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Abstract
As deep neural networks (DNNs) advance rapidly,
quantization has become a widely used standard for
deployments on resource-limited hardware. How-
ever, DNNs are well accepted vulnerable to ad-
versarial attacks, and quantization is found to fur-
ther weaken the robustness. Adversarial training is
proved a feasible defense but depends on a larger
network capacity, which contradicts with quanti-
zation. Thus in this work, we propose a novel
method of Error-silenced Quantization that relaxes
the requirement and achieves both robustness and
compactness. We first observe the Error Ampli-
fication Effect, i.e., small perturbations on adver-
sarial samples being amplified through layers, then
a pairing is designed to directly silence the error.
Comprehensive experimental results on CIFAR-10
and CIFAR-100 prove that our method fixes the ro-
bustness drop against alternative threat models and
even outperforms full-precision models. Finally,
we study different pairing schemes and secure our
method from the obfuscated gradient problem that
undermines many previous defenses.

1 Introduction
Deep neural networks (DNNs) have demonstrated extraordi-
nary performances in a wide range of applications, includ-
ing visual understanding [Krizhevsky et al., 2012; He et al.,
2016], speech recognition [Graves et al., 2013], and natu-
ral language processing [Devlin et al., 2019]. As its ap-
plication develops, the deployment of DNNs is becoming
omnipresent in embedded and edge devices, such as mobile
phones, IoT devices, autonomous driving systems, etc. To
facilitate such deployment, quantization [Wu et al., 2016;
Jacob et al., 2018] is proposed, which has become an indus-
try standard for deep learning hardware and an accelerator for
inference in real-time applications [Rastegari et al., 2016].

However, it is accepted that DNNs are vulnerable to ad-
versarial attacks [Szegedy et al., 2014; Goodfellow et al.,
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2015], that is, maliciously generated noise hardly noticeable
can easily deceive a model to give erroneous predictions.
This may lead to disastrous consequences and raises concerns
about applications in security-critical domains. For exam-
ple, in autonomous driving, a stop signal of traffic indicators
can be mistakenly detected by a model as a permission sig-
nal [Eykholt et al., 2018]; or in face recognition, an adver-
sary can fool the model, bypass the authentication and reach
full access to the system [Sharif et al., 2016]. The potential
risks are one of the key hindrances to deploy DNNs in safety-
critical scenarios.

Furthermore, the commonly used vanilla quantization ap-
proaches concentrate on the classification accuracy on clean
inputs and may be more severely threatened by adversarial at-
tacks (Table 1). Therefore, it is imperative to develop a quan-
tization algorithm that can jointly optimize robustness and
compactness. Adversarial training [Goodfellow et al., 2015;
Kurakin et al., 2017; Madry et al., 2018], i.e., augmenting the
training set with adversarial samples, is recognized to be one
of the best defenses. Nevertheless, it generally requires a sig-
nificantly larger network capacity than predicting only clean
inputs, which is in contradiction to quantization.

To address this issue, we equip quantization with adver-
sarial training and relax the requirement by extracting a
pairing object. The pairing of clean and perturbed activa-
tion diminishes the error within and is added to the train-
ing loss. Then the model concurrently trained and quantized
with the loss learns close inference on clean and adversar-
ial inputs and thus achieve both strong robustness and high
compactness. Though previous works [Galloway et al., 2018;
Gui et al., 2019] are aware of the robustness drop and attempt
to fix it, their settings are limited. We thoroughly prove the ro-
bustness of our method against four threat models: white-box
attack, in which attackers have full access to target models;
score and decision based black-box attack, in which attack-
ers have access to detailed or final predictions; and transfer
attack, in which attackers know only data distributions.

Experiments demonstrated our contributions: (i) We firstly
plotted the precise error in activation of attacked models. (ii)
We proposed a novel quantization that directly regulates the
perturbed activation. (iii) With the method we silence the er-
ror and bridge robustness with model compactness. (iv) We
further confirmed the superiority and security of our method.
The method is called Error-silenced Quantization (EQ)



since it is inspired by the Error Amplification Effect and aims
at silencing the error in both activation and predictions.

