
On methods for improving the accuracy
of multi-class classification on imbalanced data
Leonid A. Sevastianova, Eugene Yu. Shchetininb

aPeoples’ Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya St., Moscow, 117198, Russia
bFinancial University under the Government of the Russian Federation, 49, Leningradsky pr., Moscow, 117538, Russia

Abstract
Imbalance of the classes, characterized by a disproportional ratio of observations in each class, is one
of the significant problems in machine learning. Class imbalances can be detected in many areas,
including medical diagnostics, spam filtering, and fraud detection. Most machine learning algorithms
work optimally when the number of samples in each class is approximately the same. This is because
most algorithms are designed to maximize accuracy and reduce error. However, under conditions of
class imbalance, the model may be overfitted, which leads to incorrect estimates of object classification.
Thus, in order to avoid this phenomenon and achieve better results, it is necessary to research methods
for working with unbalanced data, as well as develop effective algorithms for classifying them.

In this paper, we study machine learning methods to eliminate class imbalance in data in order
to improve accuracy in multi-class classification problems. In this paper, to improve the accuracy of
classification, it is proposed to use a combination of classification algorithms and feature selection
methods RFE, Random Forest and Boruta with pre-balancing classes by random sampling, SMOTE and
ADASYN. Using data on skin diseases as an example, computer experiments have shown that the use of
sampling algorithms to eliminate the imbalance of classes, as well as the selection of the most informative
features, significantly improves the accuracy of classification results. The Random Forest algorithm was
the most effective in terms of classification accuracy when sampling data using the ADASYN algorithm.

Keywords
multiclass classification, imbalanced classes, machine learning, SMOTE, ADASYN, Random Forest

1. Introduction

Classification tasks are among the most popular in data analysis [1]. Supervised machine
learning is most often used as the method for determining whether an object belongs to a
particular class. The main idea of this approach is to inductively output a function based
on marked-up data for training. This means that the success of using a machine learning
classification algorithm depends largely on the selection of objects that the algorithm “learns”
from. Most of these algorithms require the researcher to include a comparable number of
examples for each of the classes, but it is often not possible to make balanced data sets due to a
number of factors. Often there are situations when the dataset number of examples of some

Workshop on information technology and scientific computing in the framework of the X International Conference
Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020),
Moscow, Russian, April 13–17, 2020
Envelope-Open sevastianov-la@rudn.ru (L. A. Sevastianov); riviera-molto@mail.ru (E. Yu. Shchetinin)
Orcid 0000-0002-1856-4643 (L. A. Sevastianov); 0000-0003-3651-7629 (E. Yu. Shchetinin)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

70

mailto:sevastianov-la@rudn.ru
mailto:riviera-molto@mail.ru
https://orcid.org/0000-0002-1856-4643
https://orcid.org/0000-0003-3651-7629
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

of the minor class (this class will be called the minority, and the other, prevailing over first —
majority class). The key ones are the specificity of the target area (balancing data can lower the
indicator of its representativeness) and the different price of errors of the first and second types
when classifying. Such trends are clearly visible, for example, in credit scoring, medicine and
marketing [2, 3].
This leads to the problem of training the model on imbalanced data (these are data whose

distribution is skewed, and the mode and average values are not equal): according to the basic
assumptions contained in most algorithms, the goal of training is to maximize the proportion
of correct decisions relative to all decisions made, and the data for training and the general
population are subject to the same distribution. However, taking into account these assumptions
and unbalanced sampling results in the model being unable to classify data better than a trivial
model that completely ignores a less represented class and marks all objects for classification as
belonging to the majority class.
On the other hand, it is possible to build too much complex model that includes a large set

