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Abstract. Nowadays, determining critical components of energy systems is a relevant 

problem. The complexity of its solving increases significantly when it is necessary to take into 

account the simultaneous failures of such components. Usually, in problem-solving, processing 

a large number of failure variants and their consequences is required. Processing such data 

using traditional relational database management systems does not allow us to quickly identify 

the most critical components. In the paper, our successful practical experience in applying an 

in-memory data grid within large-scale analyzing of the energy system vulnerability is 

provided. The experimental analysis showed the good scalability of distributed computing and 

significant reduction in data processing time compared to using an open-source SQL relational 

database management system. In developing and applying the distributed applied software 

package for solving the aforementioned problem we have used the Orlando Tools framework. 

Within its applying, we have implemented continuous integration of the package software 

taking into account the preparing and processing of subject-oriented data through the in-

memory data grid. 

1.  Introduction 

Nowadays, high-performance computing technologies, including software and hardware 

infrastructures for distributed computing, continue to develop. Their capabilities are expanding. 

Therefore, these technologies are becoming much more complex. Developers and end-users of 

scientific applications based on the workflow use face challenges in effective preparing, processing, 

and analysing subject-oriented data in the computing process. To this end, we discuss applying a 

modern technology of the distributed data storage in relation to large-scale analysis of the energy 

system vulnerability. 

The resilience is the ability of a system to prevent damage before disturbances, mitigate losses 

during these events, and improve the recovery capability after eliminating their consequences [1]. A 

disturbance represents a general outage event like natural disasters or man-made disruptions that can 

cause high impact on a system. 

Vulnerability and recoverability are two properties of resilience. The vulnerability reflects the scale 

of negative consequences that are owing to the disturbance impact on a system. The recoverability 

characterizes the rate of the system recovery after a disturbance. 

Processes associated with the implementation of the aforementioned properties under disturbances 

are demonstrated in Fig. 1. Here, we have specialized the general scheme of the disturbance impact on 

the system represented in [2]. Within our new scheme, we consider simultaneous failures of system 



 

 

 

 

 

 

components resulting from several disturbances. 

A system operates in the stable original state until a disturbance that occurs impacts on a system at 

the time 
e

t . The extension of a disturbance and its consequences reach their maximum at the time 
d

t . 

The system recovery begins at the time 
b

t . The recovered state of a system is achieved at the time f
t  

and supported afterwards. The function  tf  shows the system performance measured before, during, 

and after a disturbance. 

In the paper, we focus on the vulnerability property of resilience. The analysis of the energy system 

vulnerability addresses the following problems [3]: 

 Evaluation of the consequences of a disturbance impact on the energy consumers, 

 Determination of the most vulnerable (critical) components. 

An energy system component can be considered critical if the failure of that component due to the 

disturbance impact causes the large system performance degradation [3]. The system response to the 

disturbance impacts depends on the combination of many factors. They include the external and 

internal conditions of the system operation, disturbance characteristics (type, location, damage, its 

duration, etc.), acceptable measures to enhance the system resilience, and various criteria of sharing 

these factors. In addition, there are many scenarios of the system responses to disturbances and 

mitigating their consequences. 

Traditionally, energy systems are described in the form of a direct graph or network, where nodes 

represent different components, and arcs show the physical connections among them [3]. Network-

based approaches can be divided into topology-based and flow-based methods. The topology-based 

methods model the energy systems only based on their topologies. The flow-based methods are 

preferable because they provide more realistic modeling physical processes in the energy systems. In 

applying flow-based methods, the graph parameters (changing weights of arcs, increasing length of 

paths between nodes, etc.) are taken into account in evaluating the criticality of energy system 

components in the case of their failures. In each case, their combination and boundary values are 

defined by the problem specifics. 
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Figure 1. The system performance under a disturbance. 

 



 

 

 

 

 

 

The vulnerability analysis provides the study of system response space. Obviously, such an 

analysis has a combinatorial character. It is characterized by high computational complexity and 

intensive operation with the database.  

In practice, the study of various variants of simultaneous component failures for an acceptable time 

requires the use of high-performance computing systems. Even when using high-performance 

computing, studying the simultaneous failure combinations of more than four components is difficult.  

Moreover, for both problems of the vulnerability analysis, the significant problem-solving time is 

largely owing to the processing model data using traditional relational database management systems. 

In the paper, we propose a new approach based on applying an in-memory data grid within large-

scale analysis of the energy system vulnerability. Our successful practical experience confirms the 

advantages of the proposed approach. Within the approach, problems can be solved using various 

computing resources (personal computer, high-performance computing cluster, etc.), depending on 

their dimension.  

