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Abstract
A long-standing goal of AI is to enable robots to
plan in dynamic and uncertain environments by
managing task failure intelligently. Reliability of a
robot task planner has become essential to ensure
operational safety. Reliability is generally deter-
mined by the probability of a task to circumvent
failures, while safety is related to the consequences
of the failures. In this paper, methods and an archi-
tecture for handling reliability and safety in robotic
task planning is presented. The paper takes help of
a telepresence navigation scenario to describe some
candidate solutions such as Task Reliability Graph
and weighted reliability goals.

1 Introduction
Characteristics of a typical robotic AI system are (a) Adapt-
ability (b) Autonomy (c) Interaction. Decision making in AI
systems can be fully autonomic or semi-autonomic in case
of involvement of external entity (say human operators in
telepresence scenario). Recently, ‘AI Safety’ as a research
area has gained prominence due to the gradual infiltration of
autonomous agents in the normal human environment. Work
is ongoing to create an AI Safety Landscape [Espinoza et al.
2019] to nurture a common understanding of current needs,
challenges and state of the art and field practices relevant
to safety in AI. [Amodei et al. 2016] discusses five core
research areas related to AI safety. This paper focuses on
two areas: (a) Avoiding Negative Side Effects - ensuring the
agent actions meet safety constraints (b) Safe Exploration
- in dynamic and open environments, how reliable are the
strategies to avoid safety hazards. A body of work [Garcıa et
al. 2015] [Krakovna et al. 2018] has been done on Machine
Learning (ML) based approaches to tackle the above areas.
However, data driven ML approaches being non-contextual,
lacks the richness of semantics in decision making. The
paper takes a knowledge-guided AI planning approach
to tackle the aforementioned problems, specifically to a
telepresence navigation scenario in uncertain environment.

Copyright c© 2020 for this paper by its authors. Use
permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).

Reliability [Dhillon, B.S. 2015] is closely related to AI
Safety. Reliability can be defined as how probable is the
agent to successfully complete a task without failures, while
safety is determined by the direct or indirect consequences
of the failures. In case of a semi-autonomous agent like a
telepresence robot, reliability is hampered due to several rea-
sons such as random component and sensor failures, human
errors, systematic hardware failures (degradation over time),
software errors, dynamic environment. Some related works
like [Axelrod, B. 2018] and [Fisac, J.F. 2018] has shown the
importance of policy level safety aspects in the case of robot
planning in dynamic obstacle scenarios. However, attaching
safety aspects to task planning has remained neglected by lit-
erature – which is the key highlight of this paper, explained
with the help of a telepresence navigation scenario.

AI Task Planning is based on decision making strategies of
action sequences, typically for execution by intelligent and
autonomous agents, especially robots. In known environ-
ments with available models or maps, planning can be done
offline. In dynamically changing unknown environments and
in open world scenarios, the strategy needs to be revised and
adapted while plan is executing. This requires continuous
monitoring of state variables (states of objects in environ-
ment). An example object discreet state variable is door in
open or closed position. However, a continuous state variable
is also possible, say the angle of door being open (in semi
closed position). Choice of object state variable depends on
domain and how much granularity is needed in a solution to
accomplish a given goal. Typically, PDDL (Planning Domain
Definition Language) [Gerevini et al. 2009] and its variants
are used to represent the problem, initial conditions, goal state
and action sequences. This is passed on to a suitable planner
(based on semantics used in PDDL) to output a suitable se-
quence of tasks. To take care of different constraints and se-
mantic descriptions, a large number of planning methodology
exists such as metric-based planning, spatial planning, tem-
poral planning, probabilistic planning, belief based planning,
planning on open world and open domains. However, while
the focus of the planning research community has been to
come up with planners with faster computing time and richer
semantic processing capability, the aspects of safety and reli-
ability in tasks as a feature has remain mostly neglected. The
paper describes an architecture and methodology to tackle the
safety and reliability aspects as a first step to fill this gap.