of rules, but will cover a small number of objects. This classifier may be ineffective, which
will lead the model to overfitting and incorrect estimates of the forecast. It should be noted
that the consequences of erroneous classification may also differ. Moreover, an incorrect
classification of examples of a minority class usually costs many times more than an erroneous
classification of an object from a majority class. The correct selection of features may be more
important than reducing data processing time or improving classification accuracy. for example,
in medicine, finding the minimum set of features that is optimal for the classification task may
be a prerequisite for making a diagnosis. Thus, to avoid this phenomenon and achieve a good
result, it is necessary to research methods for working with imbalanced data.
In this paper, we study methods for overcoming imbalanced classes in order to improve

the quality of classification with a higher accuracy than when directly using classification
algorithms for imbalanced classes. To improve the accuracy of classification, we propose a
scheme that consists of using a combination of classification algorithms and feature selection
methods RFE, Random Forest and Boruta with the preliminary use of class balancing by random
sampling, SMOTE and ADASYN.

2. Basic algorithms for balancing classes

One approach to solving this problem is to use various sampling strategies, which can be divided
into two groups: random and special [3]. In the first case, delete a certain number of examples
of the majority class (undersampling), in the second — increase the number of examples of the
minority class (oversampling).

2.1. The exclusion of examples of the majority class. Algorithm for random
sampling of the majority class (random undersampling)

To do this, we calculate the K – number of majority examples that must be removed to achieve
the required ratio of different classes. Then K majority examples are randomly selected and
removed. In the case of the studied data, methods for increasing the minority class are natural.
Let’s move on to the consideration of such strategies.

71

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

Figure 1: Undersampling and Oversampling balancing classes algorithms

2.2. The increase in the minority class. Duplicate examples of a minority
class (oversampling). Random naive sampling

The easiest way to increase the number of examples of a minority class is to randomly select
observations from it and add them to the general dataset until a balance is reached between
the majority and minority classes. Depending on what class ratio is needed, the number of
random records to duplicate is selected. One of the problems with random naive sampling is
that it simply duplicates existing data. The advantages of this approach include its simplicity,
ease of implementation and the ability to change the balance in any desired direction. The
disadvantages should be discussed separately according to which sampling strategy is used:
although both of them change the overall size of the data in order to find a balance, their
application has different consequences. In the case of undersampling, deleting data may cause
the class to lose important information and, as a result, lower its presentation rate.

In turn, the use of oversampling can lead to overfitting [3]. This approach to restoring balance
is not always effective, so a special method was proposed to increase the number of examples of
a minority class-the SMOTE algorithm (Synthetic Minority Oversampling Technique) [4]. The
SMOTE algorithm is based on the idea of generating a certain number of artificial examples that
are “similar” to those in the minority class, but do not duplicate them. To create a new record
find the difference 𝑑 = 𝑋𝑏 − 𝑋𝑎, where 𝑋𝑎, 𝑋𝑏− feature vectors of “neighboring” examples 𝑎 and
𝑏 from the minority class. They are found using the nearest neighbors algorithm (KNN). In this
case, it is necessary and sufficient for example b to get a set of k neighbors, from which the
entry 𝑏 will be selected later. The remaining steps of the KNN algorithm are not required. Then
from 𝑑 by multiplying each of its elements by a random number in the interval (0, 1) we get �̃�.
The feature vector of the new example is calculated by adding 𝑋𝑎 and �̃�. The SMOTE algorithm
allows you to set the number of records to be artificially generated. The degree of similarity of
examples 𝑎 and 𝑏 can be adjusted by changing the value of k (the number of nearest neighbors).
See for the illustration SMOTE algorithm on Figure 2.

SMOTE solves many problems that are inherent to the random sampling method, and actually
increases the initial data set in such a way that the model is trained much more efficiently [5].
However, this algorithm has its drawbacks, the main of which is ignoring the majority class.
This may result in a highly sparse distribution of objects of a minority class relative to a majority

72

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

class, where data sets are “mixed”, i.e. they are arranged in such a way that it is very difficult to
separate objects of one class from another.