We apply the Orlando Tools framework for the development of scientific applications (distributed 

applied software packages) [4]. It provides parallel and distributed computing in both the homogenous 

and heterogeneous distributed environments. In the application development process, Orlando Tools 

supports the modification and continuous integration of applied and system software taking into 

account different characteristics of computational resources. 

Orlando Tools provide a more large spectrum of capabilities for continuous integration related to 

creating and using packages in comparison with the well-known tools [5-7]. The fundamental basis of 

their functioning is a new conceptual model of the computing environment. This model supports the 

specification, planning, and execution of software continuous integration processes taking into account 

the subject-oriented data and specifics of solved problems. 

The paper is structured as follows. Next section provides a shot review of related works. The 

problem formulation is considered in Section 3. Section 4 describes the distributed applied software 

package for analyzing the energy system vulnerability. The experimental analysis of the energy system 

vulnerability is reported in Section 5. Finally, Section 6 presents the conclusions. 

2.  Related work 

Solving the aforementioned problems related to studies of the energy system vulnerability involves the 

need for big data processing within workflow (problem-solving scheme) executing [8].  

As a rule, a public access computer center provides users with a centralized data storage system 

with a relational data scheme. So, for example, in the Irkutsk supercomputer center, the Firebird 

database server is used.  

It is an open-source SQL relational database management system [9]. Firebird is very popular since 

it runs on various platforms. Among them are Linux, Microsoft Windows, macOS, etc. 

At the same time, transferring processes of data storage and processing from hard drives to RAM 

allows us to significantly reduce the time of data exchange in executed applications [10]. This 

principle of data storage and processing is implemented through an In-Memory Data Grid (IMDG).  

IMDG is a distributed data storage that is completely in RAM. It is similar to the multi-threaded 

hash-table, where data elements are stored by keys. IMDGs are developed to support high data 

operation scalability through data distribution between several nodes of a distributed computing 

environment. Unlike traditional storage systems, we can use any data element as a key or value 

in IMDG. 

Such known IMDG systems are Hazelcast, Infinispan, Ehcache, ScaleOut StateServer, Red Hat 

JBoss Data Grid, Ncache, GridGain Enterprise Edition, Oracle Coherence, IBM WebSphere 

Application Server, and Terracotta Enterprise Suite [11]. At that, GridGain Enterprise Edition and 

Hazelcast are actively used in the electric power industry to study simultaneous failures in real 

time [12]. 

GridGain Enterprise Edition is based on the free Apache Ignite system [13]. Unlike other similar 

systems, Apache Ignite has a convenient and compact implementation of its application interface in 

C++ and supports the SQL use. This is very important at the stages of processing and analysis of 

computation results.  



 

 

 

 

 

 

We have applied Apache Ignite for data processing in our study related to a large-scale analysis of 

the energy system vulnerability. In contrast with GridGain, Orlando Tools provide end-users of 

developed packages with the free automated support for the delivery and deployment of Apache Ignite 

on dedicated resources. 

3.  Problem formulation 

Usually an energy system is represented as a network ),( EXG  , where X  is a set of 0n  nodes, 

   ji,ni, j jiE  ,1:,  is a set consisting of 0m  arcs. Each arc   Eji ,  represents energy 

resource transportation, i  and j are the starting and ending nodes of the arc  ji, , respectively. The 

flow over the arc   Eji ,  and its capacity are denoted by ij
x  and ijb , respectively. 

The real energy system like the natural gas or power supply system can contain many producers 

and consumers. Let us add a common source connecting to each producer and common sink joined by 

each consumer for the graph G . Then the multi-source and multi-sink problem of energy distribution 

over the system network can be reduced to the search of the maximum flow st
w  with the lowest cost 

between the common source and sink. Such an approach is often used in energy system studies (see, 

for example, [14]). Wherein, the capacities of artificial arcs connected with the common source and 

sink are equal to production and demand values, respectively. Thus, this problem can be formulated 

as follows: 

 min
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where ijc  is the flow cost over   Eji , , 


jN  is the subset of input arcs for node j , 


jN is the subset 

of output arcs of node j . Equation (2) ensures that the input flow and output flow for any node will be 

equal. The flow constraints in equation (3) ensure that the flow over any arc will be non-negative and 

will not exceed its capacity.  

The problem (1)-(3) is the simplest energy system model to evaluate the system performance 

degradation under a disturbance impact. It underlies a task of identifying and ranking critical 

components and sets of components. 

Our approach to identify and rank the energy system critical components is based on the failure sets 

generation [15] and usage of the Monte Carlo simulations to study the energy system behavior [14]. 

As defined in [15], a failure set is a specific combination of the energy system nodes and arcs that fail 

simultaneously and characterized by its size or the number of failed components. The criticality of a 

component or a set of components is defined as the vulnerability of the system to failure in a specific 

component, or set of components.  