2 Applicability in Telepresence Navigation

To illustrate the scenarios in which safety and reliability be-
comes essential for robotic task planning, help of telepres-
ence use case is taken here. A telepresence robot (type of
service robot) helps a human user (called operator) to be vir-
tually present at a remote location. Telepresence robots have
started to gain popularity in schools, corporate offices, hospi-
tals, clinics, warehouses and conferences. The default telep-
resence robot comes with a camera and navigation wheels on
top of which more sensors can be added to enhance its percep-
tion of the environment. A telepresence robot can operate in
fully guided, semi-autonomous as well as autonomous mode
as per application needs and sophistication in software and
hardware used for that application. However, fully guided
mode is discouraged as if user’s instructions are strictly fol-
lowed, the robot may cause harm to itself or others, due to
lack of any restrictions. Hence, the desired modes of oper-
ation are either autonomous or semi-guided with restrictions
(constraints). If a high level instruction is provided by the
user say ‘Find where the paper shredder is kept’, the robot
analyses the instruction and decomposes the task into se-
quence of most optical sub-tasks to achieve the goal. This
requires the robot to get a visual idea about object namely ‘pa-
per shredder’ it has to find. Also, if the object is not currently
in visibility, it needs to explore the environment until it finds
the goal object. In semi-guided mode, the successful working
of the robot relies heavily on communication network where a
remote user is controlling the robot based on the feedback the
user is perceiving from the sensors attached to the robot (such
as ego view camera). If there is a communication failure, the
semi-guided mode may prove to be disastrous especially if
communication fails during executing a sub-task. Commu-
nication failure may lead to robots colliding with obstacles
due to continuation of trajectory in absence of expected in-
terrupt. Also while exploring, if it comes to a zone of con-
tinuous moving obstacles (like living beings or other robots),
it may go to a stand still (with goal of moving forward) to
keep safe distance. Considerable amount of work has been
done on collision avoidance algorithms in navigation [Hoy
et al. 2015]. PDDL based planning approach [Gayathri et
al. 2018] [Ingrand et al. 2017] has been extensively used in
robot navigation tasks. However, the algorithm depends on
continuous input from sensors that may be faulty and provide
erroneous readings or sensed data that eventually leads to col-
lision. Also, there are issues in bridging software and hard-
ware instructions when interacting with physical devices. An
example is: if a robot is given a software instruction to rotate
X0 angle, the robots’ physical wheel actually rotates (X+n)0
angle, thereby making the robot unsafe in precise navigation.
Lack of domain and commonsense knowledge can also have
negative consequences in successful task completion. Sup-
pose a robot via its camera can see the target object, however
the terrain is not safe for navigation (say staircase in case of
wheeled robot), blindly following the instruction will lead the
robot to fall and break down. Also there can be adversarial
situations that can fool a robot perception thereby leading to
task failure. This can be due to target objects appearing in
mirror, electronic display screen (say television) or portraits.

Another limitation a robot may face is range of a sensor: if
the hazard or moving obstacle is not in reception coverage of
a sensor, the robot cannot detect whether the selected trajec-
tory is correct. A robot’s visual perception may give only an
imperfect view of clear path as well as objects due to sensor
errors or non-favorable lighting conditions and environmen-
tal layout. If the telepresence robot is provided with tactile
object manipulation capabilities, then the risk becomes more
severe. An example is: if in a pantry environment, the robot
lits fire to serve a user instruction, without having a gas and
smoke detection sensor. Related safety issues are handling
fragile objects without care as the robot lacks the knowledge
and experience of holding that object. All this lead to task
failures and non-adherence to safety. This demands a dedi-
cated focus on safety and reliability for robotic task planning.

3 Proposed Architecture and Methodology
In a human robot interaction (HRI) set up, the User passes
on a high level task instruction (via text, audio, etc.) that is
captured by the robotic system. The system needs to decide
an optimal sequence of steps – which will be carried out as
actuation in the environment, in order to satisfy the goal of the
user instruction. A generic architecture (Fig. 1) is presented
along with significance of each individual module in aiding
optimal task execution. Granular details of each module is
skipped to keep the focus on safety and reliability aspects.

Figure 1: Architecture for Reliable & Safe Task Planning

• Reasoner: This module infers semantic facts combin-
ing apriori knowledge and perceived realtime facts while
operating in the working memory [Mukherjee, D. et
al. 2013]. Breaking a given high level instruction into
smaller tasks and overcoming dis-ambiguity is taken
care by this module. In uncertain environments, deci-
sions can be taken by using standard methodologies in
reasoning under uncertainty [Kern-Isberner et al. 2017].