Figure 2: SMOTE balancing classes algorithm

An example of this phenomenon is when an object of a different class is located between an
object and its neighbor, based on which a new instance is generated. As a result, the synthetically
created object will be closer to the opposite class than to the class of its parents. In addition, the
number of instances generated using SMOTE is set in advance, which reduces the ability to
change the balance and flexibility of the method.

It is important to note the significant limitations of SMOTE algorithm [6]. Since it works by
interpolating between rare examples, it can only generate examples inside the body of available
examples — never outside. Formally, SMOTE can only fill in the convex hull of existing minority
examples, but not create new external areas for them. The main advantage of SMOTE over
traditional random naive over-sampling is that when creating synthetic observations instead of
reusing existing observations, this classifier is less likely to be overfitted. At the same time, it is
always necessary to make sure that the observations created by SMOTE are realistic.

73

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

Table 1
Results of balancing classes with SMOTE algorithm

Imbalanced classes Classes after SMOTE

2.3. Adaptive synthetic sampling algorithm and its generalizations

This method is based on synthetic sampling algorithms, the main ones being Borderline-SMOTE
and Adaptive Synthetic Sampling (ADASYN) [7, 8]. Borderline-SMOTE imposes restrictions
on the selection of objects of the minority class that new instances are generated from. This
happens as follows: for each object of a minority class, a set of k nearest neighbors is determined,
then it is calculated how many instances of this set belong to the majority class (this number is
taken as m).

After this, we select those objects of the minority class for which the inequality 𝑘/2 ⩽ 𝑚 < 𝑘
is true. The resulting set represents instances of the minority class located on the distribution
boundary, and they are the ones that are more likely to be incorrectly classified than the others.
It should be noted why the inequality that determines the selection of objects excludes cases in
which all k neighbors belong to the majority class: this is due to the fact that such instances are
located in the “mixing” zone of two classes, and only objects that distort the model learning
process can be generated on their basis. In this regard, they are declared as noise and are ignored
by the algorithm.
The ADASYN algorithm, in turn, is based on a systematic method that allows adaptive

generation of different amounts of data in accordance with their distributions [7]. Input data for
the algorithm – training data set: 𝐷𝑟 with 𝑚 samples with {𝑥𝑖, 𝑦𝑖} , 𝑖 = 1, … , 𝑚, where 𝑥𝑖− is the
𝑛− dimensional vector in the feature space, 𝑦𝑖− labels of corresponding class. Let’s the 𝑚𝑟 and
𝑚𝑥 are the number of samples of minority and majority classes, respectively, such that 𝑚𝑟 ≪ 𝑚𝑥
and 𝑚𝑥 + 𝑚𝑟 = 𝑚. The algorithm’s pseudocode looks like this:
1. Calculate the proportion of classes 𝑑 = 𝑚𝑟/𝑚𝑥;
2. If 𝑑 < 𝑑𝑥 (where 𝑑𝑥 is the specified threshold for the maximum allowable class imbalance):
a) Find the number of synthetically generated samples of the minor class 𝐺 = (𝑚𝑥 − 𝑚𝑟) × 𝛽,

where 𝛽 is the parameter used to determine the desired balance level (𝛽 = 1) indicates full class
balance.
b) for each 𝑥𝑖 ∈ 𝑚𝑖𝑛𝑜𝑟 𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠 find the K-nearest neighbors using the Euclidean distance and

