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Abstract
In this paper we verified the applicability and usability of Julia programming language in the field of
numerical simulation. To research the potential of Julia, the simplest problem of mathematical modeling
was considered—the task of a quantum harmonic oscillator, for the solution of which the powerful
library DifferentialEquations.jl was used. This library allows to quickly and conveniently find numerical
solutions of various differential equations. During our research graphs and solutions corresponding to
theoretical values were obtained.

As a result of the work, the applicability, capabilities of the Julia programming language and the
convenience of its use in solving mathematical modeling problems were shown.
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1. Introduction

An oscillator is a system of bodies or particles that make periodic oscillations around a stable
equilibrium position.

The movement of microparticles is an important area of research in modern physics. One of
the classical model problems in this area is the problem of the motion of a harmonic oscillator
— a system capable of performing harmonic oscillations.

The real beginning of quantum theory comes from Max Karl Ernst Ludwig Planck (1858-
1947, Göttingen, Germany), a German theoretical physicist, the founder of quantum physics,
who in 1900 received a formula for correctly describing the spectral distribution of thermal
radiation. Having come to the conclusion that he was unable to obtain the required formula for
the distribution of radiation, Max Planck made the assumption that the harmonic oscillators
considered as emitters should have energies that are not distributed as continuous variables,
but that take discrete and regularly located values. Oscillators with a frequency of 𝜔 should
have energy values that are multiple, i.e. 𝑛 times multiplied (where 𝑛 = 0, 1, 2, 3, …) by an object
called it a quantum energy denoted by ℎ𝜔.

Workshop on information technology and scientific computing in the framework of the X International Conference
Information and Telecommunication Technologies and Mathematical Modeling of High-Tech Systems (ITTMM-2020),
Moscow, Russian, April 13-17, 2020
Envelope-Open velieva-tr@rudn.ru (T. R. Velieva); 1032193055@pfur.ru (A. V. Fedorov)
Orcid 0000-0003-4466-8531 (T. R. Velieva); 0000-0002-3036-0117 (A. V. Fedorov)

© 2020 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

158

mailto:velieva-tr@rudn.ru
mailto:1032193055@pfur.ru
https://orcid.org/0000-0003-4466-8531
https://orcid.org/0000-0002-3036-0117
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Tatyana R. Velieva et al. CEUR Workshop Proceedings 158–167

1.1. Article structure

The following structure is proposed for this article: the section 1 describes general facts and
information about quantum physics; the section 2 introduces the notation that will be used
throughout the article and the agreement, following which the authors get the results; the
section 2 contains graphs obtained by numerically solving the problem of modeling a quantum
oscillator in a well; the section 2 describes the results; the section 3 summarizes the work done
in the course of scientific research.

2. Harmonic oscillator

The harmonic oscillator model plays an important role, especially when studying small os-
cillations of systems near the position of stable equilibrium. An example of such vibrations
in quantum mechanics is the vibrations of atoms in solids, molecules, etc. Consider a one-
dimensional harmonic oscillator oscillating along the x axis under the action of a returning
quasielastic force denoted by 𝐹 = −𝑘𝑥. The potential energy of such an oscillator has the form:

𝑈 (𝑥) = 𝑘𝑥2

2
= 𝑚𝜔2𝑥2

2
, (1)

where𝜔 is the eigenfrequency of the classical harmonic oscillator. Thus, the quantum-mechanical
problem of a harmonic oscillator reduces to the problem of the motion of a particle in a parabolic
potential well.
The total energy of the oscillator (2) 𝐸 is the sum of kinetic and potential energies:

𝐸 =
𝑝2

2𝑚
+ 𝑘𝑥2

2
. (2)

In classical physics, the frequency of oscillations of a harmonic oscillator, where 𝑚 is the mass
of the oscillator and 𝑘 is a certain constant (for example, spring stiffness), which determines
the scale of the force returning (to the equilibrium position) 𝐹 = −𝑘𝑥 (𝑥 is deviation from the
equilibrium position). The energy of a classical oscillator is proportional to the square of the
amplitude of its oscillations and can change continuously [1].

