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Abstract
Characterizing how effective a machine learning al-
gorithm is while being trained and tested on slightly
different data is a widespread matter. The property
of models which perform well under this general
framework is commonly known as robustness.
We propose a class of model-agnostic empirical ro-
bustness measures for image classification tasks.
To any random image perturbation scheme, we at-
tach a robustness measure that empirically checks
how easy it is to perturb a labelled image and cause
the model to misclassify it.
We also introduce a methodology for training more
robust models using the information gained about
the empirical robustness measure of the training set.
We only keep a fraction of datapoints that are robust
according to our robustness measure and retrain the
model using it. Our methodology validates that the
robustness of the model increases by measuring its
empirical robustness on test data.

1 Introduction
During the last decade, the field of machine learning has
made considerable advances in many tasks, such as image
classification, object detection, machine translation, or ques-
tion answering, with deep neural networks easily becom-
ing the state-of-the-art approaches [Touvron et al., 2020;
Zhang et al., 2020; Edunov et al., 2018]. The main prior-
ity has been on the capacity of the models to perform well
on the test set of some well-known datasets (MNIST, CI-
FAR, SQuAD) [LeCun and Cortes, 2010; Krizhevsky, 2009;
Rajpurkar et al., 2016]. However, the training and the test
sets are usually generated from the same underlying distri-
bution, leaving the model’s performance under distribution
shifts unknown. Given that machine learning techniques are
being employed in sensitive tasks, such as self-driving cars
and healthcare, the robustness should become a crucial met-
ric to be taken into consideration together with the accuracy
when evaluating the performance of models.
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We will mainly focus on safety and robustness for image
classification tasks, but the work can be easily extended to
other topics.

Distribution shifts, which affect the performance of ma-
chine learning systems, can mainly occur because of two rea-
sons. The first reason, adversarial attacks [Wiyatno et al.,
2019; Szegedy et al., 2014], has been receiving growing at-
tention over the past years. Adversarial attacks are ”hidden
messages” [Wiyatno et al., 2019] added on top of images
which are nearly imperceptible to the human eye, but which
cause the model to fault, in other words creating ”machine
illusions”.

The second reason, covariate shift [Shimodaira, 2000], is
encountering a natural change in the data distribution. For
example, imagine an autonomous car model trained solely
on rainy and sunny conditions in a city where it has not
been snowing over the past five years. However, one day it
starts snowing, and the image recognition system of the au-
tonomous car could have serious issues in identifying objects
and road signs because of completely different lighting con-
ditions.

While improving models to be less exposed to known ad-
versarial attacks is very important, one has to keep in mind
that this is, after all, an adversarial game, where the attacker
and the security researcher keep alternately coming up with
better strategies. For example, the adversarial attack strategy
Fast Gradient Sign Method [Szegedy et al., 2014] can be mit-
igated by Adversarial training [Szegedy et al., 2014], which
can in turn be bypassed by R+FGSM [Tramèr et al., 2018].
The defense methods against adversarial attacks seek to make
the model robust with respect to certain adversarial points in
the neighbourhood of unaltered images.

Therefore, one is prompted to consider a more general ro-
bustness framework, in which the interest lays in the model
not making a mistake anywhere in the neighbourhood of an
image1. There exist various tools that can achieve robust-
ness guarantees of deep neural networks [Ruan et al., 2018;
Tjeng et al., 2019], but most of them are usually very depen-
dent on the model’s architecture, either not being able to scale
with deeper networks, or only working with certain kinds of
layers.

1For example, the neighbourhood could be specified by some
metric ball around the image.



Figure 1: Images deemed as robust by our simple CNN on the first row against images deemed as not robust on the second row. The images
on the second row were classified correctly by the modelM before applying the random perturbation process.

