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Abstract
The arrival process description is important problem for analysis of the packet switches that can be
considered as queueing systems. Such queueing systems are the appropriate models for the study of the
stochastic characteristics. The accuracy of the results of the model study is largely determined by the
correctness of the description of the arrival process. This paper proposes a method to solve the problem
of choosing a distribution type to describe arrival process at the teletraffic system input. The authors
introduce a criterion for choosing the distribution type based on the error minimization in the estimates
of the mean value and coefficient of variation in the delay times in the teletraffic system. Sometimes
measurement results characterizing the arrival process are available. In this case, the correctness of the
proposed distribution is also checked using the goodness-of-fit test. The paper provides case studies on
how the proposed method can be applied to the process of choosing the distribution type in question.
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1. Problem Statement

The stated problem can be considered a special case of estimating the distance between func-
tions [1]. In the teletraffic theory, this problem has some peculiarities. In this article, an entity
that should be serviced by the queueing system is called a request. Typical example of the
request is IP packet that is processed by a packet switch. For systems with queues [2, 3], the
reliable information about the requests arrival interval distribution at the input of the object
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under study is normally obtained based on measurements of packet traffic. If measuring is not
possible, the proposed hypothesis should be thoroughly reasoned.

Based on measurements, step function 𝐹(𝑡) is formed, for which an interval of constant time
𝜏 is usually selected on the abscissa axis. In some cases, function 𝐴(𝑡) can be convenient to use
if the initial distribution replacement simplifies the further model analysis. Function 𝐴(𝑡) is
usually chosen from a set of known random value distributions [4].
For the analysis of most teletraffic models, it is sufficient to know the first and second

moments of the request delay time in the system — 𝑆(1) and 𝑆(2). Interestingly, most of the
known relations [2, 3] rely on delay time coefficient of variation 𝑘𝑆 instead of the second moment.
That’s why the proximity of values 𝑆(1) and 𝑘𝑆 to the values obtained using measurements of
function 𝐹(𝑡) determines whether distribution 𝐹(𝑡) has been chosen appropriately. Therefore,
relative errors in evaluating values 𝑆(1) and 𝑘𝑆 denoted below as 𝛿1 and 𝛿2, respectively, should
not exceed the predefined thresholds.
We can choose value 𝜏 for function 𝐹(𝑡) based on the considerations given in [5]. Values of

function 𝐴(𝑡) at points that are multiples of 𝜏 are known. Figure 1 shows distribution functions
𝐹(𝑡) and𝐴(𝑡) up to value 8𝜏 on the abscissa axis. For example, parameter 𝑑3 defines the difference
between two distributions at point 3𝜏. In this example, we observe the maximum difference
between functions 𝐹(𝑡) and 𝐴(𝑡) at point 8𝜏.
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Figure 1: Example of distribution functions 𝐹(𝑡) and 𝐴(𝑡)

The proximity of functions 𝐹(𝑡) and 𝐴(𝑡) is normally measured by checking if they belong to
the same distribution class using an appropriate goodness-of-fit test [6]. This approach does
not allow us to make assertions about the values of errors in evaluating the characteristics at
the teletraffic system output.

Figure 2 shows the simplest model of a teletraffic system as a so-called “black box”. Function
𝐵(𝑡) represents the distribution of the request processing times in the teletraffic system. In
other words, it defines the set of operations on functions 𝐹(𝑡) or 𝐴(𝑡). Two distributions at the
model output are of practical interest: request delay time 𝑆(𝑡) and time interval 𝐷(𝑡) at which
the processed requests leave the teletraffic system.
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Figure 2: Teletraffic system modeled as a black box

This paper only covers distribution 𝑆(𝑡). Moreover, the analysis of function 𝑆(𝑡) is limited to
estimating values 𝑆(1) and 𝑘𝑆.