74

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

calculate 𝑟𝑖 = △𝑖/𝐾;
c) normalize 𝑟𝑥 = 𝑟𝑖/∑𝑖 𝑟𝑖 so that 𝑟𝑥 becomes the distibution density;
d) calculate 𝑔𝑖 = 𝑟𝑥 × 𝐺 a synthetic sample formed for each image from the minority class,

where 𝐺 is the total number of examples of synthetic data;
e) for each example of data from a minority class 𝑥𝑖 create the examples of synthetic 𝑔𝑖 data

in accordance with the following steps:
In a cycle from 1 to 𝑖 ∶
(i) randomly select one example of minority data, 𝑥𝑢 from 𝐾 nearest neighbors for 𝑥𝑖 data;
(ii) create an example of synthetic data: 𝑔𝑖 = 𝑥𝑖+(𝑥𝑢 − 𝑥𝑖)×𝜆, where (𝑥𝑢 − 𝑥𝑖) is 𝑛-dimensional

vector of Euclidean space, 𝜆 — random number, 𝜆 ∈ [0, 1] .
The main difference between SMOTE and ADASYN is how to create synthetic sample samples

for theminority class. ADASYNuses the 𝑟𝑥 density function to determine the number of synthetic
samples that will be created for a specific point, whereas SMOTE has a single weight for all
minority points.

3. Research data: description and characteristics

In this paper, a set of data on skin diseases was used for testing and comparative analysis of
the methods described above to eliminate the class imbalance. Diagnosis of erythematous
squamous cell diseases is a serious problem in dermatology, and modern principles of diagnosis
and treatment are based on the earliest detection of the disease. All of them have common
clinical features with very small differences. Another difficulty for diagnosis is that the disease
may show signs of another disease at the initial stage and may have characteristic signs in
subsequent stages.
The study data was created by Nielsen in 1998 and contains 366 observations forming 6

classes that can be characterized by 34 features [9]. The classes are: psoriasis (class 1): — 112
cases; seborrheic dermatitis (class 2): — 72 cases; lichen planus (class 3): — 61 cases; pink lichen
(class 4): — 49 cases; chronic dermatitis (class 5): — 52 cases; red hair lichen (class 6): — 20 cases.
A full description of the data is given in [10].

4. Computer experiments

Data studies were performed using the following algorithm:

1. Data pre-processing: filling the gaps in the data and the coding of signs.
2. Balancing classes using the sampling algorithms described above.
3. Selecting attributes based on their importance.
4. Classification using logistic regression and the support vector method.
5. Assessment of classification quality.

In this paper, the selection of features based on their importance and informativeness was
carried out by the following methods: a) recursive exclusion of RFE features [5]; b) decision
trees RF [11]; c) Boruta [12].

75

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

The Random Forest algorithm is an ensemble of numerous classification algorithms (decision
trees). Each of these classifiers is built on a random subset of objects and a random subset of
features. Let the training sample consist of 𝑁 examples, the dimension of the feature space is
equal to 𝑀, and an additional parameter 𝑚 is set. All trees are built independently of each other
using the following procedure:

1. Generate a random sub-sample with a repeat of size n from the training sample.
2. Let’s build a decision tree that classifies the examples of this sub-sample, and during

the creation of the next node of the tree, we will select the feature based on which the
partition is made, not from all 𝑀 features, but only from 𝑚 randomly selected ones.

3. The tree is built until the subsample is completely exhausted and does not undergo the
procedure of cutting off branches.

Object classification is carried out by voting: each tree of the ensemble refers the object to be
classified to one of the classes, and the class that the largest number of trees voted for wins. To
use Random Forest in the task of evaluating the importance of features, it is necessary to train
the algorithm on the sample and calculate the out-of-bag error for each example of the training
sample [11].
Let 𝑋𝑛 be a bootstrapped sample of the 𝑏𝑛 tree. Bootstrapping is the selection of l objects

from the selection with a return, as a result of which some objects are selected several times,
and some – never. Placing multiple copies of the same object in a bootstrapped selection
corresponds to setting the weight for this object, the corresponding term will be included in
the functionality several times, and therefore the error penalty will be greater on it. Let 𝐿(𝑦, 𝑧)
be the loss function, and 𝑦𝑖 be the response on the 𝑖-th object of the training sample, then the
out-of-bag error is calculated using the following formula:

𝑂𝑂𝐵 =
𝑏
∑
𝑎
𝐿 (𝑦𝑖,

∑𝑁
𝑛=1 [𝑥𝑖 ∋ 𝑋 𝑙

𝑛] 𝑏𝑛(𝑥𝑖)

𝑠𝑢𝑚𝑁
𝑛=1 [𝑥𝑖 ∋ 𝑋 𝑙

𝑛]
) .

