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Abstract
Nonlinear models of the interconnected communities population dynamics are considered taking into
account migration and competition. Formulations of optimal control problems are proposed for models
with migration flows. The control quality criterion for a three-dimensional migration-population
model is considered in the framework of optimal control problems with phase and mixed constraints.
Computer research of nonlinear models with migration flows allowed us to obtain the results of numerical
experiments on trajectory search and parameter estimation. To solve optimal control problems, we used
numerical optimization methods and intelligent symbolic computing algorithms. These algorithms are
based on the application of numerical optimization methods in combination with methods for generating
control functions. The transition to the corresponding stochastic model with migration flows and optimal
control is performed. In the stochastic case, the method of constructing self-consistent stochastic models
is used. A comparative analysis of deterministic and stochastic models is carried out. The effects typical
for controlled three-dimensional models with migration flows are revealed. Specialized software packages
are used as tools for researching of models and solving of optimal control problems. These software
packages implement algorithms for constructing trajectories, parametric optimization algorithms, and
generating control functions, as well as numerical solutions of stochastic systems of differential equations.
The obtained results can be used in problems of computer modeling of ecological, demographic and
socio-economic systems, as well as in the problems of synthesis, optimal control and stability analysis of
multidimensional stochastic models describing migration flows.
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1. Introduction

The study of mathematical models of the interacting communities dynamics, taking into account
migration flows, is an important area of research [1, 2, 3, 4]. The effects of migration flows
in deterministic and stochastic population models are considered in [5, 6, 7, 8] and in other
works. For stochastic modeling of various types of dynamic systems, a method for constructing
self-consistent one-step models [9] is proposed and a software package [10, 11] is developed.
The specified software package allows you to perform computer research of models based on
the implementation of algorithms for the numerical solution of stochastic differential equations,
as well as algorithms for generating trajectories of multidimensional Wiener processes and
multipoint distributions. It should be noted that the study of models of population-migration
systems is relevant to the application of applied mathematical packages and general-purpose
programming languages [12, 13].

In [14], a comparative analysis of the results of a computer study obtained for three-dimensional
and four-dimensional stochastic models with migration flows is carried out. A comparison is
made of the qualitative properties of four-dimensional models taking into account changes in
migration rates, as well as intraspecific and interspecific interaction coefficients. The paper [15]
is devoted to construction of four-dimensional nonlinear models of the interconnected com-
munities number dynamics taking into account migration and competition, as well as taking
into account migration, competition and mutualism. A qualitative and numerical study of
these models is performed. A comparative analysis of the results is carried out. In [16], the
construction of multidimensional models is proposed taking into account competition and
mutualism, as well as taking into account migration flows. In [15, 16], a number of statements
of optimal control problems for models with migration flows using phase and mixed constraints
are proposed.

A number of control problems for population dynamics models are studied in [17, 18, 19, 20]
and in other papers. Some optimal control problems of distributed models of population
dynamics are considered in [17]. In [18], the optimality criterion for auto-reproduction systems
is formalized and the optimal control problem for the analysis of evolutionarily stable behavior is
considered. In [19], the problem of the optimal behavior of a two-species population in the area
taking into account migration was set and the equilibria corresponding to the optimal behavior
of populations in the sense of maximizing growth rates are determined. For a four-dimensional
population model without competition, the problem of control synthesis is considered in [20].
This control provides an approximation to the set of equilibrium states in a finite time.

Such scientific directions as the creation of algorithms and the design of programs for solving
of global parametric optimization problems are of theoretical and applied interest. Among the
features of global parametric optimization problems, one can single out the high dimension of
the search space, the complex landscape, and the high computational complexity of the target
functions. Algorithms inspired by the nature [21, 22, 23, 24] are quite effective for solving
these problems. In [25], a number of algorithms for single-criterion global optimization of the
dynamic systems with switching trajectories are developed and the modular structure of a
software package for modeling switched systems is described. The modular structure and a
combination of formal and heuristic methods allow a universal approach to the study of various
classes of models. In [26], the searching problems of optimal parameters of switched models
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taking into account the action of non-stationary forces are considered, and searching algorithms
of optimal motion parameters using intelligent control methods are developed. A comparative
analysis of the methods of single-criterion global optimization is given and the questions of
their application for finding of the coefficients of parametric control functions are considered.
In this paper, nonlinear models of the interconnected communities number dynamics are

