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Abstract. The paper discusses the reduction of problems based on Latin squares to the exact
cover problem aiming at its subsequent solution using the dancing links algorithm. The former
problems include generation of Latin squares and diagonal Latin squares of a general form/with a
given normalization, generation of orthogonal Latin and diagonal Latin squares directly/through
the set of transversals, obtaining a set of transversals for a given square, forming a subset of
disjoint transversals. For each subproblem, we describe in detail the process of forming the
corresponding binary coverage matrices. We show that the use of the proposed approach in
comparison with the classical one, i.e. the formation of sets of transversals and their coverages
using exhaustive enumeration, allows one to increase the effective processing pace of diagonal
Latin squares by 2.5–5.6 times. The developed software implementations of the algorithms
are used in computational experiments as part of the Gerasim@Home volunteer distributed
computing project on the BOINC platform

1. Introduction
One of the known types of combinatorial objects are the Latin Squares (LS) [1, 2], which are
square tables of size N × N cells, where N is the order of the square, filled with elements of
some alphabet U (for definiteness in this paper, by integers from 0 to N − 1), so that in each
row and each column the elements of the alphabet are not repeated. For Diagonal Latin Squares
(DLS), an additional restriction is introduced on the absence of the same values on the main and
secondary diagonals. A number of scientific publications study the properties of LS and DLS. A
number of open questions from the field of enumerative combinatorics [3] and open mathematical
problems are related to them, the most famous of which is the problem of the existence or non-
existence of a triple of mutually orthogonal LS/DLS of order 10. Orthogonal, abbr. OLS/ODLS,
are such squares A = (aij) and B = (bij) for which all ordered pairs (aij , bij), i, j = 0, N − 1 are
different.

Currently, all ODLS of orders 1–8 and their properties are known up to an isomorphism in
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the corresponding main classes1. For higher orders, it is currently not possible to obtain all
ODLS due to their large number on the one hand and, as a consequence, huge computational
costs on the other hand. Currently, in the projects of volunteer computing RakeSearch [4]
and Gerasim@Home [5], the lists of canonical forms (lexicographically minimal representatives
within the corresponding main classes) of the ODLS of orders 9 and 10 are being constructed.
Moreover, the computations within the RakeSearch project are based on the existence of such
ODLS pairs, for some orders [6], in which an orthogonal mate is obtained from the original
one by rearranging its rows (a special case of orthogonality of the ESOLS type (Extended Self-
Orthogonal Latin Squares) [7], which allows one to raise the processing rate of squares to a value
of about 70,000–80,000 DLS/s. The Gerasim@Home project uses a general classical approach
based on the Euler-Parker method [8], in which the presence of a general-type ODLS mate for a
given square is checked in two stages. They are construction of a set of diagonal transversals and
search for subsets of N disjoint transversals in its composition. At the same time, both tasks are
actually polynomially reduced to solving the exact cover problem that is NP-complete [9], the
solution of which is possible both directly, using the appropriate recursive algorithms, and using
the well-known dancing links algorithm (DLX [10, 11]). This paper provides meticulous study
of the details of this procedure for polynomial reduction of initial particular problems on the
basis of LS/DLS to DLX and estimation of speed characteristics of the corresponding software
implementations.

2. DLX algorithm for solving the exact cover problem
The DLX algorithm for solving the exact cover problem is based on constructing the
corresponding binary coverage matrix of size R rows by C columns, followed by finding such
subsets of rows whose units exactly (without intersections) cover all columns. To solve problems
based on LS/DLS, it is necessary to form various coverage matrices, which is non-trivial and is
discussed in detail below.

When forming an LS , the rows of the binary matrix correspond to all possible combinations
of triples (i, j, ν), where i is the row number of the formed square, j is the column number, ν
is the value placed in the cell aij , the total number of rows is N3. The columns of the binary
matrix correspond to three semantic groups of N2 elements each:

(i) The i-th row ri of the square contains the value of ν (N2 columns of the binary matrix),

(ii) The j-th column cj contains the value of ν (N2 columns of the binary matrix),

(iii) The cell of a square with coordinates [i, j] is used (N2 columns of a binary matrix).

