Ein 2-Fronten-Feder-Masse-Modell zur Segmentierung von Lymphknoten in CT-Daten des Halses

Heiko Seim¹, Jana Dornheim¹ und Uta Preim²

¹Institut für Simulation und Graphik, Otto-von-Guericke-Universität Magdeburg
²Klinik für diagnostische Radiologie, Universitätsklinikum Magdeburg
Email: heiko.seim@gmx.de

1 Problemstellung

Eine dreidimensionale Visualisierung relevanter Strukturen soll die präoperative Einschätzung der Operabilität des Patienten verbessern. Hierfür sind Segmentierungen der zu visualisierenden Strukturen notwendig. Die Lymphknotensegmentierung ist dabei einer der zeitaufwendigsten Arbeitsschritte [1], der bisher nur auf manuellem Wege zuverlässig auszuführen war.

2 Stand der Forschung

Abb. 1. Schematischer 2D-Querschnitt des 2-Fronten-Modells (links). Jeweils ein Mas
seknoten mit Gradientensensor und einer mit Intensitätssensor bilden durch eine sehr
steife Federverbindung eine funktionelle Einheit (rechts).

idealisierten Phantomdaten erfolgreich segmentieren ließen, wurde eine Unter-
suchung auf realen Daten nicht vorgenommen, wodurch eine Prognose für einen
praktischen Einsatz nicht möglich ist.

3 Methoden

Für das von uns entwickelte Verfahren kommen Stabile 3D-Feder-Masse-Modelle
[5] (auch Stable 3D-Mass-Spring-Models - SMSMs) zum Einsatz, da sich mit ih-
nen das für die Lymphknotensegmentierung notwendige komplexe Modellwissen
(Grauwertbereich, Kanteninformation, Formwissen) in einem einzigen Modell
beschreiben lässt. Herkömmliche Feder-Masse-Modelle verfügen lediglich über
Federkräfte, um über die Abstände verbundener Masseknoten die Ausgangs-
form zu beschreiben. Dadurch war es bisher nicht möglich, lokal vernetzte Feder-
Masse-Netze zur stabilen Segmentierung in höheren Dimensionen zu verwenden.
SMSMs bieten eine zusätzliche formverhaltende Modellkomponente, die bestrebt
ist, die relativen Ruherichtungen aller Federn aufrecht zu erhalten (Torsions-
krafte).

Um das stabile 3D-Feder-Masse-Modell den Bilddaten anzupassen, werden
Sensoren verwendet. Jeweils ein Sensor ist räumlich mit einem Masseknoten ver-
knüpft und erzeugt eine auf ihn wirkende Kraft, die sich aus den Bildmarkern
ableitet. Für die Segmentierung von Lymphknoten bieten sich zwei Sensortypen
knotenkontur in den Bilddaten sowie Intensitätssensoren, die auf das homogene
 Innere von Lymphknoten reagieren.

3.1 Aufbau des 2-Fronten-Modells

Das entwickelte Modell besteht aus einer doppelten Kugelstruktur zweier identi-
scher SMSMs, die sich lediglich in ihren Radien leicht unterscheiden[7]. Dadurch
destehen eine äußere Front, auf der Masseknoten mit Gradientensensoren ange-
ordnet sind, und eine innere Front, die über Masseknoten mit Intensitätssensoren

<table>
<thead>
<tr>
<th>Datensatz</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlsegmentierung (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwender 1</td>
<td>45,88</td>
<td>69,38</td>
<td>63,25</td>
<td>36,13</td>
<td>37,00</td>
</tr>
<tr>
<td>Anwender 2</td>
<td>45,63</td>
<td>65,25</td>
<td>50,88</td>
<td>29,88</td>
<td>33,13</td>
</tr>
<tr>
<td>Modell</td>
<td>44,38</td>
<td>50,75</td>
<td>51,38</td>
<td>51,75</td>
<td>38,88</td>
</tr>
<tr>
<td>Hausdorff-Distanz (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwender 1</td>
<td>3,013</td>
<td>2,601</td>
<td>3,238</td>
<td>1,213</td>
<td>1,575</td>
</tr>
<tr>
<td>Anwender 2</td>
<td>4,112</td>
<td>2,644</td>
<td>3,225</td>
<td>1,150</td>
<td>1,725</td>
</tr>
<tr>
<td>Modell</td>
<td>3,913</td>
<td>2,350</td>
<td>3,825</td>
<td>1,700</td>
<td>1,925</td>
</tr>
<tr>
<td>Mittlere Randdistanz (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anwender 1</td>
<td>0,420</td>
<td>0,353</td>
<td>0,401</td>
<td>0,311</td>
<td>0,299</td>
</tr>
<tr>
<td>Anwender 2</td>
<td>0,488</td>
<td>0,406</td>
<td>0,444</td>
<td>0,271</td>
<td>0,279</td>
</tr>
<tr>
<td>Modell</td>
<td>0,421</td>
<td>0,309</td>
<td>0,596</td>
<td>0,583</td>
<td>0,416</td>
</tr>
</tbody>
</table>

verfügt (siehe Abb. 1). Durch die Kugelform des Modells wird darüber hinaus die kugelig bis ellipsoide Erscheinungsform der Lymphknoten modelliert. Gradientensensoren sind hierbei für eine Anpassung des Modells an die Lymphknotenkontur zuständig, während die Intensitätssensoren beströmt sind, sich in Richtung lymphknotentypische Grauwerte zu bewegen oder dort zu verweilen.

3.2 Ablauf der Segmentierung

4 Ergebnisse

Für die Evaluierung lagen uns 11 CT-Datensätze vor, in denen klinisch relevante Lymphknoten auftraten. In einer eingehenden qualitativen Analyse sollte geklärt werden, inwieweit die Modellkomponenten ihre Funktion im Segmentierungsprozess erfüllen. In einem zweiten quantitativen Evaluierungsschritt wurden in fünf

CT-Datensätzen Varianzen zwischen manuellen Segmentierungen von drei erfahrenen Anwendern und Segmentierungen des Modells untersucht. Hierzu ließ sich eine von einem Radiologen verifizierte Referenzsegmentierung als Goldstandard verwenden.

4.1 Qualitative Analyse
Es zeigte sich, dass die entwickelten Modellkomponenten nur in ihrer Gesamtheit ein stabiles Segmentierungsmodell ergeben. So liegt mit den Torsionskräften ein sehr wichtiger Faktor für die Formstabilität, variable Größenanpassung (siehe Abb. 2) sowie die organische Extrapolation fehlender Bildinformationen vor. Zusätzlich konnte gezeigt werden, dass die Verwendung von Intensitätssensor- ren die Ausdehnung in Strukturen mit anderem Grauwert verhindert, während die Einbeziehung der Gradientenrichtung Bilddaten reduziert, die das Modell zu stark ablenken können.

4.2 Quantitative Analyse

5 Diskussion
Die starke Korrelation der Varianzen bei manueller und der Modell-Segmentierung lassen vermuten, dass mit dem 2-Fronten-Modell ein Verfahren ent-

Danksagung. Diese Arbeit ist Teil des von der DFG geförderten Schwerpunktprogramms „Medical Navigation and Robotics“ (1124, PR 660/3-1).

Literaturverzeichnis