2 Background
2.1 Compress with quantization
In this section, we briefly introduce two typical quantized net-
works, including Binary Weight Network (BWN) [Rastegari
et al., 2016] and Ternary Weight Network (TWN) [Li and
Liu, 2016].

Firstly, the weightW of a DNN can be denoted byWl =
{W1, · · · ,Wi, · · · ,Wm}, where the l-th layer hasm output
channels and Wi ∈ Rd is the weight of the i-th filter. Quanti-
zation converts each weight matrix Wi into Qi ∈ Sd, where
S consists of at most 2n sparse values in a n-bit quantization.

BWN takes a scaling factor α ∈ R+ and S = {−α,+α}.
By solving the optimization J = min ‖Wi − αBi‖ it yields

Bj
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TWN introduces a 0 state over BWN in S = {−α, 0,+α}
to approximate the real-valued weight Wi more precisely. It
solves the optimization J = min ‖Wi − αTi‖ as
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Then Bi and Ti are the 1-bit and 2-bit quantized Qi that

forms the space-efficient weight Q. Since the factor α re-
quires little storage, BWN compresses a full-precision model
by 32× and TWN compresses by 16×.

2.2 Adversarial attacks and defenses
Given an image x, adversarial attacks is to find the noise δ
that the classifier’s prediction of input xadv = x+ δ is wrong.
And defenses aim to maintain the robustness of the classifier,
i.e. the prediction accuracy on input xadv . Here we list some
attacks and defenses used in experiments.

2.2.1 Attacks
Fast Gradient Sign Method (FGSM) is a L∞ bounded one-
step attack forwarded by [Goodfellow et al., 2015] that cal-
culates the adversarial samples by following the direction of
the gradient of loss function L at step size ε.

Projected Gradient Descend (PGD) proposed by [Madry
et al., 2018] repeats FGSM and starts with a random step
to escape the sharp curvature near the original input, and is
thought to be the strongest first-order attack.

C&W Attack [Carlini and Wagner, 2017] chooses tanh
function instead of box-constrained methods and optimizes
the difference between logits instead of the logit itself. It is
an iterative attack and among the strongest L2 attacks.

Decoupling Direction and Norm Attack (DDN) [Rony
et al., 2019] is a newly proposed L2 attack that outperforms
C&W. It iterates FGSM with the ε adjusted in each round,
leading to a finer-grained search for adversarial images.

ε 1 2 4 8 16

NAT-Full 36.19 27.96 20.76 14.53 7.79
NAT-VQ-BWN 35.38 21.07 11.79 7.59 4.99
ADV-Full 47.22 43.65 36.63 24.60 11.16
ADV-VQ-BWN 40.84 28.34 19.00 12.74 7.74

Table 1: Results on CIFAR-100 and ResNet-152 support that quan-
tization undermines robustness and the accuracy (in %) of quantized
BWN models drops rapidly as ε increases. Abbreviations: NAT- for
naturally trained, ADV- for adversarially training, -VQ- for vanilla
quantization, -Full for full precision, -BWN for binary weight.

2.2.2 Defenses
Adversarial training [Goodfellow et al., 2015; Kurakin et
al., 2017; Madry et al., 2018] is currently the strongest and
most commonly used defense. It augments the training set
with adversarial samples by the optimization as

min
θ

E(x,y)∼D

[
max
δ∈∆

L(θ, x+ δ, y)

]
, (3)

where pairs of example x ∈ Rd and ground-truth y follow an
underlying data distribution D , δ ∈ ∆ is the allowed adver-
sarial noise added to image x to deceive the classifier, θ is the
model weight to be optimized and L is the loss function.

3 The Error Amplification Effect
The conventionally quantized DNN is counter-intuitively
more vulnerable [Lin et al., 2019] under the threat of adver-
sarial attacks. One convincing explanation is the Error Ampli-
fication Effect discovered by [Liao et al., 2018]. Specifically,
tiny perturbations can be amplified when fed through layers,
become sizable enough to deceive the network and eventually
push the classification result into an incorrect bucket. More-
over, the quantization of a DNN worsens its robustness com-
paring with the original full-precision one by enlarging the
granularity of the weights, making its response more suscep-
tible to the input. As shown in Table 1, quantized models
yield constantly inferior robustness under FGSM attacks of
varied perturbation strength.

