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Abstract
Specifying reward functions for robots that operate
in environments without a natural reward signal can
be challenging, and incorrectly specified rewards
can incentivise degenerate or dangerous behavior.
A promising alternative to manually specifying re-
ward functions is to enable robots to infer them
from human feedback, like demonstrations or cor-
rections. To interpret this feedback, robots treat as
approximately optimal a choice the person makes
from a choice set, like the set of possible trajecto-
ries they could have demonstrated or possible cor-
rections they could have made. In this work, we
introduce the idea that the choice set itself might be
difficult to specify, and analyze choice set misspeci-
fication: what happens as the robot makes incorrect
assumptions about the set of choices from which
the human selects their feedback. We propose a
classification of different kinds of choice set mis-
specification, and show that these different classes
lead to meaningful differences in the inferred re-
ward and resulting performance. While we would
normally expect misspecification to hurt, we find
that certain kinds of misspecification are neither
helpful nor harmful (in expectation). However, in
other situations, misspecification can be extremely
harmful, leading the robot to believe the opposite of
what it should believe. We hope our results will al-
low for better prediction and response to the effects
of misspecification in real-world reward inference.

1 Introduction
Specifying reward functions for robots that operate in envi-
ronments without a natural reward signal can be challenging,
and incorrectly specified rewards can incentivise degenerate
or dangerous behavior [Leike et al., 2018; Krakovna, 2018].
A promising alternative to manually specifying reward func-
tions is to design techniques that allow robots to infer them
from observing and interacting with humans.
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Figure 1: Example choice set misspecification: The human chooses
a pack of peanuts at the supermarket. They only notice the expen-
sive one because it has flashy packaging, so that’s the one they buy.
However, the robot incorrectly assumes that the human can see both
the expensive flashy one and the cheap one with dull packaging but
extra peanuts. As a result, the robot incorrectly infers that the human
likes flashy packaging, paying more, and getting fewer peanuts.

These techniques typically model humans as optimal or
noisily optimal. Unfortunately, humans tend to deviate
from optimality in systematically biased ways [Kahneman
and Tversky, 1979; Choi et al., 2014]. Recent work im-
proves upon these models by modeling pedagogy [Hadfield-
Menell et al., 2016], strategic behavior [Waugh et al., 2013],
risk aversion [Majumdar et al., 2017], hyperbolic discount-
ing [Evans et al., 2015], or indifference between similar op-
tions [Bobu et al., 2020b]. However, given the complexity of
human behavior, our human models will likely always be at
least somewhat misspecified [Steinhardt and Evans, 2017].

One way to formally characterize misspecification is as
a misalignment between the real human and the robot’s as-
sumptions about the human. Recent work in this vein has ex-
amined incorrect assumptions about the human’s hypothesis
space of rewards [Bobu et al., 2020a], their dynamics model
of the world [Reddy et al., 2018], and their level of pedagogic
behavior [Milli and Dragan, 2019]. In this work, we identify
another potential source of misalignment: what if the robot



is wrong about what feedback the human could have given?
Consider the situation illustrated in Figure 1, in which the
robot observes the human going grocery shopping. While the
grocery store contains two packages of peanuts, the human
only notices the more expensive version with flashy packag-
ing, and so buys that one. If the robot doesn’t realize that the
human was effectively unable to evaluate the cheaper pack-
age on its merits, it will learn that the human values flashy
packaging.

We formalize this in the recent framework of reward-
rational implicit choice (RRiC) [Jeon et al., 2020] as misspec-
ification in the human choice set, which specifies what feed-
back the human could have given. Our core contribution is
to categorize choice set misspecification into several formally
and empirically distinguishable “classes”, and find that differ-
ent types have significantly different effects on performance.
As we might expect, misspecification is usually harmful; in
the most extreme case the choice set is so misspecified that
the robot believes the human feedback was the worst possible
feedback for the true reward, and so updates strongly towards
the opposite of the true reward. Surprisingly, we find that
under other circumstances misspecification is provably neu-
tral: it neither helps nor hurts performance in expectation.
Crucially, these results suggest that not all misspecification
is equivalently harmful to reward inference: we may be able
to minimize negative impact by systematically erring toward
particular misspecification classes defined in this work. Fu-
ture work will explore this possibility.