considered taking into account migration and competition. Formulations of optimal control
problems for models with migration flows are proposed. The problem of optimal control with
phase constraints for a three-dimensional migration-population model is solved. To solve the
optimal control problem, numerical optimization methods and intelligent symbolic computation
algorithms are used. A computer study of a controlled migration-population model is carried
out. A stochastic model with migration flows and optimal control is constructed. To construct
this model, we used a method of constructing self-consistent stochastic models. The properties
of models in deterministic and stochastic cases are characterized. Specialized software packages
are used as tools for researching models and solving optimal control problems. The software
packages are intended for conducting numerical experiments based on the implementation
of algorithms for constructing motion trajectories, parametric optimization algorithms and
generating control functions, as well as for numerically solving systems of differential equations
using the modified Runge–Kutta methods.

2. Description of a deterministic model without control

One of the basic migration-population models, taking into account competition and migration
flows, is a three-dimensional model that describes the dynamics of two interconnected commu-
nities, with the first species migrating to another range, and in the first range competing with
the second species. The indicated model is defined by a system of differential equations of the
form

̇𝑦1 = 𝑎1𝑦1 − 𝑝11𝑦21 − 𝑝13𝑦1𝑦3 + 𝛽𝑦2 − 𝛾𝑦1,
̇𝑦2 = 𝑎2𝑦2 − 𝑝22𝑦22 + 𝛾𝑦1 − 𝛽𝑦2,
̇𝑦3 = 𝑎3𝑦3 − 𝑝33𝑦23 − 𝑝31𝑦1𝑦3,

(1)

where 𝑦1 and 𝑦3 are the densities of populations of competing species in the first areal, 𝑦2 are
the population densities in the second areal, 𝑦2 are the interspecific competition coefficients,
𝑝𝑖𝑗(𝑖 ≠ 𝑗) are the coefficients of intraspecific competition, 𝑝𝑖𝑖(𝑖 = 1, 2, 3) are the coefficients of
natural growth, 𝑎𝑖(𝑖 = 1, 2, 3) are the coefficients of migration of the species between two areals,
while the second areal is a refuge.

For 𝑎𝑖 = 1, 𝑝𝑖𝑖 = 1, 𝛽 ≠ 𝛾 , 𝑝13 = 𝑝31, the analysis of the model (1) and its generalizations is
performed in [5, 6, 7, 14, 15]. The model (1) is a generalization of the model considered in [2] to
the case of diverging migration rates. It is important to note that the model (1) serves as the
basis for the transition to the construction of multidimensional nonlinear models with migration
flows. In the process of model calculations, standard packages of symbolic calculations are
used. When considering multidimensional generalizations, difficulties arise in calculations with
symbolic parameters, in particular, when finding equilibrium states and constructing phase
portraits. In this regard, a series of computer experiments are conducted, during which the
most representative sets of numerical values of parameters are considered. A computer study
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made it possible to conduct a comparative analysis of the properties of three-dimensional and
four-dimensional models in deterministic and stochastic cases. However, for these models,
no computer study is conducted taking into account the control actions. Next, we consider
optimal control problems in the dynamics models of interacting communities taking into account
migration flows.

3. Optimal control problems

We formulate optimal control problems for a three-dimensional model with migration flows.
The dynamics of the controlled model is described by a system of differential equations

̇𝑥1 = 𝑎1𝑥1 − 𝑝11𝑥21 − 𝑝13𝑥1𝑥3 + 𝛽𝑥2 − 𝛾𝑥1 − 𝑢1𝑥1,
̇𝑥2 = 𝑎2𝑥2 − 𝑝22𝑥22 + 𝛾𝑥1 − 𝛽𝑥2 − 𝑢2𝑥2,
̇𝑥3 = 𝑎3𝑥3 − 𝑝33𝑥23 − 𝑝13𝑥1𝑥3 − 𝑢3𝑥3,

(2)

where 𝑢𝑖 = 𝑢𝑖(𝑡) are control functions.
The constraints for the model (2) are set in the form

𝑥1(0) = 𝑥10, 𝑥2(0) = 𝑥20, 𝑥3(0) = 𝑥30, 𝑥1(𝑇 ) = 𝑥11,
𝑥2(𝑇 ) = 𝑥21, 𝑥3(𝑇 ) = 𝑥31, 𝑡 ∈ [0, 𝑇 ],

(3)

