than  �
$
 is less then: 

"
$
N𝛽 − 𝜙(𝛽)V + 2�    (25) 

Therefore, the number of numbers coprime to 𝛽 and less than �
$
 is greater than or equal to: 

�
$
−  "

$
N𝛽 − 𝜙(𝛽)V + 2�¡ = "

$
𝜙(𝛽) − 2� = ¼(�)2$©ªR

$
  (26) 



 
 
 
 
 
 

Hence, the probability to obtain 𝑄 is less than $
¼(�)2$©ªR

. 
Now, we show the computational security of the proposed scheme. The concept of computational 

security is based on the following idea: information cannot be effectively restored if there is no 
complete information. Therefore, the scheme is computationally secure, if the adversary knows the 
secrets 𝑆("), 𝑆($) and incomplete sets of shares 𝐶("), 𝐶($), but cannot map N𝑆("), 𝐶(")V and N𝑆($), 𝐶($)V 
unambiguously.  

Computational security for secret sharing schemes can be defined in more strong way [15]. It is 
based on the polynomial indistinguishability concept [16-23]. For any probability distribution 𝐷(𝐶, 𝑆), 
a secret sharing scheme is computationally secure if, for any pair of secrets 𝑆("), 𝑆($) and incomplete 
subsets of shares 𝐶(") and 𝐶($), the distributions 𝐷N𝐶("), 𝑆(")V and 𝐷N𝐶("), 𝑆(")V are polynomial 
indistinguishable, i.e. for any probabilistic algorithm 𝐴 

[Pr  𝐴  𝐷N𝐶("), 𝑆(")V¡ = 1¡ − Pr  𝐴  𝐷N𝐶($), 𝑆($)V¡ = 1¡[ <
1

𝑝𝑜𝑙𝑦(𝑛, 𝑘)
, 

where 𝑝𝑜𝑙𝑦(𝑛, 𝑘) is the some polynomial over the amount of possible shares. 
Theorem 2. The proposed scheme is computationally secure if 𝑘 ≤ 4. 
Proof. To prove the computational security of proposed scheme, we use the auxiliary inequality. 

∀	𝑎, 𝑏, 𝑐 ∈ 𝑅: |𝑎 − 𝑏| ≤ |𝑎 − 𝑐| + |𝑏 − 𝑐|   (27) 

Let = Pr  𝐴  𝐷N𝐶("), 𝑆(")V¡ = 1¡, 𝑏 = Pr  𝐴  𝐷N𝐶($), 𝑆($)V¡ = 1¡, 𝑐 = PrN𝐷N𝐶("), 𝑆(")V = 1V	. 
We have: 

[Pr  A  DNC("), S(")V¡ = 1¡ − Pr  A DNC($), S($)V¡ = 1¡[ 

≤ [Pr  A  DNC("), S(")V¡ = 1¡ − PrNDNC("), S(")V = 1V[   (28) 

+ [Pr  A  DNC($), S($)V¡ = 1¡ − PrNDNC("), S(")V = 1V[ 

where PrN𝐷N𝐶("), 𝑆(")V = 1V is the probability of obtaining the secret using the first 𝑘 shares. 
Since the number of desired outcomes is less than or equal to ∏ 𝑝X�

X0"  and the total number of all 
outcomes is ∏ 𝑝XT

X0" , then the probability is 

Pr  A  DNC("), S(")V¡ = 1¡ ≤
∏ 𝑝X�
X0"

∏ 𝑝XT
X0"

=
1

∏ 𝑝XT
X0��"

, 

Pr  A  DNC($), S($)V¡ = 1¡ ≤
∏ 𝑝X�
X0"

∏ 𝑝XT
X0"

=
1

∏ 𝑝XT
X0��"

, 

PrNDNC("), S(")V = 1V =
1

∏ 𝑝X�
X0"

. 

From Condition 4 and k ≥ 4, it follows that p"/ < ∏ p./
.0" < 2/p"/ and p"&2/ < ∏ p.&

.0/�" <
2&2/p"&2/. 

Therefore, "
$©QR©

< "
∏ Q_©
_¨R

< "
QR©

  and  "
$Ur©QRUr©

< "
∏ Q_U
_¨©ªR

< "
QRUr©

. 

Let us estimate terms of (28): 

[Pr  A  DNC("), S(")V¡ = 1¡ − PrNDNC("), S(")V = 1V[ < max Í "
QRUr©

− "
$©QR©

, "
QR©
− "

$Ur©QRUr©
Î (29) 

[Pr  A  DNC($), S($)V¡ = 1¡ − PrNDNC("), S(")V = 1V[ < max Í "
QRUr©

− "
$©QR©

, "
QR©
− "

$Ur©QRUr©
Î .  



 
 
 
 
 
 

By substituting (29) in (28), we obtain: 

[Pr  𝐴  𝐷N𝐶("), 𝑆(")V¡ = 1¡ − Pr  𝐴  𝐷N𝐶($), 𝑆($)V¡ = 1¡[  (30) 

< 2 ∙ max �
1

𝑝"T2�
−

1
2�𝑝"�

,
1
𝑝"�
−

1
2T2�𝑝"T2�

Ï . 

It means that the proposed scheme satisfies the formal definition of computational security. 
The theorem is proven. 
Theorem 2 has a significant practical importance. It states that the adversary cannot obtain any 

information from an incomplete set of shares.  
Let (𝑆("), 𝐶(")) and (𝑆($), 𝐶($)) satisfy the following assertions for all 𝑖 ∈ [1, … , 𝑛]: 

𝑐X
(") = ]𝑆(") + Q ⋅ 𝑟𝑎𝑛𝑑"]Q_, 𝑐X

($) = ]𝑆($) + 𝑄 ⋅ 𝑟𝑎𝑛𝑑$]Q_  (31) 

Since for all ∈ [1,… , 𝑛] gcd(Q, 𝑝X) = 1, there exist 𝑟𝑎𝑛𝑑"Ð , 𝑟𝑎𝑛𝑑$Ð , Q′ such that the following 
equations are satisfied: 

𝑐X
(") = ]𝑆($) + Q′ ⋅ 𝑟𝑎𝑛𝑑$Ð ]Q_, 𝑐X

($) = ]𝑆(") + Q′ ⋅ 𝑟𝑎𝑛𝑑"Ð ]Q_.		  (32) 

From (31) and (32), it follows that to unambiguously map (𝑆("), 𝐶("))	and (𝑆($), 𝐶($))	, 𝑄 is 
required. Since 𝑄 is not known, our scheme is computationally secure.  

6.  Conclusion 
We propose and analyze computationally secure threshold secret sharing schemes based on the 
minimally redundant modular code. We show that a minimally redundant modular code does not 
possess the compact sequence property. We study the selection of circuit parameters to minimize 
redundancy while ensuring data security. We demonstrate that a scheme has minimal redundancy if it 
satisfies Conditions 2 and 3.  

We prove the security property of the proposed modification of the secret sharing scheme. The 
probability of a secret being obtained by an attacker is provided, as well as we prove the 
computational security of this scheme. This information shows a possible level of security that allows 
working out a more detailed strategy for protecting data in cloud storages when applying this 
modification.  

In the future work, we plan to study the applicability of the proposed scheme in different areas: 
homomorphic data encryption; efficient implementation of data encoding and decoding algorithms 
using artificial neural networks and minimally redundant modular code; generating moduli with the 
property of minimally redundant modular code; implementing safe and reliable storage systems for 
processing and transmitting data in cloud computing; building devices of low-power devices for use in 
the design of smart Internet of things, etc. 
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