Then, for each object, this error is averaged across the entire random forest. To evaluate the
feature importance, its values are mixed for all objects in the training sample, and the out-of-bag
error is counted again. The importance of the features is estimated by averaging the difference
in out-of-bag errors across all trees before and after mixing the values. The values of such errors
are normalized to the standard deviation.

Boruta is a heuristic algorithm for selecting significant features based on the use of Random
Forest [12]. At each iteration, features that have a Z-measure less than the maximum Z-measure
among the added features are removed. To get the Z-measure of a feature, you need to calculate
the feature’s importance obtained using the built-in algorithm in Random Forest, and divide it
by the standard deviation of the feature importance. The added features are obtained as follows:
the features that are present in the selection are copied, and then each new feature is filled in
by shuffling its values. In order to get statistically significant results, this procedure is repeated
several times, and variables are generated independently at each iteration.
Let’s write down the Boruta algorithm step by step:

1. Add copies of all attributes to the data. In the future, copies will be called hidden signs.

76

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

2. Randomly shuffle each hidden attribute.
3. Run Random Forest and get the Z-measure of all attributes.
4. Find the maximum I-measure of all I-measures for hidden features.
5. Delete features that have a Z-measure smaller than the one found in the previous step.
6. Remove all hidden attributes.
7. Repeat all the steps until the Z-measure of all features is greater than the maximum

z-measure of hidden features.

5. Results and discussion

To solve the problem of multiclass classification on unbalanced data, machine learning algo-
rithms were chosen: logistic regression and the method of support vectors with a linear kernel
(Linear SVM). All calculations were implemented in PYTHON, their results, data, and pro-
gram codes are placed in the repository of the authors of this article [10] and some algorithms
in [13, 14, 15]. Some fragments are presented in Computer Code paragraph. Three metrics
were used to compare classification results: accuracy, recall, and F1-measure. The results of the
research are presented in Table 2, Table 3.

Table 2
Results of classification using the support vector method

Sampling
of the im-
balanced
data

Feature
selection
methods

number
of chosen
features

Accuracy F1-Score Recall

Im-
bal-
anced
data

all features 630 0,9324 0,9337 0,9324
RFE 65 0,9595 0,9598 0,9595
Random
Forest 32 0,9595 0,9590 0,9595

Boruta 207 0,9324 0,9330 0,9324
Ran-
dom
sam-
ple

all features 630 0,9324 0,9337 0,9324
RFE 44 0,9359 0,9468 0,9459
Random
Forest 44 0,9465 0,9466 0,9465

Boruta 284 0,9595 0,9598 0,9595

SMOTE

all features 630 0,9324 0,9337 0,9324
RFE 68 0,9595 0,9730 0,9730
Random
Forest 42 0,9595 0,9072 0,9054

Boruta 257 0,9459 0,9337 0,9324

ADASYN

all features 630 0,9324 0,9337 0,9324
RFE 44 0,9459 0,9459 0,9459
Random
Forest 40 0,9845 0,9330 0,9324

Boruta 276 0,9459 0,9602 0,9595

77

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

Table 3
Results of classification using the logistic regression

Sampling
of the im-
balanced
data

Feature
selection
methods

number
of chosen
features

Accuracy F1-Score Recall

Im-
bal-
anced
data

All features 630 0,9330 0,9234 0,9231
RFE 19 0,9459 0,9459 0,9459
Random
Forest 32 0,9595 0,9590 0,9595

