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Abstract
Pricing of options and other financial instruments is one of the most important problems in finance. To
price an option, one needs first to choose the model of underlying asset price dynamics, usually in the
form of a stochastic differential equation depending on market parameters such as interest rate, asset
volatility, etc., then find a solution of the chosen model in some form, and finally obtain the required
option price. The asset volatility can be constant (Black-Scholes model), depend on the value of the
underlying asset and time (local volatility model), or satisfy some other stochastic differential equation
(stochastic volatility model). Exact analytical formula for option price was obtained for Black-Scholes
model and a few other models with local and stochastic volatility, but in general case one has to use
approximations or numerical methods to evaluate options. We study the problem of European option
pricing when volatility is a function of underlying asset value and time. To solve the problem, we
use Monte Carlo method to construct the empirical distribution density of underlying asset and then
determine the option value using Feynman-Katz formula. The issues of parallelization of the option
pricing algorithm and its implementation on computers with multicore processors are discussed. Possible
applications of local volatility models with parallel computing include modeling and management of
large equity portfolios, assessing and managing market and credit risks.
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1. Introduction

The increasing amount of data being processed and active use of machine learning methods
lead to a growing demand for high-performance computing (HPC) solutions in modern finan-
cial industry [1]. The traditional applications of HPC in finance include pricing of financial
instruments (derivative securities), algorithmic high-frequency trading, market and credit risk
management, etc.

The fundamental problem of finance is the valuation (pricing) of securities and other financial
instruments traded in financial markets. For nonlinear derivatives (options), the pricing problem
was first solved for constant volatility case by F. Black, M. Scholes [2] and R. Merton [3]. Under
certain assumptions the formula obtained in [2] gives us exact fair value of European call option.
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However, the assumption of constant volatility and based on this assumption Black-Scholes
model fail to explain some important effects observed in financial markets, such as volatility
smiles [4] and fat tails of financial data distributions [5]. Therefore, alternative stochastic
models [6] with volatility depending on the value of the underlying asset and time (local
volatility models) should be examined to determine the most appropriate model for available
financial data. However, for a general local volatility model, exact closed form formula for the
option price has not been derived and miscellaneous numerical methods have to be used.

The paper considers the application of high-performance computing in calculating the value
of options under assumption that underlying asset price follows stochastic differential equation
(SDE) with volatility, being a function of asset price and time.

2. Local volatility models

In risk-neutral framework the price 𝑆 of underlying asset is supposed to follow SDE

𝑑𝑆 = 𝑟 𝑆 𝑑𝑡 + 𝜎 (𝑆, 𝑡) 𝑆 𝑑𝑊 , (1)

where 𝑟 > 0 is the risk-free interest rate, 𝜎 (𝑆, 𝑡) > 0 is a volatility function of underlying asset
value 𝑆 and time 𝑡, 𝑊 is a Wiener random process, with initial condition

𝑆 (𝑡0) = 𝑆0 > 0. (2)

We intend to determine the fair value of a derivative (option or other derivative instrument)
𝑉 (𝑆0, 𝑡0), being a function of the current price of the underlying asset 𝑆0 and current time
𝑡0, with payment function 𝑉 (𝑆, 𝑇) = 𝜓 (𝑆) at the time 𝑇 > 𝑡0 of execution (expiration) of the
derivative.
Known local volatility models of the form (1) with non-constant asset price volatility and

exact closed form solutions for transition density and option price include shifted lognormal
model [7], normal (Ornstein–Uhlenbeck) model [8], CEV model [6], hyperbolic sine model [9].
To find the value of an option (derivative) in model (1), one can use the risk-neutral pricing

(Feynman–Katz) formula:

𝑉 (𝑆0, 𝑡0) = 𝑒−𝑟 (𝑇−𝑡0)
+∞

∫
−∞

𝜌 (𝑦, 𝑇 ; 𝑆0, 𝑡0) 𝜓 (𝑦) 𝑑𝑦, (3)

where 𝜌 (𝑦, 𝑇 ; 𝑆0, 𝑡0) is the probability density of the transition from state (𝑆0, 𝑡0) to state (𝑦 , 𝑇).
In Black–Scholes model [2, 3] the transition probability density function (pdf) is equal to

