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Abstract
The problem of recognizing the output function of a binary non-autonomous shift register is considered,
the input of which receives a sequence of random variables connected in a simple homogeneous stationary
Markov chain. The statistics of symbol frequencies in the output register sequence is used. The
recognition problem is reduced to the form of integer minimization of the linear form module under
linear constraints. The results are compared with the case when the input sequence is Bernoulli.
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1. Introduction and background

In [1], the problem of recognizing the output function of a Moore automaton by the output
sequence symbol statistics when the input is a sequence of independent identically distributed
random variables was considered. Such a problem is a special case of the general problem of
recognition of machines with random input and arises in a number of theoretical and applied
problems. We list some of them. The problem of choosing the minimum set of multigrams in
the output sequence, the probabilities of which characterize the automaton, leads to the problem
of analyzing the algebraic properties of the probability distributions family of such multigrams
as functions of the probability distribution at the input [2, 3].

In [4], a review of papers on a similar problem is given: the probabilities of multigrams of
some stationary discrete random process are known, and it is required to determine whether
this process is a function on a Markov chain. In [5], for a non-autonomous shift register with a
random input, an estimate was obtained of the output n-grams size, the set of probabilities of
which determines the equivalence class of such an automaton, and estimates of the number of
equivalence classes.

We can represent any probabilistic automaton [6, 7] in the form of a sequential connection
of a “source of probability” that randomly and independently generates the symbols of an
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alphabet with given probabilities and a deterministic finite automaton. In a number of works
(see the review [8]), the problem of synthesizing such a “source of probability” was considered,
in particular, developing criteria to determine whether the desired value is generated by a
combination of Bernoulli random variables with probabilities from a given set.

The search for new calculation methods leads to the problem of analyzing a class of func-
tions that describe the probabilities of multigrams in the output sequence as functions of real
variables [9].

A large number of works are devoted to the problem of discrete devices testing by applying
random sequences (tests) to them and analyzing the statistics at the outputs [10, 11], etc.).
The problem of determining the malfunction of a device in such a formulation is the task of
recognizing automata [12]. This direction is called random or pseudorandom testing. As noted
in [13], the relevance of this direction is associated with the high volume of computations
necessary to construct deterministic tests for complex discrete devices. A special place is taken
by probabilistic compact testing methods, in which malfunctions are detected by comparing
some statistical characteristics of the tested and reference device. Such a characteristic may be
the frequency of occurrence in the output sequence of a fixed segment of the output symbols. The
ability to change the analyzed segment and the parameters of the random sequence generator
at the input of the device is a powerful tool in the hands of the researcher. In [Hamlet, 2006],
situations are described where the use of deterministic tests is impractical and random tests
should be used. The questions of estimating the length of random tests and the probability
of detection of malfunctions are considered in [14] and [15]. We note the possibility of using
probabilistic testing to detect covert channels in the analyzed equipment [16, 17].

In [18] and [19], the problem of diagnosing a discrete device with random input under
conditions when the output sequence of the device is known with distortions is considered.

In [20], a binary shift register with a random Bernoulli input is considered, the output
function of which is known up to a certain transformation. The output sequence of the register
is specified, and the input sequence is known in the variants. A statistical criterion is built to
verify that the output sequence could be obtained by this input variant. The criterion is based
on counting the frequencies of certain bigrams in the output sequence.

The problem considered in [1] can be formulated as follows. What information about
the output function of the automaton whose input is a sequence of independent random
variables can we obtain if the parameters of the “input” distribution and the relative frequency
of occurrence of the symbol in the output sequence are known? How will this information
change if the parameters of the “input” distribution are changed? What output functions are
indistinguishable?