Boruta 200 0.9595 0,9590 0,9595
Ran-
dom
Sam-
ple

All features 630 0,9630 0,9634 0,9630
RFE 48 0,9665 0,9866 0,9865
Random
Forest 44 0,9730 0,9730 0,9730

Boruta 290 0,9730 0,9765 0,9730

SMOTE

All features 630 0,9730 0,9734 0,9730
RFE 20 0,9459 0,9459 0,9459
Random
Forest 41 0,9324 0,9330 0,9324

Boruta 264 0,9595 0,9590 0,9595

ADASYN

All features 630 0,9530 0,9534 0,9530
RFE 67 0,9595 0,9602 0,9595
Random
Forest 42 0,9895 0,9859 0,9893

Boruta 245 0,9595 0,9590 0,9595

First column of Table 2 lists the sampling methods used. The second column shows the
methods used for selecting features, and the third column shows the number of selected features.
The remaining columns show the values of quality metrics obtained as a result of applying the
support vector algorithm (SVM) to the converted data. The Table 3 is constructed similarly,
containing the results of classification using logistic regression.
From the analysis of the obtained results, that are shown in Table 2, and Table 3, it can be

seen that in all cases, the use of sampling methods allowed for higher classification accuracy
than on unbalanced data. Within the framework of the scheme described in this paper, the best
classification accuracy was achieved by applying the ADASYN class balancing algorithm and
then selecting features using the Random Forest algorithm. For comparison, in the works of
other researchers who conducted similar studies, for example, [5, 11], the classification accuracy
reached only 93%.

6. Conclusion

In this paper, we propose a scheme for improving the accuracy of classification on unbalanced
data using algorithms for class balancing and feature selection, such as RFE, Boruta, Random
Forest, and others. The results of computational experiments have shown the effectiveness

78

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

of its application to solve this problem. In particular, the ADASYN algorithm has improved
classification accuracy by up to 98% compared to other algorithms. In conclusion, it is worth
noting that the problem discussed in this paper is still relevant, and existing methods can be
improved. In recent time there are some new trends in data mining so called dee learning,
developing the deep neural networks as a tool for solving various classification problems. So,
we hope to apply them in our future researches of imbalanced classes classification.

Acknowledgments

The work is partially supported by RFBR grants No 18-07-00567.

References

[1] J. Patterson, A. Gibson, Deep Learning: A Practitioner’s Approach, O’Reilly Media, 2017.
[2] H. He, E. Garcia, Learning from imbalanced data, IEEE Transactions on Knowledge and

Data Engineering 21 (2009) 1263–1284. doi:10.1109/TKDE.2008.239 .
[3] N. Japkowicz, S. Stephen, The class imbalance problem: A systematic study, Intelligent

Data Analysis 6 (2002) 429–449. doi:10.3233/IDA- 2002- 6504 .
[4] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: Synthetic minority

over-sampling technique, Journal of Artificial Intelligence Research 16 (2002) 321–357.
URL: http://dx.doi.org/10.1613/jair.953. doi:10.1613/jair.953 .

[5] X. Lin, F. Yang, P. Yin, H. Kong, W. Xing, N. Wu, L. Jia, Q. Wang, G. Xu, A support vector
machine-recursive feature elimination feature selection method based on artificial contrast
variables and mutual information, Journal of Chromatography B: Analytical Technologies
in the Biomedical and Life Sciences 910 (2012) 149–155. doi:10.1016/j.jchromb.2012.05.
020 .

[6] L. Abdi, S. Hashemi 28 (2016) 238–251.
[7] H. He, Y. Bai, E. A. Garcia, S. Li, Adasyn: Adaptive synthetic sampling approach for

imbalanced learning, in: 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence), 2008, pp. 1322–1328.

[8] H. Han, W.-Y. Wang, B.-H. Mao, Borderline-smote: A new over-sampling method in
imbalanced data sets learning, volume 3644, 2005, pp. 878–887. doi:10.1007/11538059_91 .