Considering a quantum oscillator, there are a number of differences between it and an ordinary
oscillator. It’s description is assumed using the Hamiltonian.
The energy levels of the harmonic oscillator (4) and the wave functions (5) are determined

from the Schrödinger equation (3) [2]:

ℎ2

2𝑚
𝑑2𝜓𝑛(𝑥, 𝑡)

𝑑𝑥2
+ 𝑚𝜔2𝑥2

2
𝜓𝑛(𝑥, 𝑡) = 𝑖ℏ

𝑑𝜓𝑛
𝑑𝑡

, (3)

𝐸𝑛 = ℏ𝜔(𝑛 + 1/2), 𝑛 = 0, 1, 2, … (4)

Quantum oscillations realized in molecules, atoms, and nuclei can occur only with a fixed set
of individual energies, i.e. the level spectrum of such an oscillator is discrete:

𝜓𝑛(𝑥, 𝑡) = (𝑋0 ⋅ 2𝑛𝑛!√𝜋)
−1/2

exp (− 𝑥2

𝑋 2
0
) × 𝐻𝑛 (

𝑥
𝑋0

) exp (−
𝑖𝐸𝑛𝑡
ℏ

) , (5)
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where the amplitude of the zero-point oscillations is given by (6):

𝑋0 = √
ℏ
𝑚𝜔

, (6)

and Hermite polynomials in one of their representations are denoted as 𝐻𝑛(𝑥) (7):

𝐻𝑛(𝑥) = (−1)𝑛𝑒𝑥
2 𝑑𝑛

𝑑𝑥𝑛
(𝑒−𝑥

2
) . (7)

The energy levels of the quantum harmonic oscillator are equidistant and are given by the
expression (4) 𝐸𝑛 = ℏ𝜔(𝑛 + 1/2), with 𝑛 = 0, 1, 2, …, ℏ = ℎ

2𝜋 (ℎ is the Planck constant), i.e.
are located at the same energy distance from each other equal to 𝐸𝑛. The parameter 𝑛 is also
known as the number of phonons. The lowest energy of quantum oscillations (the energy of its
zero-point vibrations) is 𝐸0 =

ℏ𝜔
2 > 0.

Thus, the only way to stop a quantum oscillator — is to eliminate it. Variable 𝜔, setting
the fundamental tone of a quantum oscillator is related to its potential energy by the classical
relation ℏ𝜔2 𝑥2

2 = 𝑘𝑥2
2 . Under the influence of an external perturbation, a quantum oscillator

can go from one level to another. In this case, the minimum energy of absorbed and emitted
quanta (energy of one phonon) is equal to ℏ𝜔.
Applying the Heisenberg uncertainty relation, we set as an estimate of the momentum 𝑝:

𝑝 ≈ ℏ
𝑥 .

𝐸 = ℏ2

2𝑚𝑥2
+ 𝑘𝑥2

2
. (8)

For large values of 𝑥, the potential energy exceeds kinetic, while, for small values of 𝑥, kinetic
energy has an inverse relation to potential. For the ground state, where the energy is minimal,
we find the minimum of the function (8). The value of the variable 𝑥𝑚𝑖𝑛 corresponding to the
minimum is:

𝑥2𝑚𝑖𝑛 =
1
2𝜋

= ℎ
√𝑘𝑚

, (9)

and the corresponding energy value 𝐸 is of the order:

𝑥2𝑚𝑖𝑛 =
ℎ
2𝜋

= 𝑘
𝑘𝑚

= ℎ𝜔. (10)

In quantum mechanics, to solve the harmonic oscillator problem, one needs to solve the
Schrödinger equation (11) with potential energy (1), which has the form:

Δ𝜓 + 2𝑚
ℎ2

(𝐸 − 𝑈 )𝜓 = 0, (11)

Further equation (11) will be reduced to the following form:

𝑑𝑥2

ℎ2
+ 2𝑚

ℎ2
(𝐸 − 𝑚𝜔𝑥2

2
) 𝜓 = 0, −∞ < 𝑥 < +∞. (12)

Lets define 𝜀:
𝜀 = 𝑋

𝑋0
.
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Then, the parameter necessary for further calculations 𝜈:

𝜈 = 2𝐸
ℏ𝜔

.

We bring the equation (12) to the following view:

𝑑2𝜓
𝑑𝜀2

+ (𝜈 − 𝜀2)𝜓 = 0. (13)

The analysis shows that the wave functions (the solution of the equation (13)) are continuous
and finite not for all values of the parameter 𝜈, but only for:

𝜈 = 2𝑛 + 1, 𝑛 = 0, 1, 2, … .