We propose a model-agnostic2 empirical method for esti-
mating the robustness of a model. This estimation of a model
near an image X is done by iteratively sampling datapoints
close to it, according to a specified random scheme3. It feeds
each of the sampled datapoints to the model and stops ei-
ther when the model classifies them incorrectly, or when a
maximum number of steps has been reached. The number of
such sampling steps serves as a proxy for the local robustness
around image X . Intuitively, the easier it is to perturb the la-
bel of X by sampling around it, the less robust the model is
around it. We use this method for estimating the robustness of
the model on entire datasets, by locally checking the model’s
robustness around each datapoint and combining the results.

We also claim that the robustness of the model is correlated
with the inherent robustness of the images with respect to the
classification task. Therefore, the robustness of a model de-
pends on both the architecture’s robustness itself, but also on
the inherent robustness of the datapoints it has been trained
on.

We believe that training a model on certain correctly la-
belled images can lead towards highly unnatural borders be-
tween classes. These might be datapoints that we would
rather misclassify than include in the model at an additional
high cost of robustness. We test this hypothesis and obtain
indeed a more robust model by discarding the not-robust im-
ages from the training process.

Our main technical contributions are introducing the em-
pirical robustness measure that is model-agnostic and the
training methodology based on robust images.

An important general direction we want to shed light on is
that images from classification tasks should be seen as carry-
ing an inherent level of robustness, which could be estimated
and exploited.

2The method does not need to have any knowledge about the
architecture of the model. Note that the model does not necessarily
have to be a deep neural network.

3The random scheme should not alter the underlying true class of
the image that we sampled around. Intuitively, the samples should
be classified by a human in the same way as the original image is.

2 Randomized Perturbation Robustness
2.1 Definition
We propose a class of empirical robustness measures RPR
(Randomized Perturbation Robustness) for image classi-
fication tasks, which is model-agnostic. Let R be a ran-
dom image perturbation scheme.4 The empirical robustness
RPR(R) of a modelMwith respect to a datapoint x belong-
ing to class y is the minimum between MAX STEPS and the
expected number of retrying steps of applying R to the origi-
nal x such thatM does not classify R(x) as y.

If the empirical robustness ofM with respect to (x, y) is
MAX STEPS, we stop and deem x as robust; otherwise as
not-robust.

Note that the random perturbations of an image are not ap-
plied on top of previous perturbation attempts, but rather on
the original image. This perturbation process is repeated until
the conditions above are fulfilled.

2.2 Empirical robustness on datapoints and on
entire datasets

The introduced framework is a simple empirical way of as-
sessing a model’s robustness near an image. It is suitbale
under various setups, such as the random image perturbation
scheme of adding weather conditions5 in the autonomous car
situation.

We propose two use cases based on the empirical robust-
ness measure introduced above: One estimating the model
robustness on an entire (test) dataset and another one training
a model only using the images that are deemed as robust in
order to obtain a more robust model.

The first use case, estimating the robustness of the model
on an entire dataset, is done by applying the Randomized
Perturbation Robustness method described above on each
datapoint and computing the percentage of images that are
deemed as robust. The model-agnosticism makes it an easy
plug-in method in any classification task and can easily be
introduced as a baseline check for machine learning systems.

The second use case is based on our claim that the robust-
ness of the model with respect to a datapoint can be seen to

4For example Gaussian noise, replacing at most k pixels of an
image, blurring, etc.

5Applying snow, fog, rain effects, etc.



some extent as the inherent robustness of the datapoint with
respect to the classification task. This allows us to retrain the
model using only images from the train set that are deemed
as robust by our empirical measure, giving us a more robust
model. This happens as the model only learns using the ro-
bust images, which justifies inferring simple, more natural
class separators. We claim that the images that are deemed as
not robust by our method can generally be seen as edge cases,
causing the model to infer irregular separators.

2.3 Methodology and experiments
We experiment using a CNN architecture for classifying im-
ages from MNIST. As this classification task is not complex,
we use a very simple model6 which achieves a test accuracy
of only 98.85% to showcase the main ideas we introduce. The
randomized image perturbation scheme we use is randomly
altering a pixel count of at most the square root of the number
of image pixels (28 in our case). We use MAX STEPS = 250
in our experiments.