[9] P. M. Murphy, D.W. Aha, Uci repository of machine learning databases. – irvine: University
of california, department of information and computer science, 1998. URL: https://www.
ics.uci.edu/mlearn/MLRepository.html.

[10] Dermatology-article, 2020. URL: https://github.com/riviera2015/Dermatology-article.
[11] E. Tuv, A. Borisov, G. Runger, K. Torkkola, Feature selection with ensembles, artificial

variables, and redundancy elimination, Journal of Machine Learning Research 10 (2009)
1341–1366.

[12] M. Kursa, W. Rudnicki, Feature selection with boruta package, Journal of Statistical
Software 36 (2010) 1–13. doi:10.18637/jss.v036.i11 .

[13] P. Lyubin, E. Shchetinin, Fast two-dimensional smoothing with discrete cosine transform,
volume 678, 2016, pp. 646–656. doi:10.1007/978- 3- 319- 51917- 3_55 .

79

http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.3233/IDA-2002-6504
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.jchromb.2012.05.020
http://dx.doi.org/10.1016/j.jchromb.2012.05.020
http://dx.doi.org/10.1007/11538059_91
https://www.ics.uci.edu/mlearn/MLRepository.html
https://www.ics.uci.edu/mlearn/MLRepository.html
https://github.com/riviera2015/Dermatology-article
http://dx.doi.org/10.18637/jss.v036.i11
http://dx.doi.org/10.1007/978-3-319-51917-3_55

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

[14] E. Y. Shchetinin, Cluster-based energy consumption forecasting in smart grids, in: V. M.
Vishnevskiy, D. V. Kozyrev (Eds.), Distributed Computer and Communication Networks,
volume 919, Springer International Publishing, Cham, 2018, pp. 445–456.

[15] L. A. Sevastianov, E. Y. Shchetinin, On methods for improving the accuracy of multiclass
classification on imbalanced data, Informatics and Applications 14 (2020) 63–70. doi:10.
14357/19922264200109 .

A. Program Code: Deep CNN model

#===
All featuresbala
#===
import seaborn as sns
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.svm import SVC
from sklearn.model_selection import cross_val_score, GridSearchCV

Fit Logistic Features to all features
svc = LogisticRegression()
svc.fit(X_train, y_train)

Test accuracy
acc = accuracy_score(y_test, svc.predict(X_test))
print(’Test Accuracy {}’.format(acc))

Plot confusion matrix
cm = confusion_matrix(y_test, svc.predict(X_test))
sns.heatmap(cm, fmt=’d’, cmap=’GnBu’, cbar=False, annot=True)
lr_pred = svc.predict(X_test)

#===
Recursive Feature Selection
#===
from sklearn.feature_selection import RFECV
RFE
rfe = RFECV(estimator=LogisticRegression(), cv=4, scoring=’accuracy’)
rfe = rfe.fit(X_train, y_train)

Select variables and calulate test accuracy
cols = X_train.columns[rfe.support_]
acc = accuracy_score(y_test, rfe.estimator_.predict(X_test[cols]))
print(’Number of features selected: {}’.format(rfe.n_features_))
print(’Test Accuracy {}’.format(acc))

80

http://dx.doi.org/10.14357/19922264200109
http://dx.doi.org/10.14357/19922264200109

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

Plot number of features vs CV scores
plt.figure()
plt.xlabel(’k’)
plt.ylabel(’CV accuracy’)
plt.plot(np.arange(1, rfe.grid_scores_.size+1), rfe.grid_scores_)
plt.show()
lr_pred = rfe.estimator_.predict(X_test[cols])
print(’f1_score (macro)’,f1_score(y_test, lr_pred, average=’macro’))
print(’f1_score (micro)’,f1_score(y_test, lr_pred, average=’micro’))
print(’f1_score (weighted)’,f1_score(y_test, lr_pred, average=’weighted’))
print(’recall_score (macro)’,recall_score(y_test, lr_pred, average=’macro’))
print(’recall_score (micro)’,recall_score(y_test, lr_pred, average=’micro’))
print(’recall_score (weighted)’,recall_score(y_test, lr_pred, average=’weighted’))