2. Choosing Distribution Based on Measurements

Let us assume that the measurements were made correctly and we obtained step function 𝐹(𝑡)
with increment 𝑝𝑘 at point 𝑘𝜏. Some increments can evaluate to zero. Generally, index 𝑘 varies
from zero to 𝑛, that is, for 𝑡 ≥ 𝑛𝜏, condition 𝐹(𝑡) ≡ 1 is true. It is convenient to represent function
𝐹(𝑡) as the Laplace-Stieltjes transform [7] denoted as 𝜑(𝑠).

The first and second moments of the distribution, 𝐹 (1) and 𝐹 (2), are determined according to
the corresponding rules by differentiation of function 𝜑(𝑠). Standard deviation 𝜎𝐹 and coefficient
of variation 𝑘𝐹 are calculated based on values 𝐹 (1) and 𝐹 (2) [4].
Approximating distribution 𝐴(𝑡) is normally chosen using the least squares method [8]. In

some cases, it is reasonable to use the weighted least squares method [9]. In this case, normally,
the following inequalities are true: 𝐴(1) ≠ 𝐹 (1), 𝐴(2) ≠ 𝐹 (2), 𝜎𝐴 ≠ 𝜎𝐹 and 𝑘𝐴 ≠ 𝑘𝐹. These
inequalities introduce additional errors in the evaluation of characteristics 𝑆(1) and 𝑘𝑆.
A methodological approach based on the following operations can help us minimize these

errors:

• First, the most appropriate type of two-parameter distribution 𝐴(𝑡) is selected using a
suitable goodness-of-fit test [6].

• Then, we determine such parameters of distribution 𝐴(𝑡), for which equations 𝐴(1) = 𝐹 (1)
and 𝑘𝐴 = 𝑘𝐹 (or 𝜎𝐴 = 𝜎𝐹 if it simplifies the calculations) are true.

So, the distribution parameters are calculated by solving a system of two equations.

3. Choosing Distribution Using Goodness-of-Fit Test

Pearson’s chi-squared test [6], also known as 𝜒2, is often used to test the hypothesis that the
sample belongs to the theoretical distribution 𝐴(𝑡). Some researchers prefer the Kolmogorov-
Smirnov test for this purpose [10]. Some other tests may also be chosen.
A goodness-of-fit test is an important step in solving the stated problem, which should be

described in terms of “necessity and sufficiency” [11]. Replacing function 𝐹(𝑡) with distribution
𝐴(𝑡) should be interpreted as a necessity but cannot be considered sufficient. Indeed, goodness-
of-fit tests cannot provide numerical estimates of errors that occur when further operations
are performed on distribution 𝐴(𝑡). Alternatively, if function 𝐹(𝑡) and distribution 𝐴(𝑡) are not
close to each other [1], an acceptable difference in characteristics 𝑆(1) and 𝑘𝑆 can be unstable
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within the load range under study. Besides, this narrows the application scope of the proposed
method for choosing distribution 𝐴(𝑡).

However, we cannot insist that the condition, which was hereinafter treated as necessary, is
indispensable. When solving some specific tasks, the mentioned tests may indicate that the
chosen hypothesis is false while the evaluation accuracy of characteristics 𝑆(1) and 𝑘𝑆 can be
acceptable. A simple example, in which two moments are the same while distribution functions
differ significantly, will be given below in this paper. Therefore, it appears that the obtained
results will be still more valuable if we use proven laws of mathematical statistics.

4. Proposed Method for Choosing Distribution

Measuring traffic multiple times at different packet switches shows that function 𝐹(𝑡) belongs
to a class of distributions that are defined on a limited interval. They are denoted with the
lower index “𝑙” (the first letter in word “limited”). The lower index “𝑢” (the first letter in word
“unlimited”) is used to denote distributions that take possible values along the entire positive
semiaxis. The applied approximations 𝐴𝑢(𝑡) introduce an error, which is usually very difficult
to evaluate. Therefore, it is appropriate to look for an approximation to function 𝐹(𝑡) in the
𝐴𝑙(𝑡) class.