Similar problems can be considered in a more general form, assuming a simple or complex [21]
Markov dependence in the input sequence. The main ideas of the developed approach, in
principle, can be transferred from the “independent” to the “Markov” case. In fact, a sequence
of random variables connected into a finite Markov chain can be considered as a sequence of
states of a suitable finite automaton (the transition graph of which is the transition graph of the
Markov chain under consideration) that processes a sequence of independent random variables
with a properly selected distribution [22]. Let the output function of such an automaton be
identical (output = state). Then the machine that processes the Markov chain can be represented
as a serial connection of two machines, the input of the first of which receives a sequence of
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independent random variables. Thus, the problem reduces to the one considered above, only
for a more complex automaton (Figure 1).

Figure 1: New automaton design

The same can be done if the input sequence is a more general random process — a function
on a finite Markov chain. In this case, the output function of the first automaton may not
be identical. Certain difficulties in this direction are associated both with an increase in the
number of states of a new combined automaton, and therefore with an increase in the dimension
of computational problems, and with the requirement of strong connectivity of the serial
connection of two automata, the first of which should provide all possible models of randomness
in the input sequence.

For the case of a binary shift register, we will use the direct representation of probability
functions as functions of the Markov chain parameters. A Markov chain with two states is
determined by the transition probability matrix and the initial probability distribution, which
we assume to be stationary. The transition probability matrix has a size of 2 × 2 , and due
tostochasticity it is determined by two real parameters 𝜆 and 𝜉, 0 < 𝜆, 𝜉 < 1. These parameters
can be interpreted as the probabilities of transitions “from state 0 to state 1” and “from state
1 tostate 0”, respectively. In [23], for the case when the symbols of the input sequence are
connected into a simple homogeneous stationary Markov chain, an expression is obtained
for the probability of the symbol “1” in the output sequence of the register. The same work
describes the equivalence relation on a set of Boolean functions that occurs when registers with
these output functions have the same probability functions. Here we consider the problem of
determining the equivalence class of the output function from symbol statistics, reduce it to
the form of the discrete optimization problem, and compare the Bernoulli and Markov cases in
terms of obtaining information for recognizing the output function and dimensions of discrete
optimization problems.

2. Statement of the problem

Let 𝑉𝑛 be the space of 𝑛-dimensional binary vectors, 𝐹𝑛 be the set of Boolean functions of
𝑛 arguments, 𝑛 = 1, 2, …. For 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐹𝑛 by 𝐴𝑓 = (𝑋 = {0, 1}, 𝑉𝑛, 𝑌 = {0, 1}, ℎ, 𝑓) we
denote the Moore automaton with set of states 𝑉𝑛, the transition function ℎ, determined by
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the rule ℎ ((𝑎1, … , 𝑎𝑛), 𝑥) = (𝑎2, … , 𝑎𝑛, 𝑥), where 𝑥, 𝑎𝑖 ∈ {0, 1}, 𝑖 = 1, 2, … , 𝑛, and output function
𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛). The automaton 𝐴𝑓 is a shift register with a size of 𝑛.

Suppose that the automaton 𝐴𝑓, 𝑓 ∈ 𝐹𝑛, 𝑛 = 1, 2, … receives a sequence of binary random
variables 𝑥(𝑖), 𝑖 = 1, 2, …, connected in a simple homogeneous stationary Markov chain with the
transition probability matrix

(1 − 𝜆 𝜆
𝜉 1 − 𝜉) , 0 < 𝜆, 𝜉 < 1. (1)

Our task is to determine the accuracy with which the output function 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) can be
recognized by the relative frequency of the symbol “1” in the output sequence of automaton 𝐴𝑓
and propose a recognition method.

3. Recognition of the equivalence class by the value of the
probability function

In [23], the definition of the Markov weight structure of a Boolean function 𝑓 ∈ 𝐹𝑛 was
introduced as an integer vector 𝑚(𝑓 ) consisting of sums of values 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑛) on special
subsets 𝑉𝑛 formed by vectors with the same bigram markings.