To in detail investigate the effect, we conducted pre-
experiments on CIFAR-100 [Krizhevsky and Hinton, 2009]
and ResNet-152 [He et al., 2016]. Adversarial samples are
generated untargeted by a 10-step PGD attacker with other
parameters ε = 8/255 and step size 2/255 corresponding
to [Madry et al., 2018]. In Figure 1, we test four settings
with the attack, evaluate and plot the distance Dl between the
clean and perturbed activation of each layer as

Dl(x, x
adv) =

∥∥Fl(x)− Fl(x
adv)
∥∥

2

‖Fl(x)‖2
, (4)

where Fl denotes the activation after the l-th ResNet module.
For convenience, we note training scheme with prefix NAT-
and ADV-, quantization scheme with infix -VQ- and -EQ-
, weight precision with suffix -Full, -BWN, -TWN and use
acronyms in all tables.

In the left zone of the illustration 1, the adversarial noise
applied to the input image is relatively small compared to the



Figure 1: Small perturbations amplified throughout layers and two
quantized BWN models predict the same level of error as the unde-
fended naturally trained model. Abbreviations: NAT- for naturally
trained, ADV- for adversarially training, -VQ- for vanilla quantiza-
tion, -Full for full precision, -BWN for binary weight.

image itself (±8 versus 255 in this setting). However, as the
inference carries on the magnitude of initial perturbation is
amplified through the latter part of the network. Once the
perturbation is amplified large enough, the model is misled to
a wrong bucket and the accuracy is witnessed a harsh drop.

With the experiment results above we have the follow-
ing observations: (i) The error of the activation eventually
accumulates large enough to push the prediction to a mis-
leading bucket. (ii) All models suffer from the effect while
quantization reduces robustness by a wide margin. (iii) With
vanilla quantization methods, the robustness gain of adversar-
ial training is drastically degraded.

Therefore, the currently used vanilla quantizations are
showed practically limited and the Error Amplification Effect
may be a key to a robustness-aware quantization.

4 Method
Motivated by the Error Amplification Effect above, we in-
troduce a quantization scheme that simultaneously preserves
the robustness of the original full-capacity model and the
compactness of low bandwidth quantization. The concurrent
training and quantizing procedure is described in (1).

We firstly follow the commonly used min-max based ro-
bustness optimization and formulate the overall robustness
and compactness target as

min
θ

E(x,y)∼D

[
max
δ∈∆

L(θ, x+ δ, y)

]
s.t.

size(θfull)

size(θ)
= c,

(5)
where θfull is the original full-precision weight (W), θ is the
finally quantized weight (Q), size(·) is the memory size to
store the weight and c is the target compression rate.

The equation (5) can be divided into two parts: (i) Min-
imize the loss on adversarially perturbed inputs for robust-
ness. (ii) Compress the model weight to meet the target rate
for compactness. In our method, the latter one is handled by a
quantization algorithm that allows simultaneous training, and

Algorithm 1 Error-silenced Quantization
Input: dataset D, full-precision weight θfull, selected layers
S and loss function L
Parameter: quantization iteration K, PGD perturbation
strength ε, PGD iteration T , sensitivity parameters λl and dis-
tance functions Dl for each layer l
Output: quantized weight θ

1: for k = 1, 2, · · · ,K do
2: Sample batch (x, y) from D
3: Partially quantize θfull into θ
4: for t = 1, 2, · · · , T do
5: Solve the inner max of Eq (6) to obtain δ
6: end for
7: L := L(θ, x, y)
8: for layer l in S do
9: L = L+ λlDl(x, x+ δ)

10: end for
11: Backward and update θfull with loss L
12: end for
13: return θ

the former one is handled by directly controlling the ampli-
fied error, i.e., pairing activation.

4.1 Pairing activation
Since the activation of an adversarial input deviates largely
from that of its original image, a natural solution to control
the error is training the network to diminish this deviation.

