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Abstract
We consider a binary non-autonomous shift register with a sequence of random variables connected
into a simple homogeneous stationary Markov chain at the input. The expression is obtained for the
probability function in the output sequence in the form of a fractional rational function, the arguments of
which are the transition probabilities of the Markov chain. An equivalence relation arising in the case of
the identical equality of the probability functions of the registers is described. The results known earlier
for the case when the input sequence is a sequence of independent random variables are generalized.
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1. Introduction

In a number of problems of recognition and identification of automata [1], the case is considered
when the input of the automaton is a sequence of random variables. Recognition or identification
of an automaton is carried out by analysis of statistics at the output of an automaton. It is
known [2] that if the input of the automaton is a sequence of independent identically distributed
random variables, then the distribution of symbols of the output sequence is described by a
function on the Markov chain. Such a function can be specified by gluing states of the Markov
chain [3]. In [4] the problem of synchronizing of finite automata, the input of which is a
Bernoulli sequence, was studied. In [5] the problem of recognizing of the output function for
three classes of automata was considered under the conditions when the input of the automaton
is a sequence of independent identically distributed random variables. For the case when the
automaton is a shift register and the input sequence is Bernoulli [6], an expression is obtained
for the probability of a symbol in the output sequence. This probability polynomially depends
on the parameter of the Bernoulli scheme, the degree of which does not exceed the size of the
register. The coefficients of the polynomial are given by the sums of the values of the output
function on some subsets of register states.
Here we study the case when the symbols of the input sequence of the binary shift register

are connected into a simple homogeneous stationary Markov chain with two free parameters.
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Our goal is to obtain an expression for the probability of a symbol in the output sequence and
describe the equivalence relation on the set of output functions that provide the identity of the
desired probabilities. We show that the desired probability is a fractional rational function of
the parameters of the Markov chain, and the equivalence relation is given by the vectors of
sums of the values of the output functions on some subsets of register states.

2. Definitions and statement of the problem

Let 𝑉𝑛 be the space of 𝑛-dimensional binary vectors, 𝐹𝑛 be the set of Boolean functions of
𝑛 arguments, 𝑛 = 1, 2, …. For 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐹𝑛 by 𝐴𝑓 = (𝑋 = {0, 1}, 𝑉𝑛, 𝑌 = {0, 1}, ℎ, 𝑓) we
denote the Moore automaton with set of states 𝑉𝑛, the transition function ℎ, determined by
the rule ℎ ((𝑎1, … , 𝑎𝑛), 𝑥) = (𝑎2, … , 𝑎𝑛, 𝑥), where 𝑥, 𝑎𝑖 ∈ {0, 1}, 𝑖 = 1, 2, … , 𝑛, and output function
𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛). The automaton 𝐴𝑓 is a shift register with a size of 𝑛.
If the Bernoulli sequence of binary random variables 𝑥(𝑖), 𝑖 = 1, 2, … with distribution

𝑃 (𝑥(𝑖) = 1) = 𝑝, 0 < 𝑝 < 1, used as the input of the automaton 𝐴𝑓, then the output se-

quence of random variables 𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)), 𝑖 = 𝑛 + 1, 𝑛 + 2, … is stationary and the

probability 𝑃 {𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)) = 1} of the symbol “1” in the output sequence is given
by the polynomial [6]:

Φ𝑓(𝑝) =
𝑛
∑
𝑗=0

𝑠𝑗𝑝𝑗(1 − 𝑝)𝑛−𝑗, (1)

where
𝑠𝑘 = ∑

(𝑥1,𝑥2,…,𝑥𝑛)∶∑ 𝑥𝑖=𝑘
𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑘 = 0, 1, … , 𝑛. (2)

Suppose that the automaton 𝐴𝑓, 𝑓 ∈ 𝐹𝑛, 𝑛 = 1, 2, …, receives a sequence of binary random
variables 𝑥(𝑖), 𝑖 = 1, 2, …, connected in a simple homogeneous stationary Markov chain with the
transition probability matrix

(1 − 𝜆 𝜆
𝜉 1 − 𝜉) , 0 < 𝜆, 𝜉 < 1. (3)

The sequence of random variables 𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)), 𝑖 = 𝑛 + 1, 𝑛 + 2,… is stationary

and it makes sense to talk about the probability 𝑃 {𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)) = 1} of the symbol
“1” in the output sequence.