The size k  of failure set should be selected by the researcher depending on the total number of 

network elements that is equal mn  . In practice, the following values of mn   and k  are relevant: 

100 mn  and 51  k . For these reasons, k  should not exceed 3 or 4 since the number of possible 

failure sets is equal to     !/! kkmnmn  . 

Obviously, that the number of possible failure sets grows rapidly with increasing k . This is one of 

the main problems of the storing and processing model data for the traditional relational database 

management systems. Often, such systems cannot cope with the data flow and become a performance 

bottleneck in processing computation results. 

We simulate the energy system operation with different failure sets and evaluate the consequences 



 

 

 

 

 

 

of their impact on the energy consumers. Each Monte Carlo simulation consists in generating a large 

number of samples of system response on the components failure and counting those where the total 

energy resource shortage exceeds the specified threshold [16]. The higher is a share of such samples 

the more critical is a failure set [17]. As a result, we get also a list of the more critical components. 

4.  Scientific application for analyzing the energy system vulnerability 

We have developed a scientific application (distributed applied software package) for analyzing the 

energy system vulnerability using the Orlando Tools framework. Unlike other tools for developing 

scientific applications, Orlando Tools supports the intensive evolution of algorithmic knowledge, 

adaptation of existed and designing new ones. It automates the non-trivial technological sequence of 

the collaborative development and use of packages including the continuous integration, delivery, 

deployment, and execution of package modules in a heterogeneous distributed environment [18-21].  

Aspects of the energy system vulnerability analysis package development are considered in detail 

in [22]. The subject domain and all parameters of the package including problem-solving algorithm 

are described in [23]. The package description is stored on the Orlando Tools server. 

Figure 2 shows the problem-solving scheme (workflow) 
1

s  in the package. Using this scheme, we 

find the energy system critical components applying Apache Ignite data grid to process Monte Carlo 

simulation data. The operation IgniteStart deploys Apache Ignite first in the scheme 
1

s  to orginise the 

data grid. 

 

 

Figure 2. Problem-solving scheme based on the Apache Ignite use. 

 

The scheme 1
s  enables the synchronous evaluation of failure sets of the size k . For this purpose a 

set of failure sets of the specified size k  generated by the operation 2
f  of the scheme 1

s  is divided 

into r  subsets. The operation 2
f  use makes it possible to form different job flows for various k . 

These flows differ in the computational load for their perform. Thus, they can be performed on 

heterogeneous resources with different computational characteristics. This increases the efficiency of 

their use. 

Consequences of the energy system nodes and arcs failure are evaluated during parallel Monte 

Carlo simulation by r  instances of the operation 3f . Negative consequences, for example, unsatisfied 

demands are calculated for a list of consumers created by operation 1
f . The distribution of data sets by 

instances is shown in Figure 3. 

 



 

 

 

 

 

 

 

Figure 3. Data distribution. 

 

The operation 
4

f  determines the size of the one sample output data sent to the Apache Ignite 

data grid. 

The operations 
1

f , 
2

f , 
3

f , 
4

f , and IgniteStart are implemented by the modules 
1

m , 2
m , 3

m , 4
m , 

and 
5

m , respectively. The modules 
2

m , 
3

m  and 
5

m operate with Apache Ignite. 

Figure 4 shows the problem-solving scheme 
2

s . Using 
2

s , we find the critical components 

applying Firebird for data processing. The operations 
1

f –
4

f  perform the same actions as in the 

scheme 
1

s .  

 

 

Figure 4. Problem-solving scheme based on the Firebird use. 

 

The operations 1
f  and 4

f  are implemented by the same modules 1
m  and 4

m . However, the 

operations 2
f  and 3

f  are implemented by the new modules 6
m  and 7

m . These modules operate 

with Firebird. 

Thus, both schemes are similar. The differences are in the parameters for operating with different 

databases and implementation of the operations 2
f  and 3

f . In addition, scheme 1
s  includes the 

additional operation IgniteStart. 

The resource configurations, information about installing and testing modules on these resources, 

and Apache Ignite configuration are stored on the Orlando Tools server. 

5.  Experimental analysis 

Within the experiment, we determine critical components of the Unified Gas Supply System of 

Russia. The system network consists of the 382 nodes, including 28 natural gas sources, 64 natural gas 

consumers, 24 underground natural gas storages, and 266 compressor nodes. In addition, it includes 

486 arcs representing main natural gas pipelines and branches to distribution networks.  
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Within this study, failure sets of size 1 were created from selected 415 arcs and 291 nodes (natural 

gas sources, underground storages, and compressor stations). The components selection was carried 

out by experts taking into account their practical experience in solving similar problems. 