The binary matrix that corresponds to forming an LS of order 3 is shown in Fig. 1.
When forming a DLS , two more groups of columns are added to the matrix considered above:

(i) The main diagonal of the square contains the value ν (N columns),

(ii) The secondary diagonal of the square contains the value ν (N columns).

The binary matrix that corresponds to forming an LS of order 3 is shown in Fig. 2.
When forming LS/DLS normalized by their first row , by definition, the elements of the first

row are specified: a00 = 0, a01 = 1, . . . , a0,N−1 = N − 1, and one cannot set any other values in
their places, which corresponds to the special first row and gaps (empty rows without units) in
the binary matrix. An example of such a binary matrix is shown in Fig. 3, where blank lines
are highlighted in gray. In order to reduce the problem dimension, empty rows can be removed
from the matrix.

To search for a set of diagonal transversals in the LS/DLS , the rows of the binary matrix
correspond to the elements aij of the square, included in the transversal. The columns of the
matrix correspond to the following semantic groups of elements:

1 http://evatutin.narod.ru/evatutin odls 1 to 8.zip



(i) Transversal element aij covers the i-th row of the square (N columns),

(ii) Transversal element aij covers the j-th column of the square (N columns),

(iii) Transversal element aij = ν covers the value of ν in the set of values used in the transversal
(N columns),

(iv) Element aij is located on the main diagonal (1 column),

(v) Element aij is located on the secondary diagonal (1 column).

Figure 1. A binary matrix of size N3 × 3N2 for the formation of an LS of order N = 3
(hereinafter, the empty elements of the binary matrix correspond to zero values). The lines of

one of the possible coverages corresponding to the square

0 1 2
1 2 0
2 0 1

 are highlighted in gray.

When forming transversals of a general form (non-diagonal), the last two semantic groups
and the corresponding two columns of the matrix should be excluded from consideration. Note
that when forming a coverage, the values of groups 1, 2, 4, and 5 are general and independent
of the processed DLS, while the values of group 3 are determined by the specific values of the
elements of the processed DLS, for which a set of transversals is formed. An example of a binary

matrix for the formation of a set of diagonal transversals for an LS

0 1 2
1 2 0
2 0 1

 is shown in

Fig. 4.



To search for an ODLS mate B for a given DLS A directly (without using transversals),
the binary matrix has N3 rows corresponding, as in the search for LS/ DLS, to all possible
combinations of triples (i, j, ν). The columns of the matrix correspond to two semantic groups:

(i) The formation of the correct DLS B (3N2 + 2N columns),

(ii) The uniqueness of pairs of values (ν1, ν2), ν1 = aij , ν2 = bij (N2 columns by the number of
pairs).

Figure 2. A binary matrix of size N3 × (3N2 + 2N) for the formation of DLS of order N = 3.

To form an OLS from the first semantic group of the matrix, it is necessary to exclude 2N
columns corresponding to restrictions on the uniqueness of values on the diagonals.

To form the reduced OLS/ODLS pairs, it is necessary, as already discussed above, to form a
special first row of the binary matrix corresponding to the pairs of elements (0, 0), (1, 1), . . . , (N−
1, N − 1) in the first rows of squares of the formed pair, and to remove from the binary matrix
the empty lines corresponding to the assignment (a0i := ν1) ∧ (b0i := ν2) of values of the fixed
elements. An example of a binary matrix corresponding to the formation of the ODLS mate to
a given DLS is shown in Fig. 5.

When forming an ODLS from a set of transversals, each row of the binary matrix corresponds
to one of the transversals, the columns of the matrix correspond to the elements aij of the formed
orthogonal square that are part of the transversal. An example of a square, its set of transversals
and the corresponding binary matrix are shown in Fig. 6.