A particular interest in the functions of the 𝐴𝑙(𝑡) class is related to a beta distribution [12, 13].
It can be useful in studying functions 𝐴𝑙(𝑡) with a high value of the coefficient of variation,
which is typical of packet multiservice networks. Other distributions [4], such as parabolic,
uniform, and others, are also relevant. When the derivative of function 𝐹(𝑡) has several extrema,
we can use a combination of two or more distributions that belong to the 𝐴𝑙(𝑡) class.

To get a conclusive estimate, it is sufficient to consider an example of using a beta distribution
defined on the interval [0;1]. In this case, its density 𝑎(𝑥) is determined by the following
relation [4]:

𝑎(𝑥) =
Γ(𝑢 + 𝑣)
Γ(𝑢)Γ(𝑣)

𝑥𝑢−1(1 − 𝑥)𝑣−1. (1)

Variable 𝑥 is a dimensionless value. It can be defined as time 𝑡 divided by value 𝑛𝜏. The
following conditions are true for the distribution parameters in formula (1): 𝑢 > 0, 𝑣 > 0. The
relations for calculating the mathematical expectation of the request arrival interval value 𝐴(1)

and its coefficient of variation 𝑘𝐴 are given, for example, in [4]:

𝐴(1) = 𝑢
𝑢 + 𝑣

, 𝑘𝐴 =
√

𝑣
𝑢(𝑢 + 𝑣 + 1)

. (2)

It is evident that 𝐴(1) < 1. Having fixed value 𝐴(1), we change the parameters of the chosen
approximating distribution to obtain the necessary values for coefficient of variation 𝑘𝐴. To
calculate parameters 𝑢 and 𝑣, it is necessary to solve a system of two equations, which provides
the following result:

𝑣 =
[1 − 𝐴(1) (1 + 𝑘2𝐴)] [1 − 𝐴(1)]

𝐴(1)𝑘2𝐴
, 𝑢 =

1 − 𝐴(1) (1 + 𝑘2𝐴)

𝑘2𝐴
. (3)
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Figure 3 shows an example of distribution 𝐹(𝑥) obtained by measuring the packet traffic
characteristics. The corresponding step function has five increments. The monotonically
increasing curve corresponds to an approximation of the obtained dependence by function 𝐴(𝑥),
which is a beta distribution of the first type with the following parameters: 𝑢 ≈ 0.052, 𝑣 ≈ 0.212.
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Figure 3: Function 𝐹(𝑥) and its approximation by distribution 𝐴(𝑥)

Comparing two distributions with a 5% significance level according to Pearson’s chi-squared
test showed that the beta distribution can be used in further research. Then, we should choose
a teletraffic system model, which would allow us to evaluate errors in calculating values 𝑆(1)
and 𝑘𝑆. In this paper, a packet switch is considered a teletraffic system. The request (IP packet)
processing time can be safely considered a constant value [14, 15]. Therefore, in the Kendall’s
notation [3], the model under study can be represented as 𝐵𝑒𝑡𝑎/𝐷/1. The designation “𝐵𝑒𝑡𝑎”
in the first position specifies the nature of the arrivals process, as determined by the beta
distribution. If the arrivals process is defined based on measurements, the letter “𝐺” [3] should
be put in the first position.

Later, wewill describe the impact of request processing time distribution 𝐵(𝑡) on the evaluation
accuracy of values 𝑆(1) and 𝑘𝑆. For this reason, for the sake of generality, the processing time
for the 𝐵𝑒𝑡𝑎/𝐷/1 model is denoted below as moment 𝐵(1). Values 𝐵(1) should be chosen in such
a way as to investigate the dependence of errors 𝛿1 and 𝛿2 on model load 𝜌. According to the
above-mentioned designations, load 𝜌 is defined by the relation of 𝐵(1) to 𝐴(1). In this paper,
the load range of 0.1 ⩽ 𝜌 ⩽ 0.9 is selected based on two considerations. The load of less than
0.1 is of no practical interest in terms of compliance with the Quality of Service targets. The
load greater than 0.9 is not typical of the teletraffic system’s operating processes and requires
additional research.