The vector 𝑚(𝑓 ) of the Markov weight structure defines the class of statistical equivalence of
the function 𝑓. It is easy to see that the dimension 𝑑(𝑛) of the vector 𝑚(𝑓 ) grows quadratically
with 𝑛. Direct calculation of the number of different bigram markings of vectors from 𝑉𝑛 leads
to the following result.
Theorem 1. If 𝑛 ⩾ 2:

𝑑(𝑛) = {
3
4𝑛

2 − 𝑛 + 2, if 𝑛 is even,
3
4 (𝑛 − 1)2 − 𝑛 + 2, if 𝑛 is odd.

(2)

Consider the set 𝐴 = {𝑚(𝑓 ), 𝑓 ∈ 𝐹𝑛} of vectors formed by the vectors of all possible Markov
weight structures as the set of integer points in the 𝑑(𝑛)-dimensional Euclidean space 𝑅𝑑(𝑛).

Using the result of the Lemma of [23], it is easy to see that 𝐴 = 𝐴1 × 𝐴2 × 𝐴3, where

𝐴1 = {(𝑎(1)𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐼1) |0 ≤ 𝑎(1)𝑖𝑗 ≤ (𝑛 − 𝑗 − 1
𝑖 ) (𝑗 − 1

𝑖 − 1) , 𝑎(1)𝑖𝑗 – integer} ,

𝐴2 = {(𝑎(2)𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐼2) |0 ≤ 𝑎(2)𝑖𝑗 ≤ 2 (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 − 1) , 𝑎(2)𝑖𝑗 – integer} ,

𝐴3 = {(𝑎(3)𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐼3) |0 ≤ 𝑎(3)𝑖𝑗 ≤ (𝑛 − 𝑗 − 1
𝑖 − 1 ) (𝑗 − 1

𝑖 ) , 𝑎(3)𝑖𝑗 – integer} .

(3)

Thus, 𝐴 is the set of integer points of a 𝑑(𝑛)-dimensional parallelepiped. Let 𝑀𝑛 be a family

of real functions defined on a square 0 < 𝜆, 𝜉 < 1 of the form 𝑅(𝜆, 𝜉 ) (𝑎 − 𝑏)
𝑇
, where 𝑎, 𝑏 ∈ 𝐴,

𝑎 ≠ 𝑏, the vector 𝑅(𝜆, 𝜉 ) is defined in [23], the coordinates of this vector are fractional rational
functions of 𝜆 and 𝜉. Let Ω𝑛 be the set of all those points of the square at which at least one
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function in the family 𝑀𝑛 is equal to zero. It is easy to see that Ω𝑛 is the union of a finite
number of smooth curves in a unit square. In particular, it can be shown that both diagonals
of the square, {(𝜆, 𝜉 )|𝜆 + 𝜉 = 1} and {(𝜆, 𝜉 )|𝜆 = 𝜉} belong to the set Ω𝑛, if 𝑛 ⩾ 3. The set Ω𝑛 has
Lebesgue measure zero.
Theorem 2. For (𝜆, 𝜉 ) ∈ {(0, 1) × (0, 1)} \Ω𝑛, by the value of 𝑃𝑓(𝜆, 𝜉 ), we can unambiguously

indicate the class of statistical equivalence of the function 𝑓. This equivalence class corresponds
to the vector of the Markov weight structure 𝜇0, which is the only solution of the equation

𝑃𝑓(𝜆, 𝜉 ) = 𝑅(𝜆, 𝜉 ) (𝜇0)
𝑇 under restriction 𝜇0 ∈ 𝐴. (4)

If (𝜆, 𝜉 ) ∈ Ω𝑛, then this equation has more than one solution, and the vector of the Markov
weight structure of 𝑓 is contained among these solutions.