#===
Feature importances
#===
from sklearn.ensemble import RandomForestClassifier
Feature importance values from Random Forests
rf = RandomForestClassifier(n_jobs=-1, random_state=SEED)
rf.fit(X_train, y_train)
feat_imp = rf.feature_importances_

Select features and fit Logistic Regression
cols = X_train.columns[feat_imp >= 0.01]
est_imp = LogisticRegression()
est_imp.fit(X_train[cols], y_train)

Test accuracy
acc = accuracy_score(y_test, est_imp.predict(X_test[cols]))
print(’Number of features selected: {}’.format(len(cols)))
print(’Test Accuracy {}’.format(acc))
lr_pred = est_imp.predict(X_test[cols])
print(’f1_score (macro)’,f1_score(y_test, lr_pred, average=’macro’))
print(’f1_score (micro)’,f1_score(y_test, lr_pred, average=’micro’))
print(’f1_score (weighted)’,f1_score(y_test, lr_pred,
average=’weighted’))
print(’recall_score (macro)’,recall_score(y_test, lr_pred,
average=’macro’))
print(’recall_score (micro)’,recall_score(y_test, lr_pred,
average=’micro’))
print(’recall_score (weighted)’,recall_score(y_test, lr_pred,
average=’weighted’))

81

Leonid A. Sevastianov et al. CEUR Workshop Proceedings 70–82

#===
Boruta
#===
from boruta import BorutaPy
Random Forests for Boruta
rf_boruta = RandomForestClassifier(n_jobs=-1, random_state=SEED)
Perform Boruta
boruta = BorutaPy(rf_boruta, n_estimators=’auto’, verbose=2)
boruta.fit(X_train.values, y_train.values.ravel())

Select features and fit Logistic Regression
cols = X_train.columns[boruta.support_]
est_boruta = LogisticRegression()
est_boruta.fit(X_train[cols], y_train)

Test accuracy
acc = accuracy_score(y_test, est_boruta.predict(X_test[cols]))
print(’Number of features selected: {}’.format(len(cols)))
print(’Test Accuracy {}’.format(acc))
lr_pred = est_boruta.predict(X_test[cols])
print(’f1_score (macro)’,f1_score(y_test, lr_pred, average=’macro’))
print(’f1_score (micro)’,f1_score(y_test, lr_pred, average=’micro’))
print(’f1_score (weighted)’,f1_score(y_test, lr_pred,
average=’weighted’))
print(’recall_score (macro)’,recall_score(y_test, lr_pred,
average=’macro’))
print(’recall_score (micro)’,recall_score(y_test, lr_pred,
average=’micro’))
print(’recall_score (weighted)’,recall_score(y_test, lr_pred,
average=’weighted’))

from imblearn.over_sampling import RandomOverSampler
random oversampling
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_resample(X_train, y_train)
using Counter to display results of naive oversampling
from collections import Counter
print(sorted(Counter(y_resampled).items()))

from imblearn.over_sampling import SMOTE
applying SMOTE to our data and checking the class counts
X_resampled1, y_resampled1 = SMOTE().fit_resample(X_train, y_train)
print(sorted(Counter(y_resampled1).items()))

82

	1 Introduction
	2 Basic algorithms for balancing classes
	2.1 The exclusion of examples of the majority class. Algorithm for random sampling of the majority class (random undersampling)
	2.2 The increase in the minority class. Duplicate examples of a minority class (oversampling). Random naive sampling
	2.3 Adaptive synthetic sampling algorithm and its generalizations

	3 Research data: description and characteristics
	4 Computer experiments
	5 Results and discussion
	6 Conclusion
	A Program Code: Deep CNN model