2 Reward Inference
There are many ways that a human can provide feedback to
a robot: demonstrations [Ng and Russell, 2000; Abbeel and
Ng, 2004; Ziebart, 2010], comparisons [Sadigh et al., 2017;
Christiano et al., 2017], natural language [Goyal et al., 2019],
corrections [Bajcsy et al., 2017], the state of the world [Shah
et al., 2019], proxy rewards [Hadfield-Menell et al., 2017;
Mindermann et al., 2018], etc. Jeon et al. propose a unifying
formalism for reward inference to capture all of these possible
feedback modalities, called reward-rational (implicit) choice
(RRiC). Rather than study each feedback modality separately,
we study misspecification in this general framework.

RRiC consists of two main components: the human’s
choice set, which corresponds to what the human could have
done, and the grounding function, which converts choices into
(distributions over) trajectories so that rewards can be com-
puted.

For example, in the case of learning from comparisons, the
human chooses which out of two trajectories is better. Thus,
the human’s choice set is simply the set of trajectories they
are comparing, and the grounding function is the identity. A
more complex example is learning from the state of the world,
in which the robot is deployed in an environment in which
a human has already acted for T timesteps, and must infer
the human’s preferences from the current world state. In this
case, the robot can interpret the human as choosing between
different possible states. Thus, the choice set is the set of
possible states that the human could reach in T timesteps,
and the grounding function maps each such state to the set of

trajectories that could have produced it.
Let ξ denote a trajectory and Ξ denote the set of all pos-

sible trajectories. Given a choice set C for the human and
grounding function ψ : C → (Ξ → [0, 1]), Jeon et al. define
a procedure for reward learning. They assume that the human
is Boltzmann-rational with rationality parameter β, so that
the probability of choosing any particular feedback is given
by:

P(c | θ, C) =
exp(β · Eξ∼ψ(c)[rθ(ξ)])∑

c′∈C exp(β · Eξ∼ψ(c′)[rθ(ξ)])
(1)

From the robot’s perspective, every piece of feedback c is
an observation about the true reward parameterization θ∗, so
the robot can use Bayesian inference to infer a posterior over
θ. Given a prior over reward parameters P(θ), the RRiC in-
ference procedure is defined as:

P(θ | c, C) ∝
exp(β · Eξ∼ψ(c)[rθ(ξ)]∑

c′∈C exp(β · Eξ∼ψ(c′)[rθ(ξ)])
· P(θ) (2)

Since we care about misspecification of the choice set C,
we focus on learning from demonstrations, where we restrict
the set of trajectories that the expert can demonstrate. This
enables us to have a rich choice set, while allowing for a sim-
ple grounding function (the identity). In future work, we aim
to test choice set misspecification with other feedback modal-
ities as well.

3 Choice Set Misspecification
For many common forms of feedback, including demonstra-
tions and proxy rewards, the RRiC choice set is implicit. The
robot knows which element of feedback the human provided
(ex. which demonstration they performed), but must assume
which elements of feedback the human could have provided
based on their model of the human. However, this assump-
tion could easily be incorrect – the robot may assume that the
human has capabilities that they do not, or may fail to ac-
count for cognitive biases that blind the human to particular
feedback options, such as the human bias towards the most
visually attention-grabbing choice in Fig 1.

To model such effects, we assume that the human selects
feedback c ∈ CHuman according to P(c | θ, CHuman), while
the robot updates their belief assuming a different choice
set CRobot to get P(θ | c, CRobot). Note that CRobot is
the robot’s assumption about what the human’s choice set
is – this is distinct from the robot’s action space. When
CHuman 6= CRobot, we get choice set misspecification.

It is easy to detect such misspecification when the human
chooses feedback c /∈ CR. In this case, the robot observes
a choice that it believes to be impossible, which should cer-
tainly be grounds for reverting to some safe baseline policy.
So, we only consider the case where the human’s choice c is
also present in CR (which also requires CH and CR to have
at least one element in common).

Within these constraints, we propose a classification of
types of choice set misspecification in Table 1. On the
vertical axis, misspecification is classified according to



CR ⊂ CH CR ⊃ CH CR ∩ CH
c∗

∈ CR ∩ CH A1 A2 A3
∈ CR\CH B2 B3

Table 1: Choice set misspecification classification, where CR is the
robot’s assumed choice set,CH is the human’s actual choice set, and
c∗ is the optimal element from CR ∪ CH . B1 is omitted because if
CR ⊂ CH , then CR\CH is empty and cannot contain c∗.