The function 𝑃𝑓(𝜆, 𝜉 ) = 𝑃 {𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)) = 1} will be called the probabilistic func-
tion of the automaton 𝐴𝑓 with a Markov dependence at the input. Our task is to obtain an
expression for 𝑃𝑓(𝜆, 𝜉 ) and break 𝐹𝑛 into classes with the same probabilistic functions.

3. Calculation of the probability function

We divide the set 𝑉𝑛 of all 𝑛-dimensional binary vectors, 𝑛 ⩾ 2, into four classes, depending on
the values of the first and last coordinates. Let us denote:
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𝑉 00 = {(0, 𝛼2, 𝛼3, … , 𝛼𝑛−1, 0)} , 𝑉 01 = {(0, 𝛼2, 𝛼3, … , 𝛼𝑛−1, 1)} ,
𝑉 10 = {(1, 𝛼2, 𝛼3, … , 𝛼𝑛−1, 0)} , 𝑉 11 = {(1, 𝛼2, 𝛼3, … , 𝛼𝑛−1, 1)} ,

(4)

where 𝛼𝑖 = 0, 1, 𝑖 = 2, … , 𝑛 − 1.
To each vector from 𝑉𝑛 we associate its bigram marking (𝑣00, 𝑣01, 𝑣10, 𝑣11), where 𝑣𝛼𝛽 is the

number of bigrams (𝛼, 𝛽) encountered in it. Let us put

𝑣𝛼𝛽 = 𝑣𝛼𝛽 (𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛) =
𝑛−1
∑
𝑘=1

𝛿 ((𝛼𝛽), (𝛼𝑘𝛼𝑘+1)) , (5)

where 𝛿 is the Kronecker symbol, 𝛼, 𝛽 = 0, 1.
In each of the four classes, we single out the vectors characterized by the same markings

(𝑣00, 𝑣01, 𝑣10, 𝑣11). To do this, we introduce the following notation:
Let 𝑆00𝑖𝑗 be the set of vectors from 𝑉 00 with markings (𝑣00, 𝑣01, 𝑣10, 𝑣11) = (𝑛 − 𝑗 − 𝑖 − 1, 𝑖, 𝑖, 𝑗 − 𝑖).

We denote 𝐼1 as the set of possible pairs of indices (𝑖, 𝑗). We will describe it.
For 𝑛 = 2𝑙 + 2, 𝑙 = 0, 1, 2, … ,

𝐼1 = {(𝑖, 𝑗)} =
⎧

⎨
⎩

(0, 0);
𝑗 = 1, … , 𝑙; 𝑖 = 1, … , 𝑗;
𝑗 = 𝑙 + 1, … , 2𝑙; 𝑖 = 1, … , 2𝑙 − 𝑗 + 1;

(6)

for 𝑛 = 2𝑙 + 1, 𝑙 = 0, 1, 2, … ,

𝐼1 = {(𝑖, 𝑗)} =
⎧

⎨
⎩

(0, 0);
𝑗 = 1, … , 𝑙; 𝑖 = 1, … , 𝑗;
𝑗 = 𝑙 + 1, … , 2𝑙; 𝑖 = 1, … , 2𝑙 − 𝑗 + 1.

(7)

Let 𝑆01𝑖𝑗 be the set of vectors from 𝑉 01withmarkings (𝑣00, 𝑣01, 𝑣10, 𝑣11) = (𝑛 − 𝑗 − 𝑖 − 1, 𝑖, 𝑖 − 1, 𝑗 − 𝑖).
We denote 𝐼2 as the set of possible pairs of indices (𝑖, 𝑗). We will describe it.