𝜌 (𝑥, 𝑡; 𝑆0, 𝑡0) =

exp {−
(ln 𝑥−ln(𝑆0)−(𝑟−

𝜎2

2 )(𝑡−𝑡0))
2

2𝜎2(𝑡−𝑡0)
}

√2𝜋𝜎√𝑡 − 𝑡0𝑥
𝑈 (𝑥) , (4)

where

𝑈 (𝑥) = 1{𝑥>0} = {
1, 𝑥 > 0,
0, 𝑥 ⩽ 0.
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In shifted lognormal model [7] the volatility function is 𝜎 (1 − 𝛼 𝑒𝑟 𝑡
𝑆 ) and the transition pdf is

a shifted version of the transition pdf for Black-Scholes model

𝜌 (𝑥, 𝑡; 𝑆0, 𝑡0) =

exp {−
(ln(𝑥−𝛼 𝑒𝑟 𝑡)−ln(𝑆0−𝛼 𝑒𝑟 𝑡0)−(𝑟−

𝜎2

2 )(𝑡−𝑡0))
2

2𝜎2(𝑡−𝑡0)
}

√2𝜋𝜎√𝑡 − 𝑡0 (𝑥 − 𝛼 𝑒𝑟 𝑡)
𝑈 (𝑥 − 𝛼 𝑒𝑟 𝑡) . (5)

In normal (Ornstein–Uhlenbeck) model [8] the volatility function is 𝜎
𝑆 and the transition pdf

is

𝜌 (𝑥, 𝑡; 𝑆0, 𝑡0) =
√𝑟

√𝜋𝜎√𝑒2𝑟(𝑡−𝑡0) − 1
exp {−𝑟

(𝑥 − 𝑒𝑟(𝑡−𝑡0)𝑆0)
2

𝜎2 (𝑒2𝑟(𝑡−𝑡0) − 1)
} , (6)

assuming negative underlying asset values.

In hyperbolic sine model [9] the volatility function is
√

𝜎2
𝑆2 + 2𝑟 and the transition pdf is

𝜌 (𝑥, 𝑡; 𝑆0, 𝑡0) =
exp {− 1

4 𝑟 (𝑡−𝑡0)
(arsinh (√2 𝑟𝜎 𝑥) − arsinh (√2 𝑟𝜎 𝑆0))

2
}

√2𝜋√𝜎2 + 2 𝑟 𝑥2√𝑡 − 𝑡0
, (7)

also assuming negative underlying asset values.

3. Monte Carlo method for option pricing in local volatility
models

The Feynman–Katz formula (3) for risk-neutral derivative pricing includes the transition den-
sity function 𝜌 (𝑦, 𝑇 ; 𝑆0, 𝑡0), which is the distribution density of the underlying asset 𝑆 (𝑇) at
derivative execution (expiration) time 𝑇 for fixed initial values 𝑆0 and 𝑡0. For a general local
volatility model (1) the distribution of 𝑆 (𝑇), basically, is unknown.

For approximate determination of the distribution density of the random variable 𝑆 (𝑇), one
can use Monte Carlo method [10], which implies generation of a large number of realizations of
the random variable 𝑆 (𝑇), namely, a large bundle of trajectories of SDE (1) with initial condition
(2) with time varying from 𝑡0 to 𝑇.

The time segment [𝑡0, 𝑇] is divided into 𝑁 equal parts of length △𝑡 = 𝑇−𝑡0
𝑁 .