0 ⩽ 𝑢1 ⩽ 𝑢11, 0 ⩽ 𝑢2 ⩽ 𝑢21, 0 ⩽ 𝑢3 ⩽ 𝑢31, 𝑡 ∈ [0, 𝑇 ]. (4)

In relation to the problem (1)–(3) the functional to be maximized is written as

𝐽 (𝑢) = ∫
𝑇

0

3
∑
𝑖=1

(𝑙𝑖𝑥𝑖 − 𝑐𝑖)𝑢𝑖(𝑡)𝑑𝑡,

or

𝐽 (𝑢) = ∫
𝑇

0
[(𝑙1𝑥1 − 𝑐1) 𝑢1(𝑡) + (𝑙2𝑥2 − 𝑐2) 𝑢2(𝑡) + (𝑙3𝑥3 − 𝑐3) 𝑢3(𝑡)] 𝑑𝑡. (5)

The quality control criterion (5) corresponds to the maximum profit from the using of
populations, and 𝑙𝑖 is the cost of the 𝑖-th population, 𝑐𝑖 is the cost of technical equipment
corresponding to the 𝑖-th population.
The optimal control problem 𝐶1 for the model (1) can be formulated as follows.
(𝐶1) Find the maximum of the functional (5) under the conditions (3), (4).
The following type of restrictions imposed on 𝑢𝑖(𝑡) is also of interest for study:

0 ⩽ 𝑢1(𝑡) + 𝑢2(𝑡) + 𝑢3(𝑡) ⩽ 𝑀, 𝑢𝑖(𝑡) ⩾ 0, 𝑖 = 1, 2, 3, 𝑡 ∈ [0, 𝑇 ]. (6)

The optimal control problem 𝐶2 for the model (2) is formulated as follows.
(𝐶2) Find the maximum of the functional (5) under the conditions (3), (6).
In problems of population dynamics, restrictions of the form 𝑥𝑖 ⩾ 0 imposed on phase variables

are natural. Often, restrictions ̇𝑥𝑖 ⩽ 𝑠𝑖 on the growth of the 𝑖-th populaton are often used, which
leads to mixed restrictions. Given these features, along with the problems 𝐶1, 𝐶2, optimal
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control problems with phase and mixed constraints are of interest. The traditional direction of
research, taking into account the problems 𝐶1, 𝐶2, is the search for the conditions of existence
and uniqueness of the maximum of the functional (5) based on the application of Pontryagin
maximum principle. However, due to the difficulties of the analytical study of multidimensional
dynamic models and the characteristics of the control quality criterion, methods of numerical
optimization are often used. Next, we consider the application of numerical optimization
methods as applied to optimal control problems in models with migration flows.

4. Description of algorithms for solving the parametric
optimization problem

To find the maximum of the functional (5), it is proposed to use numerical optimization methods
using intelligent symbolic computation algorithms to find the control functions 𝑢𝑖(𝑡).
The algorithm for solving the problem 𝐶1 (algorithm 1) contains the following steps.

1. Generation of control functions.
2. Construction of trajectories for the model (2).
3. Search for numerical value of criterion (5).
4. Check for a break condition. If the break condition is reached, the algorithm ends.

Otherwise, go to step 1.

To generate control functions, the method of symbolic regression is used. Its principle is to
present expressions in the form of a tree whose nodes are arithmetic operations or mathematical
functions.

Themain problemwith the automatic generation of symbol trees is that a arbitrarily generated
tree is not necessarily correct. In addition, an additional problem is that numerical optimization
algorithms, as a rule, operate with real numbers.
To solve these problems the software package is developed for solving global parametric

optimization problems in Python. The software package includes the following algorithms.
1. Arithmetic coding (algorithm 2). This algorithm is used in entropy compression of informa-

tion and allows you to convert real numbers (from 0 to 1) into a sequence of characters of any
alphabet, and also allows you to control the probability of a character appearing in a message.
2. A node generator based on a finite state machine (algorithm 3). A state machine for

generating nodes of a symbol tree can be represented as a cyclic directed graph, transition
conditions for which are sequentially read from a symbol message (alphabet “abcd”). On each
of the nodes, the automaton returns an operation, operator, variable or number.
3. An algorithm for constructing trees based on linked lists (algorithm 4). The indicated