Figure 2: The set of four gridworlds used in randomized experi-
ments, with the lava feature marked in red.

the location of the optimal element of feedback c∗ =
argmaxc∈CR∪CH

Eξ∼ψ(c)[rθ∗(ξ))]. If c∗ is available to the
human (in CH ), then the class code begins with A. We only
consider the case where c∗ is also in CR: the case where
it is in CH but not CR is uninteresting, as the robot would
observe the “impossible” event of the human choosing c∗,
which immediately demonstrates misspecification at which
point the robot should revert to some safe baseline policy.
If c∗ /∈ CH , then we must have c∗ ∈ CR (since it was cho-
sen from CH ∪ CR), and the class code begins with B. On
the horizontal axis, misspecification is classified according to
the relationship between CR and CH . CR may be a subset
(code 1), superset (code 2), or intersecting class (code 3) of
CH . For example, class A1 describes the case in which the
robot’s choice set is a subset of the human’s (perhaps because
the human is more versatile), but both choice sets contain the
optimal choice (perhaps because it is obvious).

4 Experiments
To determine the effects of misspecification class, we artifi-
cially generated CR and CH with the properties of each par-
ticular class, simulated human feedback, ran RRiC reward in-
ference, and then evaluated the robot’s resulting belief distri-
bution and optimal policy.

4.1 Experimental Setup

Environment To isolate the effects of misspecification and
allow for computationally tractable Bayesian inference, we
ran experiments in toy environments. We ran the randomized
experiments in the four 20 × 20 gridworlds shown in Fig 2.
Each square in environment x is a state sx = {lava, goal}.
lava ∈ [0, 1] is a continuous feature, while goal ∈ {0, 1}
is a binary feature set to 1 in the lower-right square of each
grid and 0 everywhere else. The true reward function rθ∗ is
a linear combination of these features and a constant stay-
alive cost incurred at each timestep, parameterized by θ =
(wlava, wgoal, walive). Each episode begins with the robot in
the upper-left corner and ends once the robot reaches the goal
state or episode length reaches the horizon of 35 timesteps.
Robot actions AR move the robot one square in a cardinal
or diagonal direction, with actions that would move the robot
off of the grid causing it to remain in place. The transition
function T is deterministic. Environment x defines an MDP
Mx = 〈Sx, AR, T, rθ∗〉.

Inference While the RRiC framework enables inference
from many different types of feedback, we use demonstra-
tion feedback here because demonstrations have an implicit
choice set and straightforward deterministic grounding. Only
the human knows their true reward function parameteriza-
tion θ∗. The robot begins with a uniform prior distribution
over reward parameters P(θ) in which wlava and walive vary,
but wgoal always = 2.0. P(θ) contains θ∗. RRiC infer-
ence proceeds as follows for each choice set tuple 〈CR, CH〉
and environment x. First, the simulated human selects the
best demonstration from their choice set with respect to the
true reward cH = argmaxc∈CH

Eξ∼ψ(c)[rθ∗(ξ))]. Then,
the simulated robot uses Eq. 2 to infer a “correct” distribu-
tion over reward parameterizations BH(θ) , P(θ | c, CH)
using the true human choice set, and a “misspecified” dis-
tribution BR(θ) , P(θ | c, CR) using the misspecified hu-
man choice set. In order to evaluate the effects of each dis-
tribution on robot behavior, we define new MDPs Mx

H =
〈Sx, AR, T, rE[BH(θ)]〉 and Mx

R = 〈Sx, AR, T, rE[BR(θ)]〉 for
each environment, solve them using value iteration, and then
evaluate the rollouts of the resulting deterministic policies ac-
cording to the true reward function rθ∗ .

4.2 Randomized Choice Sets

We ran experiments with randomized choice set selection for
each misspecification class to evaluate the effects of class on
entropy change and regret.

Conditions The experimental conditions are the classes of
choice set misspecification in Table 1: A1, A2, A3, B2 and
B3. We tested each misspecification class on each environ-
ment, then averaged across environments to evaluate each
class. For each environment x, we first generated a mas-
ter set CxM of all demonstrations that are optimal w.r.t. at
least one reward parameterization θ. For each experimen-
tal class, we randomly generated 6 valid 〈CR, CH〉 tuples,
with CR, CH ⊆ CxM . Duplicate tuples, or tuples in which
cH /∈ CR, were not considered.