We proceed to the analysis of the wave functions of a harmonic oscillator. As shown in the
theory of differential equations with variable coefficients, wave functions, that are solutions of
the equation (11), have the form:

𝜓𝑛(𝜀) = 𝑒
𝜀2

2 𝐻𝑛(𝜀), 𝑛 = 0, 1, 2, … , (14)

where 𝐻𝑛(𝜀) is the Chebyshev-Hermite polynomial of order 𝑛, described by the expression:

𝐻𝑛(𝜀) =
−1𝑛

√2𝑛𝑛!√𝜋
𝑒𝜀

2 𝑑𝑛𝑒−𝜀
2

𝑑𝜀2
.

The wave functions (14) are orthonormalized, that is, satisfy the condition:

∫
+𝑥

−𝑥
𝜓𝑛(𝑥)𝜓𝑚(𝑥)𝑑𝑥 = 𝛿𝑚𝑛,

where 𝛿𝑚𝑛 is the Kronecker symbol:

𝛿𝑚𝑛 = {
1, 𝑚 = 𝑛,
0, 𝑚 ≠ 𝑛.

Next, we present the form of the wave functions 15 for the first three energy levels of the
quantum harmonic oscillator:

𝑛 = 0, 𝜓0(𝑥) =
1

√𝑥0√𝜋
exp (− 𝑥2

2𝑥20
) ,

𝑛 = 1, 𝜓1(𝑥) =
1

√2𝑥0√𝜋
2𝑥
𝑥0

exp (− 𝑥2

2𝑥20
) , (15)

𝑛 = 2, 𝜓2(𝑥) =
1

√8𝑥0√𝜋
(4𝑥

2

𝑥20
− 2) exp (− 𝑥2

2𝑥20
) .
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To obtain the solution to the described problem, the program code was developed in the Julia
programming language [3, 4, 5, 6], using the DifferentialEquations.jl [7] library.
Before working with Julia you must install the language, following the recommendations

from the official website [8].
Then, using the ] command in Julia’s environment, the mode of working with packages

is called pkg , after entering it you need to install the libraries used in the presented code:
DifferentialEquations and Plots . This can be done using the command install <library_name> ,
where library_name is the name of the library to be installed.

using DifferentialEquations
using Plots

We set the necessary parameters. Julia is allowed to use Unicode characters, so in the code
below we will denote variables using them:

const ħ = 1.0
const m = 1.0
const omega = 0.5

We define a function that describes Chebyshev–Hermite polynomials, where n has a value
from 0 to 5:

function H(x, n)
n == 0 && return 1
n == 1 && return 2x
n == 2 && return 4x^2 - 2
n == 3 && return 8x^3 - 12x
n == 4 && return 16x^4 - 48x^2 + 12
n == 5 && return 32x^5 - 160x^3 + 120x
end

Define the function 𝐸(𝑛), Julia allows you to define functions in mathematical form:

E(n) = ħ * omega * (n + 0.5)

The function 𝜓 follows from the analytical solution, this is done in order to correctly derive
the initial conditions; if this step is not performed, the right solution for our problem will not
be obtained:

function psi(x, n)
res = 1 / sqrt(2^n * factorial(n))
res *= (m * omega / (pi * ħ)) |> sqrt |> sqrt
res *= exp(- m * omega * x * x / 2 / ħ)
res *= H(sqrt(m * omega / ħ)*x, n)
end
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To get the result from Julia solvers, it is necessary to specify the function that describes
our system of equations, therefore we define the function Func! . An exclamation mark in the
name of the function indicates that the function does not change the input parameters during
operation:

function Func!(du, u, n, x)
du[1] = (2m/ħ^2) * (0.5m * omega^2 * x^2 - E(n)) * u[2]
du[2] = u[1]
end

Set the time interval from −5 to 5 using the tspan vector. We determine the current value of
n and declare the initial condition 𝑢0:

tspan = (-5.0, 5.0)
n = 0
u_0 = [0, psi(tspan[1], 0)]

In the ode variable we write the solution that the ODEProblem function returns. The input to
this function is: Func! function describing the ODE; u0 are the initial conditions; tspan is time
period on which you need to find a solution; n is the parameter of the Chebyshev–Hermite
polynomial; and the saveat parameter is a step in the time interval:

ode = ODEProblem(Func!, u0, tspan, n, saveat=0.1)