algorithm allows generating a symbolic expression, obtaining its textual representation, and
counting by substituting the argument x. The principle of the algorithm is based on the dynamic
construction of a linked list by recursive substitution of nodes.
4. Message generation algorithm (algorithm 5). Heuristic algorithms for numerical optimiza-

tion are used in combination with algorithms 2–4. The process of encoding a character tree is
to find the number 𝛿 ∈ [0, 1].
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Using algorithms 3–5 it is possible to find the control functions 𝑢𝑖(𝑡) for functional (5) in
symbolic form. The described algorithms can be used to solve a wide class of problems of
searching for unknown functions, as well as problems of stability, control, forecasting and
clustering. It is important to note that the process of encoding a symbol tree is similar to the
selection of weights of a neural network, and the symbol tree is a universal approximator. In this
regard, symbol trees can be used to construct artificial neurons (when using several variables),
as well as to construct activation functions for the output layer.

It should be noted that the proposed algorithms have less computational complexity compared
to using a trained neural network. In addition, they can be used in conjunction with symbolic
mathematics packages.

5. Results of computer experiments

We consider a special case of the implementation of Algorithm 1. As control functions, we use
positive polynomials of 𝑛-th degree. In developing Python programs, the following optimization
algorithms are used to solve the 𝐶1 problem: the Powell algorithm and differential evolution
from the SciPy mathematical library. The problem of maximizing functional (5) can be reduced
to the problem:

‖(𝛿, 𝑒−𝐽)‖ → min,

where 𝛿 is the absolute deviation of the trajectories from 𝑥11, 𝑥21, 𝑥31 (see formula (3)), denoted
by 𝑒−𝐽 inverse exponent corresponding to functional (5).
Control functions have the form:

𝑢𝑖(𝑡) = ‖𝑅𝑖𝑇 ‖, 𝑅𝑖 = (𝑟0, 𝑟1, … , 𝑟𝑛), 𝑇 = (𝑡0, 𝑡1, … , 𝑡𝑛)𝑇,

where 𝑅𝑖 are the parametric coefficients; 𝑛 is the degree of the polynomial; ‖.‖ is the Cartesian
norm of the vector.
For model (2), in the framework of solving the problem 𝐶1, on the base of on the above

numerical optimization algorithms, a series of computer experiments is carried out. Exper-
imental results and comparative analysis of algorithms for 𝑝𝑖𝑖 = 1, 𝑎𝑖 = 1, 𝛽 = 1, 𝛾 = 1,
𝑥1(0) = 1, 𝑥2(0) = 0.5, 𝑥3(0) = 1, 𝑥𝑖1 = 0.2, 𝑙𝑖 = 10, 𝑐1 = 1, 𝑐2 = 0.5, 𝑐3 = 1 are presented in
Table 1. Note that for convenience and simplicity, multiple 3 values of the coefficients are used
in accordance with the number of functions 𝑢𝑖(𝑡).
Figure 1 shows the trajectories of system (2) for the case 𝑛 = 0, when 𝑢𝑖 = const. Here and

further along the abscissa axis, time is indicated, along the ordinate axis, the population density
𝑥1, 𝑥2, 𝑥3 for system (2).
It should be noted that for differential evolution with 𝑛 = 0 a similar result is obtained.
Figure 2 shows the trajectories of model (2) for 𝑛 = 1 using the Powell algorithm. The use

of linear control functions significantly increases the value of criterion (5), while the error
decreases (see Table 1). Using the Powell algorithm for 𝑛 = 2 gives trajectories similar to those
for 𝑛 = 1.
Figure 3 presents the results of constructing the trajectories of system (2) for 𝑛 = 2 using

differential evolution. According to the results obtained, the use of quadratic control functions
𝑢 allows one to significantly increase the value of functional (5).
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Table 1
The values of functional (5) for various parameters 𝑅