The proposed range of load change 𝜌 is sufficient to analyze the operation modes of a model
being a teletraffic system, when the object under study functions in standard conditions, which
allow us to assume that the number of waiting places in a queue is unlimited. This hypothesis is
true if the real capacity of the buffer memory is rated for the loss probability at the approximate
level of 0.001, as stated by the International Telecommunication Union Standardization Sector
in Recommendation Y. 1541 [16]. The validity of this assumption was established in [17].
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For the model under study, the values of errors 𝛿1 and 𝛿2 in the given range did not exceed
1.5%. This is quite acceptable for the tasks in the telecommunication network design. Several
similar models with other step function types have shown acceptable estimates for errors 𝛿1
and 𝛿2 in the given range of the load change.
The change in distribution 𝐵(𝑡), which allows us to analyze the change in values 𝛿1 and 𝛿2

when the coefficient of variation of the request processing time is increased to 2.0, showed that
the corresponding errors are within the same range. It means that the obtained estimates of
errors 𝛿1 and 𝛿2 are almost invariant with the request processing time distribution.

The type of function 𝐹(𝑥), for which Pearson’s chi-squared test discards the hypothesis that
this function is similar to beta distribution 𝐴(𝑥), was chosen artificially using variations in
values of increments 𝑝𝑘. The analysis of such functions 𝐹(𝑥) and 𝐴(𝑥) showed that errors 𝛿1
and 𝛿2 begin to grow significantly and often exceed 20%. Generally, this value is not considered
acceptable for the analysis of the teletraffic system characteristics.

The results confirm an intuitive conclusion that the positive result of the goodness-of-fit test
should be considered a “necessary” condition for applying the proposed method for choosing
function 𝐴(𝑡). This statement is based on the understanding that the goodness-of-fit test is
indicative of a relatively small distance between the functions [1].
However, as the analysis was limited to using only one distribution, it does not allow us

to apply this statement to all types of functions 𝐴(𝑡). If we limit the types of function 𝐴(𝑡)
to the distributions that passed the goodness-of-fit test, it will meet the “beauty in science”
criterion [18].

5. Errors Related to Different Types of Distributions

The condition that the two moments of functions 𝑆(𝑡) and 𝐴(𝑡) should be equal can be met for
several types of the approximating distribution. This brings up the question about the preferred
type of distribution 𝐴(𝑡). It may happen that some distributions will show very close values of
errors 𝛿1 and 𝛿2.
This assumption is based on the results given in [19]. This monograph presents a graph of

Hurst exponent 𝐻 dependence [20] on coefficient of variation 𝑘𝐴 for two types of distributions,
a gamma distribution and Weibull distribution [4]. The mentioned graph is reproduced in
Figure 4. According to the graphs, the maximum deviation of the corresponding dependencies
does not exceed 5%.
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Figure 4: Relationship between coefficient of variation 𝑘𝐴 and Hurst exponent 𝐻
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Errors of type 𝛿1 and 𝛿2 for different distributions 𝐴(𝑡) but with identical first and second
moments, respectively, are of practical interest. The variance or the coefficient of variation can
be used instead of the second moment if this simplifies the required calculations.
Let us consider three types of distribution 𝐴(𝑡). The first and second types are the same as

the distributions shown in Figure 4. The third type is a hyperexponential distribution [4]. All
the described functions belong to the 𝐴𝑢(𝑡) family. For all three distributions, 𝐴(1) = 1 and
𝑘𝐴 = 2. Table 1 shows the values of the skewness and kurtosis [4], which significantly differ for
the distributions under study.