(a) CH (b) CR

Figure 3: Human and robot choice sets with a human goal bias.
Because the human only considers trajectories that terminate at the
goal, they don’t consider the blue trajectory in CR.

Measures There are two key experimental measures: en-
tropy change and regret. Entropy change is the difference
in entropy between the correct distribution BH , and the mis-
specified distributionBR. That is, ∆H = H(BH)−H(BR).
If entropy change is positive, then misspecification induces
overconfidence, and if it is negative, then misspecification in-
duces underconfidence.

Regret is the difference in return between the optimal solu-
tion to Mx

H , with the correctly-inferred reward parameteriza-
tion, and the optimal solution to Mx

R, with the incorrectly-
inferred parameterization, averaged across all 4 environ-
ments. If ξ∗xH is an optimal trajectory in Mx

H and ξ∗xR is an
optimal trajectory inMx

R, then regret = 1
4

∑3
x=0[rθ∗(ξ

∗x
H )−

rθ∗(ξ
∗x
R )]. Note that we are measuring regret relative to the

optimal action under the correctly specified belief, rather than
optimal action under the true reward. As a result, it is possible
for regret to be negative, e.g. if the misspecification makes the
robot become more confident in the true reward than it would
be under correct specification, and so execute a better policy.

4.3 Biased Choice Sets

We also ran an experiment in a fifth gridworld where we se-
lect the human choice set with a realistic human bias to illus-
trate how choice set misspecification may arise in practice. In
this experiment the human only considers demonstrations that
end at the goal state because, to humans, the word “goal” can
be synonymous with “end” (Fig 3a). However, to the robot,
the goal is merely one of multiple features in the environ-
ment. The robot has no reason to privilege it over the other
features, so the robot considers every demonstration that is
optimal w.r.t some possible reward parameterization (Fig 3b).
The trajectory that only the robot considers is marked in blue.
We ran RRiC inference using this 〈CR, CH〉 and evaluated
the results using the same measures described above.

5 Results

We summarize the aggregated measures, discuss the realistic
human bias result, then examine two interesting results: sym-
metry between classes A1 and A2 and high regret in class B3.

Figure 4: Entropy Change (N=24). The box is the IQR, the whiskers
are the range, and the blue line is the median. There are no outliers.

Figure 5: Regret (N=24). The box is the IQR, the whiskers are the
most distant points within 1.5*the IQR, and the green line is the
mean. Multiple outliers are omitted.

5.1 Aggregate Measures in Randomized
Experiments

Entropy Change Entropy change varied significantly
across misspecification class. As shown in Fig 4, the in-
terquartile ranges (IQRs) of classes A1 and A3 did not overlap
with the IQRs of A2 and B2. Moreover, A1 and A3 had pos-
itive medians, suggesting a tendency toward overconfidence,
while A2 and B2 had negative medians, suggesting a ten-
dency toward underconfidence. B3 was less distinctive, with
an IQR that overlapped with that of all other classes. No-
tably, the distributions over entropy change of classes A1 and
A2 are precisely symmetric about 0.

Regret Regret also varied as a function of misspecification
class. Each class had a median regret of 0, suggesting that
misspecification commonly did not induce a large enough
shift in belief for the robot to learn a different optimal policy.
However the mean regret, plotted as green lines in Fig 5, did
vary markedly across classes. Regret was sometimes so high
in class B3 that outliers skewed the mean regret beyond of the
whiskers of the boxplot. Again, classes A1 and A2 are pre-
cisely symmetric. We discuss this symmetry in Section 5.3,
then discuss the poor performance of B3 in Section 5.4.



(a) feedback cH (b) P(θ | cH , CR)

Figure 6: Human feedback and the resulting misspecified robot be-
lief with a human goal bias. Because the feedback that the biased
human provides is poor, the robot learns a very incorrect distribu-
tion over rewards.