Algorithm/Degree/Values Accuracy Value of functional (5)
Powell Algorithm, 𝑛 = 0 0.012 62.82
𝑅 = (0.01245394, 1.40872792, 0.60580167)
Powell Algorithm, 𝑛 = 1 0.003 83.41
𝑅 = (1.12256585, -0.12451127, 0.58076986, 0.08948072
1.73843178, -0.17889372)
Powell Algorithm, 𝑛 = 2 0.0035 81.20
𝑅 = (1.19541598e+00, -1.22466930e-01, -2.95037445e-04,
7.18748101e-01, -3.73885949e-02, 1.19110418e-02,
1.26513172e+00, -5.26684882e-02, -5.83741998e-03)
Differential evolution, 𝑛 = 0 0.012 62.82
𝑅 = (0.01245681, 1.40872162, 0.60580208)
Differential evolution, 𝑛 = 1 0.002 89.936
𝑅 = (-1.79492026, 0.22097301, -1.29949171,
0.31675029, -1.95814565, 0.2512848)
Differential evolution, 𝑛 = 2 0.0012 99.921
𝑅 = (-4.22544296, 1.41343107, -0.10137252,
0.36060781, -0.70567989, 0.08886537,
2.55365751, -1.27341688, 0.11120789)

Figure 1: The trajectories of system (2) for 𝑢1 = 0.012, 𝑢2 = 1.408, 𝑢3 = 0.606 using Powell algorithm
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Figure 2: The trajectories of system (2) for 𝑢1 = 1.123 − 0.124𝑡, 𝑢2 = 0.58 + 0.089𝑡, 𝑢3 = 1.738 − 0.179𝑡
using the Powell algorithm

Figure 3: The trajectories of system (2) for 𝑢1 = −4.225+1.413𝑡 −0.101𝑡2, 𝑢2 = 0.3606−0.7057𝑡 +0.0889𝑡2,
𝑢3 = 2.554 − 1.273𝑡 + 0.111𝑡2 using differential evolution
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Based on the results shown in Table 1, we can conclude that the effectiveness of control
functions increases with increasing degree of polynomial. However, it should be noted that
the computational complexity of the main algorithm 1 is significantly increased. It can be
assumed that the largest values of the functional (5) correspond to the oscillating trajectories
of the model (2). This assumption is consistent with the results of computer experiments (see
Figure 3). Testing this hypothesis for various data sets and parameters is one of the further
areas of research.

In the next section of the paper, for the analysis of stochastic models, we used the results of a
computer experiment conducted for model (2) at 𝑛 = 0, 𝑛 = 1, 𝑛 = 2. The results can be used to
search for control functions using symbolic regression and artificial neural networks.

6. Construction and analysis of a stochastic controlled model
with migration flows

To construct a stochastic population model taking into account competition and migration flows
and control, it is proposed to apply the method of constructing self-consistent stochastic models
[8, 9, 10]. This method involves recording the system under study in the form of an interaction
scheme, i.e. symbolic record of all possible interactions between system elements. For this
symbolic record we use the system state operators and the system state change operator. Then
we can get the drift and diffusion coefficients for the Fokker–Planck equation. This approach
to modeling allows us to write the Fokker–Planck equation and the equivalent stochastic
differential equation in the Langevin form.
To obtain a stochastic model, it is necessary to write the interaction scheme, which has the

following form:

𝑋𝑖
𝑎𝑖−→ 2𝑋𝑖, 𝑖 = 1, 3;

𝑋𝑖 + 𝑋𝑖
𝑝𝑖𝑖−−→ 𝑋𝑖, 𝑖 = 1, 3;

𝑋1 + 𝑋3
𝑝13−−−→ 0,

𝑋1
𝛾
−→ 𝑋2, 𝑋2

𝛽
−→ 𝑋1,

𝑋𝑖
𝑢𝑖−→ 0, 𝑖 = 1, 3.

(7)

In this interaction scheme (7), the first line corresponds to the natural reproduction of species
in the absence of other factors, the 2nd line symbolizes intraspecific competition, and the 3rd line
symbolizes interspecific competition. The fourth line is a species migration process description
from one range to another. The last line is responsible for control.
Further, for this interaction scheme using the developed software package [14] for obtain-

ing the coefficients of the Fokker–Planck equation from the interaction schemes using the
SymPy [11] symbolic computing system, the following expressions for the coefficients are
obtained:

𝐴(𝑥) = (
𝑎1𝑥1 − 𝑝11𝑥21 − 𝑝13𝑥1𝑥3 + 𝛽𝑥2 − 𝛾𝑥1 − 𝑢1𝑥1

𝑎2𝑥2 − 𝑝22𝑥22 − 𝛽𝑥2 + 𝛾𝑥1 − 𝑢2𝑥2
𝑎3𝑥3 − 𝑝33𝑥23 − 𝑝13|𝑥1𝑥3 − 𝑢3𝑥3

) ,
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𝐵(𝑥) = (
𝐵11 −𝛽𝑥2 − 𝛾𝑥1 0