Let Dl(x, x
′) be a function that calculates the relative dis-

tance between the activation of l-th layer when the model is
fed with x and x′ respectively, which can be normalized L2

or L∞. With a set of layers to control S, the robustness regu-
larization that optimizes the former part of (5) is

min
θ

E(x,y)∼D

[
L(θ, x, y) + max

δ∈∆
P (x, x+ δ)

]
. (6)

Here L is the loss function and P is the pairing defined as

P (x, xadv) =
∑
l∈S

λlDl(x, x
adv), (7)

where λl is a series of sensitivity parameters that determine
the threshold of the amplified error between clean and adver-
sarial samples. The model is forced to infer close activation
on l-th layer if λl is large and is allowed to tolerate sizable
differences if λl is small.

With the pairing object, we train the model with clean sam-
ples and then pair the activation of particular layers, rather
than directly training on adversarial samples. The equation
(6) can also be divided into two parts that separately tackle
the classification accuracy on clean and adversarial images.

The first part is designed to maintain the performance of
the model because it is noticed that the development of ro-
bustness is often at the cost of prediction accuracy [Su et al.,
2018]. With the second part, we train the model to dimin-
ish the deviation and infer close activation. A model behaves
closely on clean and adversarial inputs is supposed to gain
close prediction accuracy on both.



As a special case, pairing is applied only on the final out-
put layer of the network, on which the following experiments
focus. Then the pairing can be simplified as the distance be-
tween the logits on clean and adversarial samples.

4.2 Solving adversarial perturbations
In the optimization (6), the perturbations δ are generated to
maximize the error of selected activation. However, in this
work we generate them with untargeted white-box attacks be-
cause it is believed the strongest attack and so far no attack
studies and magnifies the error.

Previous works [Madry et al., 2018] have shown that PGD
performs as the most powerful first-order attack. We follow
the conclusion and solve adversarial perturbations δ by PGD
attacks with settings consistent with [Madry et al., 2018] and
modify iteration number and step size.

4.3 Progressive quantization
Our method upholds and improves the robustness of quan-
tized models by concurrently updating and quantizing its
weight. Accordingly, we choose the Stochastic Quantization
method introduced in [Dong et al., 2019]. In our method,
a model is fed of clean and adversarial inputs with partially
quantized weight, and the full-precision weight is updated by
the gradients estimated. For comparison, vanilla Stochastic
Quantization trains models with clean inputs only.

5 Experiments
In this section, our experiments demonstrate that the pro-
posed method can effectively retain and further improve the
robustness when a model is quantized into low-bandwidth.
Also, the method diminishes the aforementioned Error Am-
plification Effect by a large margin compared with both full-
precision and vanilla quantized models. Finally, we show that
the method provides more convincing performances than two
baselines: adversarial training before and while quantization.

5.1 Settings
We apply Wide ResNet 28-10 [Zagoruyko and Komodakis,
2016] on CIFAR-10 [Krizhevsky and Hinton, 2009] and
ResNet-152 on CIFAR-100. Six models in each setting are
tested with clean input, white-box and transfer attacks.

During training, we augment training set with the PGD at-
tacker same as above and train models with an Adam opti-
mizer [Kingma and Ba, 2015] for 150 epochs. The hyper-
parameters are left in default without fine-tuning.

During quantization, we pair the activation after the final
layer (logits) byL2 norm and use a SGD optimizer with learn-
ing rate 0.1, momentum 0.9 and weight decay 10−4 to train
for 120 epochs in consistence with [Dong et al., 2019]. How-
ever, the quantization ratio is updated by the uniform scheme,
i.e., beginning at 0.2 and updated by 0.2 for every 25 epochs.

5.2 Retaining robustness of quantized models
For white-box attack tests, we use a 20-step PGD attacker
with step size 0.1, which is slightly stronger than that used
for training. We also analyze the robustness against other ad-
versarial attacks, using ε = 16/255 FGSM to study one-step

NF NEB AF AVB AEB AET

Clean 93.33 79.35 80.10 90.84 82.19 81.31
FGSM 7.24 26.47 29.47 22.81 29.49 26.72
PGD 0.00 41.84 47.06 7.08 41.62 41.02
DDN 0.00 29.11 28.18 2.43 28.04 24.81
C&W 0.04 38.58 40.49 8.45 38.24 36.84

(a) Natural test and white-box attack accuracy (in %). Underline
indicates the first and the second of the row.