For 𝑛 = 2𝑙 + 2, 𝑙 = 0, 1, 2, …

𝐼2 = {(𝑖, 𝑗)} = {
𝑗 = 1, … , 𝑙 + 1; 𝑖 = 1, … , 𝑗;
𝑗 = 𝑙 + 2, … , 2𝑙 + 1; 𝑖 = 1, … , 2𝑙 − 𝑗 + 2;

(8)

for 𝑛 = 2𝑙 + 1, 𝑙 = 0, 1, 2, …

𝐼2 = {(𝑖, 𝑗)} = {
𝑗 = 1, … , 𝑙; 𝑖 = 1, … , 𝑗;
𝑗 = 𝑙 + 1, … , 2𝑙; 𝑖 = 1, … , 2𝑙 − 𝑗 + 1.

(9)

Let 𝑆10𝑖𝑗 be the set of vectors from 𝑉 10 with markings (𝑣00, 𝑣01, 𝑣10, 𝑣11) =
(𝑛 − 𝑗 − 𝑖 − 1, 𝑖 − 1, 𝑖, 𝑗 − 𝑖) . The set of possible pairs of indices (𝑖, 𝑗) is the same as 𝐼2.

Let 𝑆11𝑖𝑗 be the set of vectors from 𝑉 11 with markings (𝑣00, 𝑣01, 𝑣10, 𝑣11) =
(𝑛 − 𝑗 − 𝑖 − 1, 𝑖, 𝑖, 𝑗 − 𝑖 − 1) . The set of possible pairs of indices, which we denote by 𝐼3, is obtained
from 𝐼1 by replacing 𝑗 with 𝑛 − 𝑗.
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Note that the index 𝑗 in the whole introduced notation is equal to the weight (sum of ones) of
the vectors from the sets under consideration. The following lemma shows that the space of all
𝑛-dimensional binary vectors is represented as a union of the introduced sets, and these sets do
not intersect.
Lemma. The following relations hold.

1. 𝑆𝛼𝛽𝑖𝑗 ∩ 𝑆𝛾𝛿𝑘𝑙 ≠ ∅ if and only if 𝛼 = 𝛾, 𝛽 = 𝛿, 𝑖 = 𝑘, 𝑗 = 𝑙.

2. 𝑉 𝛼𝛽 = ⋃(𝑖𝑗) 𝑆
𝛼𝛽
𝑖𝑗 , 𝛼, 𝛽 = 0, 1, depending on the value (𝛼, 𝛽) the union is taken from among

the sets 𝐼1, 𝐼2, 𝐼3.

3. |𝑆00𝑖𝑗 | = (𝑛 − 𝑗 − 1
𝑖 ) (𝑗 − 1

𝑖 − 1) , (𝑖, 𝑗) ∈ 𝐼1;

|𝑆01𝑖𝑗 | = |𝑆10𝑖𝑗 | = (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 − 1) , (𝑖, 𝑗) ∈ 𝐼2;

|𝑆11𝑖𝑗 | = (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 ) , (𝑖, 𝑗) ∈ 𝐼3.

Hereinafter, we assume that

( 𝑛
−1) = {

1, 𝑛 = −1,
0, 𝑛 ≠ −1.

Proof. The first two points of the lemma follow from the construction of sets 𝑆𝛼𝛽𝑖𝑗 . The proof
of the third one is based on counting the number of binary vectors of fixed weight with a given
number of series of zeros and ones [7].
For 𝐷 ⊂ 𝑉 𝑛 we denote

‖𝑓/𝐷‖ = ∑
(𝑥1,𝑥2,…,𝑥𝑛)∈𝐷

𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛). (10)

Theorem 1. Let 𝑥(𝑖), 𝑖 = 1, 2, … be a stationary Markov chain with the states {0, 1} and the
transition probability matrix

(1 − 𝜆 𝜆
𝜉 1 − 𝜉) . (11)

The probabilistic function 𝑃𝑓(𝜆, 𝜉 ) of the automaton 𝐴𝑓 with a Markov dependence at the
input has the form