4. Recognition of the equivalence class using the symbols
statistics

Let 𝑦 (𝑖) = 𝑓 (𝑥(𝑖), 𝑥(𝑖+1), … , 𝑥(𝑖+𝑛−1)), 𝑖 = 1, 2, … be the output sequence of the automaton 𝐴𝑓 in
the scheme described above,

𝑌𝑁 = 1
𝑁

𝑁
∑
𝑖=1

𝑦 (𝑖), 𝑁 = 1, 2, … . (5)

The binary sequence 𝑦 (𝑖) is stationary, therefore, the law of large numbers is valid [24]:

𝑌𝑁 → 𝑃𝑓(𝜆, 𝜉 ) (probability convergence). (6)

Theorem 3. Let (𝜆, 𝜉 ) ∈ {(0, 1) × (0, 1)} \Ω𝑛. The probability that the minimization problem

{
|𝑌𝑁 − 𝑅(𝜆, 𝜉 )𝜇𝑇| → min

𝜇 ∈ 𝐴
(7)

has a unique solution, tends to 1 with 𝑁 → ∞.
This unique solution corresponds the class of statistical equivalence of output function 𝑓. For

the case (𝜆, 𝜉 ) ∈ Ω𝑛, we can only say that the vector of the weighted Markov structure of the
true output function 𝑓 is contained among the solutions of problem (7).

5. Conclusion

Comparing the results obtained for the case when the input sequence is a Markov chain with
the results obtained for the case of a Bernoulli sequence, the following can be noted.

1. Probabilistic functions in both cases are determined by the weights (sums of values) of
the Boolean function of the outputs on special subsets of space 𝑉𝑛. These subsets consist
of vectors that have the same probability in a particular model (in the independent case,
vectors of the same weight, in Markov, vectors with the same frequency of occurrence of

104



Sergey Yu. Melnikov et al. CEUR Workshop Proceedings 100–107

bigrams). In the first case, the probability function is a polynomial in the parameter 𝑝 of
the Bernoulli scheme; in the second, it is a fractional rational function in the parameters
𝜆 and 𝜉, that determine the Markov chain.

2. The relations of statistical equivalence on 𝐹𝑛 are introduced on the basis of the identity
of probability functions; from the statistical equivalence of two Boolean functions with
a Markov input dependence follows their statistical equivalence with a Bernoulli input.
The equivalence of two functions is equivalent to the equality of their weights on the
mentioned subsets 𝑉𝑛. In the independent case the number of such subsets is 𝑛 + 1, in the
Markov case the number of such subsets is 3

4𝑛
2𝑂(𝑛). The number of equivalence classes

for the Bernoulli case is equal to exp ( 𝑛
2

2 + 𝑂(𝑛 ln 𝑛)), for the Markov case is equal to

exp (5𝑛
3

4 ln 𝑛 + 𝑂(𝑛3)).
3. In the set of all kinds of distributions (the parameter 𝑝 of the Bernoulli distribution belongs

to the interval (0, 1), the parameters (𝜆, 𝜉 ) of the transition matrix of the Markov chain
belong to the square (0, 1)×(0, 1)), a subsetΩ of the “special” distributions is distinguished.
For all distributions not from the set Ω, the value of the probability function allows us to
uniquely indicate the equivalence class of the output function. If the distribution belongs
Ω, then there are at least two nonequivalent output functions for which the probability
values of “1” in the output sequence coincide. The Lebesgue measure of the set Ω of
“special distributions” in the distribution space is zero: in the first case it turns out to be a
finite set of points of the segment, in the second – the set of points of a finite number of
smooth curves inside a square.

4. The problem of determining the equivalence class of a function from the value of a
probability function reduces to the problem of solving the equation in integers under
linear constraints; the problem of determining the equivalence class of a function from
the statistic value of a sample average output sequence is reduced to the problem of
minimizing a linear form module under linear constraints. The number of unknowns in
the Bernoulli case is equal 𝑛 + 1, in the case of Markov dependence it is approximately
equal 3

4𝑛
2 − 𝑛.

Thus, analyzing the problem of recognizing an unknown function of outputs by symbol
statistics, we can say that the proposed approach, while complicating the probabilistic nature
of the input sequence (switching from the Bernoulli scheme to the Markov chain), leads, on
the one hand, to the possibility of obtaining more detailed information about the recognizable
function; on the other hand, the dimension of discrete optimization problems increases.
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