In the process of computing, we used nodes of the high-performance computer (HPC) cluster of the 

public access Irkutsk Supercomputer center as the distributed computing environment [24]. They have 

the following characteristics: 2x16 cores CPU AMD Opteron 6276, 2.3 GHz, 16 MB L3 cache, 4 

FLOP/cycle, 64 GB RAM DDR3-1600.  

During data processing, we compared the use of the Firebird 2.5 SuperServer and Apache Ignite 

2.8 data grid. The database running under Firebird was configured to use asynchronous data writes for 

improving Firebird’s performance during large batch operations. It means that the modified or new 

records are put into the memory cache for periodic flushing to hard disk by the operating system [9].  

Apache Ignite is running in the partitioned mode that is the most scalable distributed cache mode. 

In this mode, the overall data is divided equally into partitions. Then all partitions are split equally 

between participating nodes organized from an Apache Ignite. This approach allows us storing as 

much data as can be fit in the total memory available across the Apache Ignite nodes of the distributed 

computing environment. 

The location of the main computing components at using Apache Ignite and Firebird is shown in 

Figure 5(a) and Figure 5(b), respectively. The aforementioned HPC-cluster was used in the 

experiment. Firebird 2.5 SuperServer and Apache Ignite 2.8 were installed on the dedicated node 

node001. On the same node, the main process was launched. Additional processes were connected to 

the main process. The Apache Ignite processes were launched through the task queue on compute 

nodes through the local PBS Torque resource manager. The modules of the package are executable 

programs for OS Linux. They are located in the user folder of the HPC-cluster. The order of launching 

package modules is set by the above-mentioned schemes. During computing, package modules are 

launched by the Orlando Tools computation manager through the cluster task queue using the  

SSH protocol. 

 

 

a) b) 

Figure 5. Location of computational components with applying Apache Ignite (a) and Firebird (b). 

 

Figure 6 shows the problem-solving time relative to the different number of iterations of the Monte 

Carlo method per disturbance applying the Firebird and Apache Ignite. During computing, 9 nodes of 

the high-performance computer cluster were used. Apache Ignite used 1 node. Applying the Apache 

Ignite provides a significant decrease in the problem-solving time in comparison with Firebird. This is 
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due to the fact that the time spent on data writing to the database when using Firebird reaches 72%. In 

the case of the Apache Ignite, this share does not exceed 6%.  

 

  

Figure 6. Problem-solving time vs. the number of 

iterations for the Monte Carlo method. 

Figure 7. Share of operations Compute, Read, and 

Write in the total problem-solving time. 

 

  
Figure 7. Data processing scalability in problem-

solving. 

Figure 8. Computing scalability in problem-

solving. 

 

Share of operations Compute, Read, and Write in the total execution time of the operation 
3

f  is 

demonstrated in Figure 7. 

We provide two additional experiments. Figure 8 shows data processing scalability. We can see 

that the problem-solving time is decreased with the increase of the number of the Apache Ignite nodes 

intended to process model data. The computing scalability is also validated. Finally, Figure 9 

demonstrates decreasing the problem-solving time with increasing of the number of nodes, in which 

the module 3
m  of the scheme 1

s  runs in parallel. 

6.  Conclusions 

IMDG is a novel data storing technology for distributed applied software packages. It provides higher 

performance and scalability in comparison with the traditional rational databases. The advantages of 

IMDG we demonstrate in the practical study. In the paper, we address the relevant problem of 

determining the critical components of the energy system. A failure of one or more such critical 

components can lead to serious damage in the social, economic or political spheres of human activity, 

and threaten the national security. To determine the critical components, we apply a method of 

combinatorial modeling that can model simultaneous failure of two and more components. This 

method is characterized by high computational complexity. To this end, we use Apache Ignite data 

grid in processing model data in the distributed computing environment.  

The experimental analysis obviously demonstrates a significant decrease in the problem-solving 

time through the distributed data processing with Apache Ignite. The results of this analysis show the 

substantial advantages of using Apache Ignite compared to traditional relational database management 

systems. In addition, we demonstrate the scalability of data processing and computing in problem-



 

 

 

 

 

 

solving scheme executing. We have used the Orlando Tools in developing and applying the distributed 

applied software package for solving the problem of determining the critical components of the energy 

systems. In particular, we have applied Orlando Tools for continuous integration within the framework 

of the package development using new technology in preparing and processing of  

subject-oriented data. 

In the future, we suppose to use the capabilities of Apache Ignite for the intellectual analysis of 

intermediate results of computations in order to identify correlations between criteria of  the 

importance for the critical components. 
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