5.2 Effects of Biased Choice Sets
The human bias of only considering demonstrations that ter-
minate at the goal leads to very poor inference in this en-
vironment. Because the human does not consider the blue
demonstration from Fig 3b, which avoids the lava altogether,
they are forced to provide the demonstration in Fig 6a, which
terminates at the goal but is long and encounters lava. As a
result, the robot infers the very incorrect belief distribution in
Fig 6b. Not only is this distribution underconfident (entropy
change = −0.614), but it also induces poor performance (re-
gret = 0.666). This result shows that we can see an outsized
negative impact on robot reward inference with a small in-
correct assumption that the human considered and rejected
demonstrations that don’t terminate at the goal.

5.3 Symmetry
Intuitively, misspecification should lead to worse perfor-
mance in expectation. Surprisingly, when we combine mis-
specification classes A1 and A2, their impact on entropy
change and regret is actually neutral. The key to this is their
symmetry – if we switch the contents of CRobot and CHuman
in an instance of class A1misspecification, we get an instance
of class A2 with exactly the opposite performance character-
istics. Thus, if a pair in A1 is harmful, then the analogous
pair in A2 must be helpful, meaning that it is better for per-
formance than having the correct belief about the human’s
choice set. We show below that this is always the case under
certain symmetry conditions that apply to A1 and A2.

Assume that there is a master choice set CM containing all
possible elements of feedback for MDP M , and that choice
sets are sampled from a symmetric distribution over pairs
of subsets D : 2CM × 2CM → [0, 1] with D(Cx, Cy) =
D(Cy, Cx) (where 2CM is the set of subsets of CM ). Let
ER(rθ,M) be the expected return from maximizing the re-
ward function rθ in M . A reward parameterization is chosen
from a shared prior P(θ) and CH , CR are sampled from D.
The human chooses the optimal element of feedback in their
choice set cCH

= argmaxc∈CH
Eξ∼ψ(c)[rθ∗(ξ))].

Theorem 1. Let M and D be defined as above. Assume that
∀Cx, Cy ∼ D, we have cCx

= cCy
; that is, the human would

pick the same feedback regardless of which choice set she

Class Mean Std Q1 Q3

A1 0.256 0.2265 0.1153 0.4153

A2 -0.256 0.2265 -0.4153 -0.1153

Table 2: Entropy change is symmetric across classes A1 and A2.

Class Mean Std Q1 Q3

A1 0.04 0.4906 0.1664 0.0

A2 -0.04 0.4906 0.0 -0.1664

Table 3: Regret is symmetric across classes A1 and A2.

sees. If the robot follows RRiC inference according to Eq. 2
and acts to maximize expected reward under the inferred be-
lief, then:

E
CH ,CR∼D

Regret(CH , CR) = 0

Proof. Define R(Cx, c) to be the return achieved when the
robot follows RRiC inference with choice set Cx and feed-
back c, then acts to maximize rE[Bx(θ)], keeping β fixed.
Since the human’s choice is symmetric across D, for any
Cx, Cy ∼ D, regret is anti-symmetric:

Regret(Cx, Cy) = R(Cx, cCx
)−R(Cy, cCx

)

= R(Cx, cCy
)−R(Cy, cCy

)

= −Regret(Cy, Cx)

Since D is symmetric, 〈Cx, Cy〉 is as likely as 〈Cy, Cx〉.
Combined with the anti-symmetry of regret, this implies that
the expected regret must be zero:

E
Cx,Cy∼D

[Regret(Cx, Cy)]

=
1

2
E

Cx,Cy

[Regret(Cx, Cy)] +
1

2
E

Cx,Cy

[Regret(Cy, Cx)]

=
1

2
E

Cx,Cy

[Regret(Cx, Cy)]− 1

2
E

Cx,Cy

[Regret(Cx, Cy)]

= 0

An analogous proof would work for any anti-symmetric
measure (including entropy change).

5.4 Worst Case
As shown in Table 4, class B3 misspecification can induce
regret an order of magnitude worse than the maximum regret
induced by classes A3 and B2, which each differ from B3
along a single axis. This is because the worst case inference
occurs in RRiC when the human feedback cH is the worst
element of CR, and this is only possible in class B3. In class



Class Mean Std Max Min

A3 -0.001 0.5964 1.1689 -1.1058

B2 0.228 0.6395 1.6358 -0.9973

B3 2.059 6.3767 24.7252 -0.9973

Table 4: Regret comparison showing that class B3 has much higher
regret than neighboring classes.