When forming ODLS pairs directly (without transversals), the corresponding binary matrix



will have N4 rows corresponding to all possible combinations of values (i, j, ν1, ν2), and

(3N2 + 2N)︸ ︷︷ ︸
DLS A

+ (3N2 + 2N)︸ ︷︷ ︸
DLS B

+ N2︸︷︷︸
pairs (aij ,bij)=(ν1,ν2)

= 7N2 + 4N

columns that correspond to the correctness conditions for the pair of squares A and B in
conjunction with the uniqueness of the pairs (ν1, ν2).

Figure 3. A binary matrix of size (N2(N −1) + 1)× (3N2 + 2N) for forming a DLS normalized
on the first row of order N = 3. Empty lines for clarity are left in the matrix, by deleting them
the dimension of the problem (matrix size) is reduced up to (N(N − 1)2 + 1)× (3N2 + 2N).

It is easy to notice that the binary matrices given above, corresponding to various problems
based on LS/DLS/OLS/ODLS, are significantly sparse, which makes it efficient to use the DLX
dancing links algorithm in the search for coverages.

Figure 4. A binary matrix of size N2 × (3N+2) to form the set of diagonal transversals of the

LS

0 1 2
1 2 0
2 0 1

.



Figure 5. A binary matrix of size N3 × (4N2 + 2N) for forming the ODLS for the given LS0 1 2
1 2 0
2 0 1

. The values of group 2 depend on the values of elements of square A.

Figure 6. A binary matrix of size T × N2, where T is the number of transversals, to form
OLS/ODLS of order N = 3: initial square (a), set of transversals (b), binary matrix (c).

Tables 1–3 show the sizes of binary matrices for solving the problems considered above for
squares of order N ≤ 10. The size of the coverage matrices polynomially depends from the



dimension of the problem being solved (from the LS/DLS order N), and the corresponding
algorithms for their formation are quite simple and have an asymptotic polynomial time
complexity not exceeding O(N3).

Table 1. Sizes of binary matrices in the exact cover problem to form LS/DLS depending on
the order of squares N

Construction of LS Construction of DLS
Construction of
normalized LS

Construction of
normalized DLS

N
N3×3N2 N3×(3N2+2N) (N(N−1)2+1)×3N2 (N(N−1)2+1)×

×(3N2+2N)

2 8 × 12 8 × 16 3 × 12 3 × 16
3 27 × 27 27 × 33 13 × 27 13 × 33
4 64 × 48 64 × 56 37 × 48 37 × 56
5 125 × 75 125 × 85 81 × 75 81 × 85
6 216 × 108 216 × 120 151 × 108 151 × 120
7 343 × 147 343 × 161 253 × 147 253 × 161
8 512 × 192 512 × 208 393 × 192 393 × 208
9 729 × 243 729 × 261 577 × 243 577 × 261
10 1000 × 300 1000 × 320 811 × 300 811 × 320

Table 2. Sizes of binary matrices in the exact cover problem to form sets of transversals for
LS/DLS depending on the order of squares N

Construction of the set
of transversals of LS/DLS

Construction of the set
of diagonal transversals of LS/DLS

N
N2 × 3N N2 × (3N + 2)

2 4 × 6 4 × 8
3 9 × 9 9 × 11
4 16 × 12 16 × 14
5 25 × 15 25 × 17
6 36 × 18 36 × 20
7 49 × 21 49 × 23
8 64 × 24 64 × 26
9 81 × 27 81 × 29
10 100 × 30 100 × 32