• Planner: Planning deals with modeling of the relations
between perceptions and actions. Planning uses a world
model to estimate deliberation steps as per goal. When
problem domain, objects and relevant actions, initial and
goal states are properly encoded in a semantic format
such as PDDL, a planner can find the best suitable steps
to reach goal state. In dynamic and open worlds with



high scope of task failures, dynamic planning becomes
essential. In dynamic planning, object state variables are
monitored and if a failure state is nearing, re-planning
happens from current state condition towards goal.
• Reinforcement Learning (RL) Module: As the robot

agent explores the world and carries out sub tasks to
reach its goal, it continuously learns through its per-
ception capabilities and consequences of actions in the
environment. The action and the path (taken by robot)
goes as a direct feedback as what to do when confronted
with a similar situation - this scenario is modeled by RL
with rewards to successfully reach its goal under con-
straints and penalty (negative reward) in failures. In sim-
ple worlds, if only knowledge based decision making is
used, RL module can be altogether omitted. However,
in complex worlds where granularity of knowledge may
become limited in expression, a hybrid approach by mix-
ing semantic decision making with RL policy based ac-
tuation decisions will prove fruitful.
• Knowledge Manager: When dealing with data from var-

ious sensors it is essential to bring all the information
in a common semantic knowledge format compliant for
reasoning and planning. The purpose of this module is
to gather, curate and unify variety of knowledge (like
facts, relations, ontologies). It also connects the Seman-
tic Web via SPARQL endpoints for accessing on demand
relevant knowledge missing in current working memory.
• Knowledge Store: Knowledge being represented in var-

ious formats, a requirement is to curate the same in
blocks. Due to dynamic environments, the knowledge
needs to be updated and over-written based on learned
experience or gathering of fresh unseen knowledge.
• Learned Model: This serves as a store for updating

learned models (safety and reliability weights over a task
and a task group) from actuation feedback via either re-
inforcement learning or the monitoring module of the
system or both. Manual entry of initial weights and
range thresholds will make system robust to over fitting.
• Perception Module: A robot is equipped with multiple

sensors which is required for successful completion of
a task and its own operation. The perception module is
designated with processing raw sensor readings and con-
verting them usable semantic information for the cogni-
tive engine. As an example, a camera image is processed
to identify objects and context from robot’s ego view.
• Actuation Module: Actuation of the robot is based on

physical interaction with the environment. This is gen-
erally achieved by sending motor movement instructions
from the software interaction module of a robot’s base
system (usually ROS – Robot Operating System) on top
of which the cognitive engine is running.
• Monitoring Module: This is the most important module

(Section 3.5) from the point of safe and reliable task ex-
ecution. The module oversees (a) monitoring current en-
vironment state including robot and objects (b) filtering
the perception module for any conflicting sensed infor-
mation (c) providing realtime input to decision making.

Cognitive Engine’s main role is observe–orient–decide–act
(OODA). It’s main jobs are: (a) Handle failures and errors (b)
Learn when things go right and wrong, or in other words learn
from negative and positive experience in various task execu-
tion scenarios (c) Ensuring safety in operations (d) Predicting
likelihood of a task failure or safety risk, given current state.
The following methods shed lights on system objectives.

3.1 Using Safety and Reliability in Metric PDDL
Assigning reliability and safety to individual task action se-
quence in semantic forms like PDDL is straight-forward so-
lution. In the goal objective function, the intricacies of safety
and reliability can be included. Optimal path search can be
done by using metric supported planners as follows:

(:metric maximize (total-reliability))
(:metric maximize (total-safety))

Task actions will have an effect variable like:
:effect (and ... (increase (total-reliability) R)
(increase (total-safety) S))

A drawback of this technique is that one is required to know
beforehand all the safety and reliability values for each task,
which might not be possible in a cold start scenario. If prob-
ability and uncertainty is involved, P-PDDL (probabilistic
PDDL) with unknown states and probabilities will be a more
suitable representation. Sensor failures can be modeled based
on sensor error modeling techniques [Berk, M. et al. 2019].
But task level failures can be learned by actual task execution
in real life or via realistic simulations in robot simulators like
Webots, Gazebo, Gibson, AI2Thor.