𝑃𝑓(𝜆, 𝜉 ) =
1

𝜆 + 𝜉
{∑
𝐼1
(1 − 𝜆)𝑛−𝑗−𝑖−1𝜆𝑖𝜉 𝑖+1(1 − 𝜉 )𝑗−𝑖 ‖𝑓/𝑆00𝑖𝑗 ‖ +

+∑
𝐼2
(1 − 𝜆)𝑛−𝑗−𝑖𝜆𝑖𝜉 𝑖(1 − 𝜉 )𝑗−𝑖 (‖𝑓/𝑆01𝑖𝑗 ‖ + ‖𝑓/𝑆10𝑖𝑗 ‖) +

+ ∑
𝐼3
(1 − 𝜆)𝑛−𝑗−𝑖𝜆𝑖+1𝜉 𝑖(1 − 𝜉 )𝑗−𝑖−1 ‖𝑓/𝑆11𝑖𝑗 ‖} . (12)
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To prove the Theorem 1, we use the lemma, the formulas for the total and conditional
probability, and the well-known [8] form of the stationary distribution vector of the input
sequence

(𝑃 (𝑥(𝑖) = 0) , 𝑃 (𝑥(𝑖) = 1)) = (
𝜉

𝜆 + 𝜉
, 𝜆
𝜆 + 𝜉

) . (13)

4. The relation of statistical equivalence with Markov
dependence at the input and its properties

By analogy with how this was done in [5], we introduce the equivalence relation on the set 𝐹𝑛.
We call the functions 𝑓 and 𝑔 from 𝐹𝑛 statistically equivalent for a Markov input dependence,

having adopted the notation 𝑓 Δ= 𝑔 for this case if the identity 𝑃𝑓(𝜆, 𝜉 ) = 𝑃𝑔(𝜆, 𝜉 ) for 0 < 𝜆, 𝜉 < 1
holds.

Obviously, the introduced relation is an equivalence relation breaking 𝐹𝑛 into disjoint classes.
Vector 𝑚(𝑓 ) = (𝑚(1)(𝑓 ), 𝑚(2)(𝑓 ), 𝑚(3)(𝑓 )), where 𝑚(𝑖)(𝑓 ) = (𝑚(𝑘)

𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐼𝑘), 𝑘 = 1, 2, 3,

𝑚(1)
𝑖𝑗 = ‖𝑓/𝑆00𝑖𝑗 ‖, (𝑖, 𝑗) ∈ 𝐼1, 𝑚

(2)
𝑖𝑗 = ‖𝑓/𝑆01𝑖𝑗 ∪ 𝑆10𝑖𝑗 ‖, (𝑖, 𝑗) ∈ 𝐼2, 𝑚

(3)
𝑖𝑗 = ‖𝑓/𝑆11𝑖𝑗 ‖, (𝑖, 𝑗) ∈ 𝐼3, and the order

of enumeration of the sets 𝐼1, 𝐼2, 𝐼3 is fixed, for example, lexicographical, let’s call the Markov
weight structure of the Boolean function 𝑓.

Theorem 2. Two Boolean functions are
Δ=-equivalent if and only if their Markov weight

structures coincide.
Proof. Let us consider the system of real functions defined on the square 0 < 𝜆, 𝜉 < 1:

⎧
⎪⎪

⎨
⎪⎪
⎩

𝑅(1)𝑖𝑗 (𝜆, 𝜉 ) = 1
𝜆 + 𝜉

(1 − 𝜆)𝑛−𝑗−𝑖−1𝜆𝑖𝜉 𝑖+1(1 − 𝜉 )𝑗−𝑖, (𝑖, 𝑗) ∈ 𝐼1

𝑅(2)𝑖𝑗 (𝜆, 𝜉 ) = 1
𝜆 + 𝜉

(1 − 𝜆)𝑛−𝑗−𝑖𝜆𝑖𝜉 𝑖(1 − 𝜉 )𝑗−𝑖, (𝑖, 𝑗) ∈ 𝐼2

𝑅(3)𝑖𝑗 (𝜆, 𝜉 ) = 1
𝜆 + 𝜉

(1 − 𝜆)𝑛−𝑗−𝑖𝜆𝑖+1𝜉 𝑖(1 − 𝜉 )𝑗−𝑖−1, (𝑖, 𝑗) ∈ 𝐼3

. (14)