In the early software implementation the search for transversals and covers from them was
implemented using the exhaustive search method. In this case, the strategy of early cutting
off unpromising solutions (branches and bound method [12]), the variation of the filling order
of transversal elements in accordance with the principle of minimum capabilities and the use
of bit arithmetic were tested and the processing rate 357 DLS/s was reached [13]. Reduction
of the problem of checking random DLS for the presence of ODLS to the search for the exact
covers through transversals in two stages (searching for diagonal transversals, searching for the
cover of a square with disjoint diagonal transversals), using the developed DLX implementation,



allowed us to increase the processing rate to 900 DLS/s for single-threaded implementation in
Delphi on the processor Intel Core i7 4770 (Haswell). In fact, two implementations of the DLX
algorithm were developed: one based on a two-dimensional array, the other based on a dynamic
list. Array-based implementation is suitable for debugging, but list-based implementation turned
out to be faster. In [14], DLX was used to find all orthogonal mates for randomly generated
DLS of order 10. The resulting performance was about 899 DLS/s on 1 CPU core. Note, that
in [9] DLX outperformed both SAT approach and backtrack search. Using a similar software
implementation in C++ allows one to achieve an effective processing rate of about 7 000− 8 000
DLS/s in the same conditions within the special procedure named canonization (search for
symmetrically placed transversals in the LS, putting them in place of the main and secondary
diagonals of a square by rearranging its rows and columns [15]). The way to build a faster
procedure for checking the DLS for the presence of ODLS is currently unknown.

Table 3. Sizes of binary matrices in the exact cover problem to form OLS/ODLS depending
on the order of squares N

Search for ODLS for
a given DLS directly

Search for OLS for
a given LS directly

Search for OLS
using transversals

Search for ODLS
using transversals

N
N3 × 4N2 + 2N N3 × 4N2 T ×N2 T ×N2

2 8 × 20 8 × 16 0 × 4 0 × 4
3 27 × 42 27 × 36 (3 – ?) × 9 0 × 9
4 64 × 72 64 × 64 (0 – 8) × 16 4 × 16
5 125 × 110 125 × 100 (3 – 15) × 25 (1 – 5) × 25
6 216 × 156 216 × 144 (0 – 32) × 36 (2 – 6) × 36
7 343 × 210 343 × 196 (3 – 133) × 49 (0 – 27) × 49
8 512 × 272 512 × 256 (0 – 384) × 64 (0 – 120) × 64
9 729 × 342 729 × 324 (68 – ?) × 81 ? × 81
10 1000 × 420 1000 × 400 (0 – 5504) × 100 (? – 866) × 100

Note: symbol ”?” in the table indicates the quantities whose exact value is currently unknown.

3. Conclusion
Thus, the problems considered above allow effective polynomial reduction to the exact cover
problem and its solution using DLX. The developed software implementations of the algorithms
for constructing cover matrices, DLX, and reconstructing solutions from the found covers are
currently actively used in the Gerasim@Home volunteer computing project within the BOINC
platform [16], and the speed characteristics of the search for ODLS of order 10 are limited by this
combination of software implementations of these algorithms. At the moment, their use made
it possible to find a list of 9.7 million canonical forms of ODLS, including 24 different types
of combinatorial structures (graphs from DLS on the set of binary orthogonality relation) [17].
Most part of them were found via the approach proposed in the paper in combination with
different LS generators (for general type DLS, plane symmetric DLS, generalized symmertic DLS,
neighborhoods of generalized symmetries of DLS) in the input of the considered Euler-Parker
algorithm. In some experiments within the project the search for ODLS with special types of
orthogonality can be performed without the use of transversals (for example, for Self-Orthogonal
DLS (abbr. SODLS) [18] and Extended Self-Orthogonal DLS (abbr. ESODLS)) and limited by
the speed characteristics of the appropriate generators, however, post-processing of the obtained
results still requires the use of the Euler-Parker method with DLX inside. Unfortunately, no



one of the found combinatorial structures includes a triple of pairwise orthogonal DLS or a
clique of greater cardinality. Also, these program implementations have been used in solving
some enumeration problems that allowed us to discover a set of new numerical series within
the Online Encyclopedia of Integer Sequences (OEIS) [19, 20] (A287644, A287645, A287647,
A287648, A287651, A287695, A305568, A305569, A305570, A305571, A328873, etc.).
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