3.2 Safety Priorities and Vulnerability Values
In the context of AI Safety, it is often observed that total fo-
cus is given to human safety. However, in situations where a
robot agent is interacting with the environment, it is also es-
sential to give safety priorities to other living beings, valuable
objects and the robotic agent itself (it also has value). This is
achieved by maintaining a semantic database that contains the
relative priorities and properties of the entities that will enable
decision making under the specified constraints. Diverse sit-
uations and applications will have different priority values.
Hence, it is better to have a relative index instead of an abso-
lute one. In case of service robots, the end user should be pro-
vided an interface to set custom values, as what humans value
most varies from one person to another, which is a technical
challenge. As an example, a simple cup might have less mate-
rial value in terms of money, but if a human memorable event
is attached with it, then its relative value becomes higher. A
naive strategy is to keep safe distance from high value entities
while actuating. A significant aspect to consider is entities in
a environment can also be tagged with degrees of vulnerabil-
ity. As an example, glass made objects if in navigation path
of robot, may prove to be vulnerable if robot somehow devi-
ates from its intended route (resulting in collision). However,
based on time and emergency constraints, robot may have to
execute tasks that carry some risk of failure and safety relax-
ations. A sample manual entry in tabular format is enlisted:
Class: Robot | Vulnerability - 0.3 | Safety Priority - 0.6
Class: Glass Vase | Vulnerability - 0.9 | Safety Priority - 0.4
Class: Human | Vulnerability - 0.6 | Safety Priority -1



3.3 Task Reliability Graph
This section describes the concept of modeling and handling
task failures in terms of Task Reliability Graph (TRG). Some
terminology is defined first: (a) Start/Init: this is initial state
of the world (b) Goal: it is the expected state of the world
after complete plan is executed. (c) Task Node: subtasks rep-
resenting action sequences that has pre-conditions and effects
on the world. This can also be thought as action recipes. (d)
Task Reliability: this signifies how much reliable the task is
- this value can be a discreet value (such as high, medium,
low) It has to be a continuous value in a specified range (say
0 to 1 with normalization) if . This value can be learned by
observing task executions in real world or computer simula-
tions. For examples, task of moving straight can be thought
as reliable, however rotating on axis may turn out to be un-
reliable task under precision demanding scenarios (like rotate
by exact r0). (e) Task Transition: this indicates the switching
from one task to another following the planner set sequence.
When a task completes execution, the control is given back to
the cognitive engine from the actuator, which again initiates
the next task in planned pipeline. Some task transitions are
seamless like between moving straight and rotation. How-
ever, task transitions between the state actions of ‘turning off
lights’ and ‘moving ahead’ are not reliable – as movement in
dark is prone to failure without sensors that work in dark. Un-
reliable transitions mean that there is high risk of failure. (f)
Task Transition Reliability: it means how reliable is the tran-
sition from one task to another. The numeric values around
it can also be learned by monitoring task transitions in real
world and simulations. (g) Safe zone: the world state where
chances of robot doing un-intended action is almost nil (h)
Risk zone: the world state where there is a chance of task
failure, but recovery or rollback to a safe zone is still possi-
ble (e) Failure Zone: the world state where the robot cannot
recover and needs external intervention. This world state is
more prone to safety violations.

Fig 2. shows an instance of a Task Reliability graph where
the objective is to reach Goal node from Start node. The op-
timal path for given problem is found by looking simultane-
ously at multiple task nodes (having reliability weights), their
connecting edges (having task transition reliability weights),
the safety value assigned to the edges and nodes. Depending
on the constraints (limited time, no risk) the optimal path will
be different. To simplify understanding, reliability weights
are not considered in following cases.

Case 1: If safety is highest priority – non-negotiable:
No path exist, until safety is relaxed.

Case 2: If time is highest priority (emergency), Path:
Start→ Task1→ Task3→ Goal.

Case 3: If time and safety have relaxed priority, Path:
Start→ Task0→ Task4→ Task5→ Task7→ Task3→Goal.
[Above path has all safe ‘green’ transitions, but 2 risky tasks]

It is important to keep note of visited nodes and where oc-
currence of failure is more in the graph cycles. Another pa-
rameter to consider is cost of rollback - how further back from
current node in graph agent needs to travel in order to reach a
safe taste. Another point is – if the robot agent do not have the
suitable sensors to monitor the state to carry out a vulnerable
task, then such a task by default will fall in Risk zone.