We show in Figure 2 an image that is classified correctly
byM against its random perturbation under the scheme de-
scribed above, which is incorrectly classified byM.

Figure 2: The image on the left is labelled as 6 byM. The image
on the right is obtained by perturbing at most 28 pixels from the left
one, and it is labelled as 2 byM. The perturbed image was obtained
after 47 random perturbation steps of altering at most 28 pixels. All
the previous 46 random perturbations were not able to confuse the
model.

We compare in Figure 1 robust and not robust images
which, without any perturbation, are correctly classified by
M. These were randomly chosen and give some intuition
about what a robust image means compared to one that is not
robust.

The process we described for determining the empiri-
cal robustness is very similar, when seen as a function of
MAX STEPS, to a learning curve. Discovering images which
are not robust eventually flattens, which allows us to use it to-
gether with some early-stopping mechanism.

In Figure 3 we can see how the ratio of test images that
are still robust as a function of MAX STEPS flattens. We
obtain a ratio of 0.2957 images from the test set which can
withstand 250 random permutations, which is a surprisingly
small fraction, considering the simple noising we apply. This
stands as straightforward empirical evidence that the simple
CNN architecture we used is not robust.

6We use two small convolutional layers, one max pooling layer,
and a fully connected layer with softmax activation. We also train
the model with ADAM using the default hyperparameters.

Figure 3: The ratio of images from the test set that are still robust
as a function of the number of perturbation iterations that have been
applied. The initial modelM is used.

Figure 4: Distribution of training images that are deemed as robust
under modelM. Images labelled as 7 seem to inherently be more
robust, while images labelled as 1, 8, and 9 can easily be corrupted
by random perturbations.

In order to achieve a more robust network, we apply the
same procedure of deeming an image as robust or not ro-
bust on the MNIST train set, using the modelM, which was
trained on exactly this data. There are 71.28% images which
are deemed as robust from the train set, however the distribu-
tion is not uniform at all as seen in Figure 4. Therefore, we
randomly sample 1500 datapoints from each class of the ro-
bust training images, such that the training set does not have a
class bias, and proceed to retrain the simple CNN architecture
solely by using this data. Let the model trained on this data,
which amounts for only 25% data from the MNIST training
set, beMR. We encounter a drop of approximately 2% in the
test accuracy, obtaining a 96.92% score, which is to be ex-
pected considering the relatively sparse training data we have
trained on.

The model MR is much more robust on the test set, ob-
taining a ratio of 0.5101 robust images, cf. Figure 5, as com-
pared to the robustness of the original M of only 0.2957.
This stands as evidence that the robust nature of the selected
training images led to a more robust model.

3 Conclusions and future work
The simple empirical robustness checking method we intro-
duce opens the way towards building fast, model-agnostic
tools to estimate robustness of machine learning models. This



Figure 5: The ratio of images from the test set that are still robust
as a function of the number of perturbation iterations that have been
applied. Here, the modelMR is used. There is a clear improvement
in robustness when compared to the modelM.

method can be easily embedded as a base check in machine
learning systems.

One of the main takeaways is that robustness can be seen as
an inherent property of the images with respect to the classi-
fication task. The robustness of models depends both on their
architecture and on the robustness of the data it is trained on.
This can be exploited in various ways, such as the training
methodology we proposed, which improves significantly the
robustness of the model.

Some interesting other applications could include using
Generative Adversarial Networks (GANs) to augment the ro-
bust training data from the training methodology we pro-
posed. Data augmentation with GANs has successfully been
used in improving the quality of data and accuracy of mod-
els [Antoniou et al., 2017] and we believe that it could be
used to generate diverse robust images as well. These could
contribute to increasing the accuracy of robust models trained
under our methodology.

Another area of further investigation is checking how our
empirical robustness measure relates with the formal verifica-
tion tools that obtain exact robustness guarantees. Note that
this kind of experiment is not possible for any model, as ex-
isting formal verification tools are limited to specific machine
learning architectures or do not scale well with complex mod-
els.
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