−𝛽𝑥2 − 𝛾𝑥1 𝐵22 0
0 0 𝐵33

) ,

where
𝐵11 = 𝑎1𝑥1 + 𝑝11𝑥21 + 𝑝13𝑥1𝑥3 + 𝛽𝑥2 + 𝛾𝑥1 + 𝑢1𝑥1,

𝐵22 = 𝑎2𝑥2 + 𝑝22𝑥22 + 𝛽𝑥2 + 𝛾𝑥1 + 𝑢2𝑥2,
𝐵33 = 𝑎3𝑥3 + 𝑝33𝑥23 + 𝑝13𝑥1𝑥3 + 𝑢3𝑥3,

𝑥 = (𝑥1, 𝑥2, 𝑥3) is the vector describing the state of the system. The coefficient 𝐴(𝑥) is the drift
vector, the coefficient 𝐵(𝑥) is the diffusion matrix for the Fokker–Planck equation (3), for a
model dimension equal to 3:

𝜕𝑡𝑃(𝑥, 𝑡) = −
𝑛
∑
𝑖=1

[𝐴𝑖(𝑥)𝑃(𝑥, 𝑡)] +
1
2

𝑛
∑
𝑖,𝑗=1

𝜕𝑥𝑖𝜕𝑥𝑗[𝐵𝑖𝑗𝑃(𝑥, 𝑡)]. (8)

Further, the obtained coefficients are transferred to another module of the software package for
the numerical solution of the resulting stochastic differential equation.
For the numerical experiment of the obtained stochastic model, the same parameters are

chosen as for the numerical analysis of the deterministic model (2). The results of a nu-
merical solution of a stochastic differential solution for two sets of control function values
𝑢1 = 0.012, 𝑢2 = 1.408, 𝑢3 = 0.606 and 𝑢1 = 1.123 − 0.124𝑡, 𝑢2 = 0.58 + 0.089𝑡, 𝑢3 = 1.738 − 0.179𝑡
are shown in Figures 4 and 5.

Figure 4: The trajectories of the deterministic and stochastic system (2) for 𝑢1 = 0.012, 𝑢2 = 1.408, 𝑢3 =
0.606

A comparative analysis showed that in the first case, namely, for 𝑢1 = 0.012, 𝑢2 = 1.408, 𝑢3 =
0.606, the introduction of stochastics weakly affects the behavior of the system. The solutions
remain close to the boundary conditions 𝑥1𝑖 = 0.2 specified for the model (2).
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Figure 5: The trajectories of the deterministic and stochastic system (2) for 𝑢1 = 1.123 − 0.124𝑡, 𝑢2 =
0.58 + 0.089𝑡, 𝑢3 = 1.738 − 0.179𝑡

In the second case, namely, for 𝑢1 = 1.123 − 0.124𝑡, 𝑢2 = 0.58 + 0.089𝑡, 𝑢3 = 1.738 − 0.179𝑡, the
introduction of stochastics greatly changes the behavior of the system. Thus, in this case, to
obtain optimal solutions to the stochastic model, it is necessary to use other methods.

7. Conclusion

In this paper, we propose methods for the analysis and synthesis of multidimensional nonlinear
controlled models of the interconnected communities dynamics, taking into account migration
and competition. The statements of optimal control problems for models with migration flows
are considered. A computer study of nonlinear models with migration flows made it possible to
obtain the results of numerical experiments in searching for trajectories and generating control
functions. The case of control functions representability in the form of positive polynomials
is studied. To solve optimal control problems, it is proposed to use numerical optimization
methods and intelligent symbolic computation algorithms. These algorithms are based on the
use of heuristic methods of numerical optimization in combination with methods for generating
control functions.
The analysis of the generalized stochastic model with migration flows and optimal control

demonstrated the effectiveness of the method of constructing self-consistent stochastic models
for the controlled case. For a number of parameters sets, it is possible to conduct a series of
computer experiments to construct optimal trajectories of the stochastic model. A comparative
analysis of the studied deterministic and stochastic models is carried out.
The use of the developed instrumental software, symbolic calculations, and generalized

numerical methods have demonstrated sufficient efficiency for the computer study of multidi-
mensional nonlinear models with migration. The presented results can be used in computer
modeling of deterministic and stochastic migration processes taking into account control and
optimization requirements.
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