In the sol variable we write the solution that the solve function returns. The ode parameter
is input to this function. Next, in psi write the result of hcat for the u array of the sol structure.
In p0 we write the prepared graph for the mode of the wave function 𝑛 = 0:

sol = solve(ode)
psi = hcat(sol.u...)[2,:]
plot(sol.t, psi, label = ”psi_0(x)”)

For 𝑛 = 1, we perform the same algorithm to obtain the graph:

n = 1
u_01 = [0, psi(tspan[1], 1)]
ode1 = ODEProblem(Func!, u_01, tspan, n, saveat=0.1)
sol1 = solve(ode1)
psi1 = hcat(sol1.u...)[2,:]

To build two graphs in one figure, we use the plot command, in the parameters we set 𝑝0,
𝑝1 are two graphs of wave functions for 𝑛 = 0 and 𝑛 = 1, in the layout parameter we set the
dimension 1 by 2:

plot(sol1.t, psi1, label = ”psi_1(x)”)
savefig(”n1_.pdf”)
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To obtain solutions and graphs for subsequent wave functions, the similar algorithm is used:

n = 2
u_02 = [0, psi(tspan[1], 2)]
ode2 = ODEProblem(Func!, u_02, tspan, n, saveat=0.1)
sol2 = solve(ode2)
psi2 = hcat(sol2.u...)[2,:]
plot(sol2.t, psi2, label = ”psi_2(x)”)
savefig(”n2_.pdf”)

n = 3
u_03 = [0, psi(tspan[1], 3)]
ode3 = ODEProblem(Func!, u_03, tspan, n, saveat=0.1)
sol3 = solve(ode3)
psi3 = hcat(sol3.u...)[2,:]
plot(sol3.t, psi3, label = ”psi_3(x)”)
savefig(”n3_.pdf”)

n = 4
u_04 = [0, psi(tspan[1], 4)]
ode4 = ODEProblem(Func!, u_04, tspan, n, saveat=0.1)
sol4 = solve(ode4)
psi4 = hcat(sol4.u...)[2,:]
plot(sol4.t, psi4, label = ”psi_4(x)”)
savefig(”n4_.pdf”)

n = 5
u_05 = [0, psi(tspan[1], 5)]
ode5 = ODEProblem(Func!, u_05, tspan, n, saveat=0.1)
sol5 = solve(ode5)
psi5 = hcat(sol5.u...)[2,:]
plot(sol5.t, psi5, label = ”psi_5(x)”)
savefig(”n5_.pdf”)

The article showed the applicability, capabilities of the programming language Julia and the
convenience of its use in solving mathematical modeling problems.
The authors demonstrated the technique of researching the model of a quantum harmonic

oscillator, and graphs of wave functions were obtained. The capabilities of the Julia programming
language for modeling the described systems were also explorated. A numerical simulation
of the process of finding a particle of a quantum harmonic oscillator is carried out, graphs are
obtained that demonstrate the behavior of the wave functions of the system.
As the results of the work, we obtained graphs of wave functions that describe the corre-

sponding vibration modes for the quantum number 𝑛 from 0 to 5. The obtained graphs are
presented in Figures 1, 2, 3, 4, 5, 6.
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Figure 1: Graph of the wave function for the value of the quantum number 𝑛 = 0

Figure 2: Graph of the wave function for the value of the quantum number 𝑛 = 1

Figure 3: Graph of the wave function for the value of the quantum number 𝑛 = 2
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Figure 4: Graph of the wave function for the value of the quantum number 𝑛 = 3

Figure 5: Graph of the wave function for the value of the quantum number 𝑛 = 4

Figure 6: Graph of the wave function for the value of the quantum number 𝑛 = 5
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As a result of the scientific work the graphs and solutions were successfully obtained that
correspond to the theoretical values of the behavior of the wave functions of a quantum harmonic
oscillator. The developed program code turned out to be very compact, the development process
was quick and convenient. The programming language Julia took upon itself libraries to solve
the main problems considered during this research.
In summary, everything that has been said above, we have concluded that the language of

Julia is fully applicable, and is very convenient in case of use as a tool for solving numerical
modeling.

3. Conclusion

The research was executed to test the capabilities of the programming language Julia when it
is used as a tool for experiments allowing to solve modern numerical problems in the field of
numerical modeling.
As part of the task, the authors decided to consider the simplest problem of a quantum

harmonic oscillator, using the most powerful library for solving ODEs of various kinds –
DifferentialEquations . As a result of the scientific work, graphs and solutions corresponding
to theoretical values were successfully obtained.
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