Table 1
Characteristics of three types of distributions 𝐴(𝑡)

Parameter Gamma distribution Weibull distribution Hyperexponential distribution
skewness 4.00 5.58 5.87
kurtosis 24.00 57.75 49.17

However, the pattern of change in the three curves that represent the density graphs of the
distributions under study, has a common nature, which is illustrated in Figure 5 and confirmed
by the 𝜒2 test. In other words, functions 𝑓𝑢1(𝑥), 𝑓𝑢2(𝑥) and 𝑓𝑢3(𝑥) are close to each other [1].
For this reason, any distribution can be chosen as an approximating dependence if values 𝐴(1)

and 𝑘𝐴 are the same.
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Figure 5: Probability densities for three distributions 𝐴𝑢(𝑡)

The last statement was verified by modeling a teletraffic system of type 𝐺/𝐷/1 [3]. As in the
previous experiment, the load change was selected in the range of 0.1 ⩽ 𝜌 ⩽ 0.9. The values of
errors 𝛿1 and 𝛿2 do not exceed 11%, which is quite acceptable for solving most of the practical
problems. It seems appropriate that, among the alternative functions of type 𝑓𝑢𝑗(𝑥), we select a
function with skewness closest to a similar value obtained by measuring the parameters of the
approximated distribution. This statement relies on the use of the skewness in the relation in
order to evaluate the quantile of the IP packet delay time, as recommended in [16].
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If the measurements do not match the approximating distribution but they have identical
values 𝐴(1) and 𝑘𝐴, there may be significant errors in further analysis of the teletraffic models.
Figure 6 shows an example of two such functions for distributions𝐴𝑙(𝑡). It should be emphasized
that, while two densities are clearly different, they have the same values 𝐴(1) and 𝑘𝐴. Moreover,
both distributions have the same values of the skewness coefficient, which is equal to zero due
to the symmetry of functions 𝑓𝑙1(𝑥) and 𝑓𝑙2(𝑥).
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Figure 6: Probability densities for two distributions 𝐴𝑙(𝑡)

This example with functions 𝑓𝑙1(𝑥) and 𝑓𝑙2(𝑥) demonstrates a radical divergence of distri-
butions where values 𝐴(1) and 𝑘𝐴 are the same. For these two functions, error 𝛿1 is small. It
amounts to a few percent for the given range of the model load. The situation with error 𝛿2 is
different: the error almost reaches 100% when the model is under high load. This indicates that
comparing only the mean values of random variables can yield false results.

6. Discussion of Results and Further Research Directions

The proposed method of choosing distribution 𝐴(𝑡) is characterized by very high accuracy in
evaluating the indicators of the quality of service for the multiservice traffic service presented as
a set of IP packets. This method is similar to the procedure proposed in [21] for the analysis of
the stochastic characteristics of models with queues. This fact also indicates that the proposed
method for calculating characteristics 𝐴(1) and 𝑘𝐴 is acceptable.

However, it should be noted that, in theory, there could be some specific models with lower
accuracy in evaluating the indicators of the quality of service for the multiservice traffic.
Therefore, from this perspective, additional research is necessary to solve the following three
tasks.

The first task is to establish the relations between the values of errors 𝛿1 and 𝛿2 and values 𝑑𝐼,
or, possibly, only 𝑑𝑚𝑎𝑥. The method for determining values 𝑑𝑖 was shown in Figure 1.

54



Konstantin E. Samouylov et al. CEUR Workshop Proceedings 47–56

The second task is to introduce the Mahalanobis distance as a measure of the distance between
functions [22]. This approach appears to be very productive because it has shown good results
in studying the systems similar to the model described in this paper.
The third task is to study the aspects of how the proposed method can be applied for step

functions 𝐹(𝑡), with several extrema on the histogram. Changes in the packet multiservice traffic
in emergencies [23] showed that sometimes several extrema are registered on the histograms
that provide the basis for constructing step functions 𝐹(𝑡).
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