Figure 2: Task Reliability Graph and Reliability Zones

We explain TRG with the help of a simple telepresence
scenario. Some of the sub tasks can be: open a door (T1),
close a door (T2), turn on lights (T3), turn off lights (T4),
move a step (T5 - this can be further subdivided as sub tasks
of vector movements), apply pressure to hold an object (T6),
lift an object (T7), move an object (T8). Suppose the end
user from a remote location issues a command to find an ob-
ject ‘mobile phone’ left somewhere at home. In this case, the
transition T4→ T5 is risky; T6→ T8 is also risky if object
can not be moved without lifting (here the phone). Also had
object being something heavy like portable cupboard, then
lifting it may cause the robot to lose balance and damage it-
self. If the robot has sensors to sense in dark (like infrared
camera), then T4→ T5 is not risky. So each task transition is
characterized by robot’s current perception capacity as well
as task and environment state. If the current scene set lacks
dynamic obstacles, then risk factors get minimized automati-
cally. Hence, reliability values of task and task transitions are
based on different scenarios and constraints – accordingly the
optimal task path for same goal (user instruction) will vary.

3.4 State Reliability
Joint monitoring the path to goal in solution space as well
as state variables is a better approach than relying only on
one aspect. As an example, tasks can fail if battery power-
ing the robot (object state) gets drained although there was
no issues in the reliability of task at hand and transitions. For
each goal, a task path is created that contains states of vari-
ables. Simultaneously relevant world state (a subset can be
extracted by looking at the problem, goal and possible paths)
needs to be monitored and reliability can be assigned to (a)
each relevant object state (b) relevant world subset of states
representing a possible state. This may not be mapped to a
specified task template but can be thought of as an unknown
state, but should not be generalized as a single dead state. If
there are ‘m’ state variables with ‘n’ possible discreet val-
ues, there will be much less than maximum possible world
states, as co-occurrence of [ m1(n1),m2(n2))] is not pos-
sible due to semantic and logical constraints. For example,
state variable ‘light’ in ‘off’ state will make camera sensed
state variables null, as due to darkness there is no visibility.
This constraints can be derived from ontological descriptions,
common sense knowledge as well specified in PDDL under



the :constraints section. This can lead to task reliability pre-
diction as a weighted equation:

maximize ( w1. world state reliability
+ w2. individual state reliability
+ w3. task transition reliability
+ w4. task execution reliability )

3.5 Task Monitoring and Decision Making
Any machine learning model is bound to failures as the pre-
dictions cannot be 100% certain – a model is as good as its
features [Banerjee, S, et al. 2016]. The fundamental aspect
of safe and reliable task planning is to minimize levels of un-
certainty. So, if a world model is exhaustive, then uncertainty
is zero. However, in real life, it is very difficult to have an
exhaustive state space description on which an agent can ac-
tuate. So a hybrid approach entangling uncertainty handling
in the core decision making process is a practical way out:-

Algorithm 1: Safe and Reliable Task Planning
Result: Task Success or Failure under constraint set C
Parameters:
perception← sensor input stream;
actuation← movement or manipulation by agent;
knowledge← link to semantic knowledge store;
software← link to software modules and libraries;
goal← target goal state or final task state to reach;
CS← current state of agent;
Begin:
plan← software.plan(perception, knowledge, goal);
TRG← initialize Task Reliability Graph with priors;
while goal 6= CS And pre-conditions = satisfied do

CS← plan.nextTaskStep();
if Constraints in CS w.r.t. TRG ⊆ set C then

TRG.evaluate(perception) for Changes;
if Changes detected in world state then

S1← software.RL.evaluate(perception) -
generate next step based on
reinforcement learned model;

S2← get next step from TRG after
evaluation of reliability of world state,
CS, task transition, task execution;

actuation← voting (S1 ∩ S2)
else

actuation← voting (TRG.nextActuation()
∩ software.RL.nextActuation() );

end
TRG.update() - weights of edges and nodes;
software.RL.update() - update rewards by

processing current scene and task status;
knowledge.update() - object state values;

else
plan← software.replan(perception, TRG);

end
if goal = reached Or Exit Criterion met then

actuation← STOP; Wait for next command;
end

end

4 Conclusion
The intention of this paper is to ensure that AI systems of the
future that uses task planning are not just optimistically safe
but robustly, verifiably safe — because it was designed and
built with safety and reliability in mind from ground zero.
The strategies laid out are generic enough for widespread
adoption across safe task planning use cases. Experimen-
tation on multiple use cases on both simulation and real
life situations will enable more insights to the proposed ap-
proaches. Future work will include mathematical formula-
tion with safety guarantees [Polymenakos, K. et al. 2019] to
model agent (robot) actuation in an uncertain world.
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