Let 𝑡𝑘 = 𝑡0 + 𝑘 △ 𝑡, 𝑘 = 1, 𝑁, then the simplest numerical approximation of the trajectories of
SDE (1) is Euler–Maruyama scheme [11]:

𝑆𝑘+1 ≈ 𝑆𝑘 + 𝑟 𝑆𝑘 △𝑡 + 𝜎 (𝑆𝑘, 𝑡𝑘) 𝑆𝑘 √△𝑡 𝜀, (8)

where 𝑆𝑘 = 𝑆 (𝑡𝑘) , 𝜀 ∼ 𝒩 (0, 1) is a random variable with standard normal distribution. Examples
of more complex approximations of solutions of SDE (1) include Milstein scheme [12] and the
stochastic Runge–Kutta methods [13].
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The simulation of trajectories of SDE (1) leads to a set of values of the underlying asset 𝑆 at
time 𝑇 of the form 𝑆 (𝑇) = 𝑆(𝑖)𝑁 , 𝑖 = 1, 𝑛, where 𝑛 is the number of simulated trajectories of SDE
(1).

Let 𝑚1 = min {𝑆(𝑖)𝑁 }
𝑛

𝑖=1
, 𝑚2 = max {𝑆(𝑖)𝑁 }

𝑛

𝑖=1
. The segment [𝑚1, 𝑚2] is divided into 𝑀 equal

parts of length ℎ = 𝑚2−𝑚1
𝑀 and let 𝜌𝑗 be the number of values from the set {𝑆(𝑖)𝑁 }

𝑛

𝑖=1
that fall

into the last segment [𝑚1 + (𝑀 − 1) ℎ, 𝑚1 + 𝑀ℎ] for 𝑗 = 𝑀 and half-intervals of the form
[𝑚1 + (𝑗 − 1) ℎ, 𝑚1 + 𝑗 ℎ) for 𝑗 = 1, 𝑀 − 1.
Empirical distribution density of the random variable 𝑆 (𝑇) can be obtained by the formula

𝜌 (𝑦, 𝑇 ; 𝑆0, 𝑡0) =

⎧
⎪

⎨
⎪
⎩

0, 𝑦 < 𝑚1
1
𝑛𝜌𝑗, 𝑚1 + (𝑗 − 1) ℎ ⩽ 𝑦 < 𝑚1 + 𝑗 ℎ, 𝑗 = 1, 𝑀 − 1,
1
𝑛𝜌𝑀, 𝑚1 + (𝑀 − 1) ℎ ⩽ 𝑦 ⩽ 𝑚1 + 𝑀ℎ,
0, 𝑦 > 𝑚2.

(9)

Then, using the empirical density (9) in risk-neutral pricing formula (3), we obtain the
following approximation for the derivative value 𝑉 (𝑆0, 𝑡0)

𝑉 (𝑆0, 𝑡0) ≈ 𝑒−𝑟 (𝑇−𝑡0)
𝑚2 − 𝑚1
𝑀𝑛

𝑀
∑
𝑗=1

𝜌𝑖 𝜓 (𝑚1 + (𝑗 − 1
2
) ℎ) . (10)

For a European call option with strike price 𝐾 the payment function 𝜓(𝑦) is equal tomax(𝑦 −
𝐾, 0), so the price of call option is

𝑉 (𝑆0, 𝑡0) ≈ 𝑒−𝑟 (𝑇−𝑡0)
𝑚2 − 𝑚1
𝑀𝑛

𝑀
∑

𝑗=[𝐾−𝑚1ℎ + 1
2 ]

𝜌𝑗 (𝑚1 + (𝑗 − 1
2
) ℎ − 𝐾) , (11)

where the square brackets in (11) stand for the integer part of the number.
The values 𝑆(𝑖)𝑁 , 𝑖 = 1, 𝑛 can be calculated in parallel, and this makes it possible to use parallel

computing in option pricing using formula (10) or formula (11).