Denoting𝑅(𝜆, 𝜉 ) = (𝑅(1), 𝑅(2), 𝑅(3)), where𝑅(𝑘) = (𝑅(𝑘)𝑖𝑗 (𝜆, 𝜉 ), (𝑖, 𝑗) ∈ 𝐼𝑘), 𝑘 = 1, 2, 3, we rewrite
the expression (12) for the probability function in the form

𝑃𝑓(𝜆, 𝜉 ) = 𝑅(𝜆, 𝜉 ) (𝑚(𝑓 ))𝑇 . (15)

To complete the proof, it remains to note that the system (14) is a linearly independent system
of functions on the square 0 < 𝜆, 𝜉 < 1.

The proved theorem allows us to identify the
Δ= - equivalence class [𝑓]Δ= with the vector 𝑚(𝑓 )

of the Markov weight structure.
Since the coordinates of the vector 𝑚(𝑓 ) are non-negative integers, it is not difficult to obtain

the following description of the structure of the relation
Δ= - equivalence.

Theorem 3. The number of functions that are
Δ= - equivalent to a function 𝑓 is determined by

the expression
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|[𝑓]Δ=|= ∏
(𝑖,𝑗)∈𝐼1

⎛
⎜⎜
⎝

(𝑛 − 𝑗 − 1
𝑖 ) (𝑗 − 1

𝑖 − 1)

‖𝑓/𝑆00𝑖𝑗 ‖

⎞
⎟⎟
⎠

∏
(𝑖,𝑗)∈𝐼2

⎛
⎜⎜
⎝

2 (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 − 1)

‖𝑓/𝑆01𝑖𝑗 ∪ 𝑆10𝑖𝑗 ‖

⎞
⎟⎟
⎠

∏
(𝑖,𝑗)∈𝐼3

⎛
⎜⎜
⎝

(𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 )

‖𝑓/𝑆11𝑖𝑗 ‖

⎞
⎟⎟
⎠

.

(16)

The number of
Δ= - equivalence classes is

|𝐹𝑛/Δ=| = ∏
(𝑖,𝑗)∈𝐼1

((𝑛 − 𝑗 − 1
𝑖 ) (𝑗 − 1

𝑖 − 1) + 1) ∏
(𝑖,𝑗)∈𝐼2

(2 (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 − 1) + 1)

∏
(𝑖,𝑗)∈𝐼3

((𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 ) + 1) (17)

For comparison the Table 1 presents the number of all Boolean functions, the number of
Δ=-equivalence classes and the number of ≈-equivalence classes (equivalence at the Bernoulli
input, see [5]) for 𝑛 = 2, 3, 4, 5.

Table 1
The numbers of equivalence classes

n 2 3 4 5
|𝐹𝑛| 16 256 65536 4294967296

|𝐹𝑛/Δ=| 12 144 11664 8622400
|𝐹𝑛/≈| 12 64 700 17424

In view of the complexity of the expression for the number of
Δ=-equivalence classes, it is of

interest to estimate its growth at large 𝑛. Using the Stirling and Euler-Maclaurin formulas, we
can obtain the following result.
Theorem 4. If 𝑛 → ∞, the relation

|𝐹𝑛/Δ=| = exp (5
4
𝑛3 ln 𝑛 + 𝑂(𝑛3)) . (18)

5. Conclusion

The expression is obtained for the probabilistic function that describes the probability of a symbol
in the output sequence of a binary shift register with a random binary variables connected into
a simple homogeneous stationary Markov chain as input.
An equivalence relation is described on the set of output functions of binary shift registers

that occurs when the corresponding probability functions are identically equal. The results
obtained generalize those that were previously known for the case when the input sequence is
a sequence of independent random variables.
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