(a) CH (b) cH

Figure 7: Example human choice set and corresponding feedback.

B2, CR contains all of CH , so as long as |CH | > 1, CR
must contain at least one element worse than CH . In class
A3, cH = c∗, so CR cannot contain any elements better than
cH . However, in class B3, CR need not contain any elements
worse than cH , in which case the robot updates its belief in
the opposite direction from the ground truth.

For example, consider the sample human choice set in
Fig 7a. Both trajectories are particularly poor, but the human
chooses the demonstration cH in Fig 7b because it encoun-
ters slightly less lava and so has a marginally higher reward.
Fig 8a shows a potential corresponding robot choice set CR2

from B2, containing both trajectories from the human choice
set as well as a few others. Fig 8b shows P(θ | cH , CR2).
The axes represent the weights on the lava and alive fea-
tures and the space of possible parameterizations lies on the
circle where wlava+walive = 1. The opacity of the gold line
is proportional to the weight that P(θ) places on each param-
eter combination. The true reward has wlava, walive < 0,
whereas the peak of this distribution has wlava < 0, but
walive > 0. This is because CR2 contains shorter trajecto-
ries that encounter the same amount of lava, and so the robot
infers that cH must be preferred in large part due to its length.

Fig 9a shows an example robot choice set CR3 from B3,
and Fig 9b shows the inferred P(θ | cH , CR3). Note that the
peak of this distribution has wlava, walive > 0. Since cH
is the longest and the highest-lava trajectory in CR3, and al-
ternative shorter and lower-lava trajectories exist in CR3, the
robot infers that the human is attempting to maximize both
trajectory length and lava encountered: the opposite of the
truth. Unsurprisingly, maximizing expected reward for this
belief leads to high regret. The key difference between B2
and B3 is that cH is the lowest-reward element inCR3, result-
ing in the robot updating directly away from the true reward.

(a) CR2 (b) P(θ | cH , CR2)

Figure 8: Robot choice set and resulting misspecified belief in B2.

(a) CR3 (b) P(θ | cH , CR3)

Figure 9: Robot choice set and resulting misspecified belief in B3.

6 Discussion
Summary In this work, we highlighted the problem of
choice set misspecification in generalized reward inference,
where a human gives feedback selected from choice set
CHuman but the robot assumes that the human was choos-
ing from choice set CRobot. As expected, such misspecifi-
cation on average induces suboptimal behavior resulting in
regret. However, a different story emerged once we distin-
guished between misspecification classes. We defined five
distinct classes varying along two axes: the relationship be-
tween CHuman and CRobot and the location of the optimal
element of feedback c∗. We empirically showed that differ-
ent classes lead to different types of error, with some classes
leading to overconfidence, some to underconfidence, and one
to particularly high regret. Surprisingly, under certain condi-
tions the expected regret under choice set misspecification is
actually 0, meaning that in expectation, misspecification does
not hurt in these situations.

Implications There is wide variance across the different
types of choice-set misspecification: some may have partic-
ularly detrimental effects, and others may not be harmful at
all. This suggests strategies for designing robot choice sets
to minimize the impact of misspecification. For example,
we find that regret tends to be negative (that is, misspecifi-
cation is helpful) when the optimal element of feedback is in
both CRobot and CHuman and CRobot ⊃ CHuman (class A2).
Similarly, worst-case inference occurs when the optimal ele-
ment of feedback is in CRobot only, and CHuman contains
elements that are not in CRobot (class B3). This suggests that



erring on the side of specifying a large CRobot, which makes
A2 more likely and B3 less, may lead to more benign mis-
specification. Moreover, it may be possible to design proto-
cols for the robot to identify unrealistic choice set-feedback
combinations and verify its choice set with the human, reduc-
ing the likelihood of misspecification in the first place. We
plan to investigate this in future work.

Limitations and future work. In this paper, we primarily
sampled choice sets randomly from the master choice set of
all possibly optimal demonstrations. However, this is not a re-
alistic model. In future work, we plan to select human choice
sets based on actual human biases to improve ecological va-
lidity. We also plan to test this classification and our result-
ing conclusions in more complex and realistic environments.
Eventually, we plan to work on active learning protocols that
allow the robot to identify when its choice set is misspecified
and alter its beliefs accordingly.
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