4. Parallel computing in Python

There are different ways to organize parallel computing in Python [14], including multi-
threading (module threading) and multi-processor code execution (method fork of module
os or module multiprocessing). If parallel processes do not interact with each other, then
parallel computations are better done using the multiprocessing module API, which is a part of
the standard Python library.
To execute multiple calls of the function lvm_sde , which returns the value 𝑆(𝑖)𝑁 , in parallel,

module multiprocessing is imported, an object lvm_pool of class Pool is created, the function
lvm_sde is launched for parallel execution using method map , which applies the function lvm_sde
to the list of input parameters input_list :
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import multiprocessing as mp
lvm_pool = mp.Pool()
result = lvm_pool.map( lvm_sde, input_list )

The number of calls of the function lvm_sde corresponds to the length of the input_list list.
The function lvm_sde for calculating 𝑆(𝑖)𝑁 according to formula (8) is defined as follows:

import numpy as np

def lvm_sde(_):
np.random.seed()
s_t = s0
t = t_start
dt = ( t_stop - t_start ) / N
noise = np.random.normal( loc=0.0, scale=1.0, size=N ) * np.sqrt( dt )
for eps_sqrt_dt in noise:

s_t += drift( s_t, t ) * dt + diffusion( s_t, t ) * eps_sqrt_dt
t += dt

return s_t

SDE simulation parameters (variables s0 , t_start , t_stop , N and lambda expressions drift ,
diffusion) are passed to the function lvm_sde as global variables.

5. Empirical distribution construction in local volatility models

Empirical pdf for random variable 𝑆 (𝑇) can be obtained using Monte Carlo method for various
local volatility models of the form (1), including themodels with theoretical transition probability
density functions, determined by (5), (6), (7).
Simulation parameters for SDE (1) are the following:

𝑆0 = 1, 𝑡0 = 0, 𝑡 = 1, 𝑟 = 7%, 𝜎 = 30%, 𝛼 = ±8%, 𝑁 = 100 000, 𝑛 = 10 000. (12)

Theoretical probability density functions in local volatility models under consideration are
shown in Figure 1.
Lambda expressions for simulation of SDE (1) are initialized as given below:

drift = lambda y, t: 0.07 * y
# shifted lognormal model with positive alfa
diffusion = lambda y, t: 0.3 * (y - 0.08 * math.exp(0.07 * t))
# shifted lognormal model with negative alfa
diffusion = lambda y, t: 0.3 * (y + 0.08 * math.exp(0.07 * t))
# Ornstein-Uhlenbeck model
diffusion = lambda y, t: 0.3
# hyperbolic sine model
diffusion = lambda y, t: math.sqrt( 0.14 * y * y + 0.09 )
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Figure 1: Probability density functions in local volatility models

The simulation of SDE (1) by Monte Carlo method with parameters (12) for different volatility
functions confirms (see Figure 2) that empirical probability density functions obtained with the
simulation approximate well enough theoretical probability distribution density functions of
the underlying asset in local volatility models under consideration.
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Figure 2: Empirical and theoretical distribution densities in local volatility models
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Parallel computing using module multiprocessing on MacBook Pro with 8-Core Intel Core i9
processor can significantly accelerate the execution of program code (see Table 1) with almost
full load of MacBook Pro i9 processor cores (see Figure 3).

Table 1
Empirical distribution density construction time in sequential and parallel execution

Mode of execution Runtime (in milliseconds) Speedup

Sequential execution time 951 512.8 1x
Time in parallel execution 159 308.7 6x

Figure 3: Full load of MacBook Pro with 8-Core Intel Core i9 processor

Further speedup of calculation of empirical distribution density can be gained using GPU
resources [15]. When using GPU, program code can be accelerated many times depending on
the task being solved. For instance, on MacBook Pro with Intel Core i9 processor and discrete
graphics card AMD Radeon Pro 5500M (1536 shader processors) the program code can be
accelerated hundreds or even thousands of times compared to sequential execution on CPU.

Parallel GPU computing can be implemented in a Python program using the PyCUDA library
(for Nvidia graphics cards) or the PyOpenCL library (for AMD graphics cards) [16]. The idea
of using Monte Carlo method on a GPU for financial simulation was studied in a number of
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papers [17], including applications to financial risk measurement [18]. Calculating multiple
trajectories of a multidimensional system of SDE in parallel using OpenCL is a subject of
research in [19].

OpenCL framework lacks a standard random number generator, so in order to take advantages
of PyOpenCL library to build empirical distributions and evaluate options with a GPU, one has
to implement a pseudorandom number generator. The recognized random number generators
implemented on GPU are collected in Random123 library [20].
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