NF NEB AF AVB AEB AET

NF 0.00 77.68 78.06 77.74 81.11 79.62
NEB 69.10 41.82 60.84 65.58 64.19 64.08
AF 67.44 57.33 47.71 54.49 61.20 60.89
AVB 24.82 73.51 72.75 7.11 76.09 75.31
AEB 75.79 62.74 63.12 64.98 41.36 60.66
AET 77.20 63.31 63.70 67.79 61.11 41.12

(b) Transfer attack accuracy (in %). Attacks are generated by row
and applied by line, for example, AF model reaches an accuracy of
60.84% on adversarial inputs generated with NEB model.

Table 2: Test results on CIFAR-10. Abbreviations: N- for naturally
training, A- for adversarially training, -V- for vanilla quantization,
-E- for Error-silenced Quantization, -F for full precision, -B for bi-
nary weight, and -T for ternary weight.

attacks, 100-step ε = 1 DDN and 20-step ε = 1 C&W to
study L2 bounded attacks.

For transfer attack tests, all adversarial samples are gener-
ated by the same PGD attacker as white-box stage. We train
and quantize alternative models from scratch if the model set-
ting generating attacks and being attacked is the same.

5.2.1 Results
As shown in Table 2a and 3a, the vanilla quantized models are
exposed with weak robustness and adversarial training before
quantization helps little. With conventional methods, the ro-
bustness gained by adversarial training is drastically degraded
to nearly none. While with our method, the accuracy consis-
tently floats around or above full-precision models through-
out two datasets. Comparing to the gap of vanilla quantiza-
tion, our proposed method is proved to be feasible in control-
ling the harsh drop to a reasonably small level and works for
both naturally and adversarially trained models.

In the cross transfer attack scenario (Tables 2b and 3b), our
robustly quantized models achieve sound results. For adver-
sarial attacks generated from NF models, which is often the
situation, the proposed method assists quantized models to
steadily beat the AF model. It is also true that our method
established solid defenses confronting other attacks, for ex-
ample, in Table 3b the -EQ- models exceed the AF model
under the attacks of other quantized models.

We also notice that the NEB model and the AEB model
perform almost the same, which further demonstrates the ad-
vantages of our method that adversarial training before quan-
tization is not required. Lastly, the method manages to main-
tain and even improve accuracy on clean data.



NF NEB AF AVB AEB AET

Clean 73.20 55.54 50.80 65.84 54.09 50.74
FGSM 7.77 12.05 11.15 7.59 13.36 10.78
PGD 0.03 19.17 22.15 0.65 20.49 19.03
DDN 0.01 12.35 17.37 0.24 13.74 12.22
C&W 0.34 18.48 20.62 1.21 19.83 17.02

(a) Natural test and white-box attack accuracy (in %). Underline
indicates the first and the second of the row.

NF NEB AF AVB AEB AET

NF 0.09 52.87 48.63 33.14 52.07 48.57
NEB 49.88 18.88 36.80 41.44 37.69 36.52
AF 44.78 37.27 22.38 33.68 35.75 34.62
AVB 13.77 51.94 46.64 0.57 50.56 47.18
AEB 51.14 37.99 36.31 41.40 20.71 36.45
AET 56.34 40.05 37.50 46.31 39.13 18.67

(b) Transfer attack accuracy (in %). Attacks are generated by row
and applied by column, for example, AF model reaches an accuracy
of 36.80% on adversarial inputs generated with NEB model.

Table 3: Test results on CIFAR-100. Abbreviations: N- for natu-
rally training, A- for adversarially training, -V- for vanilla quanti-
zation, -E- for Error-silenced Quantization, -F for full precision, -B
for binary weight, and -T for ternary weight.

5.3 Silencing the Error Amplification Effect
We re-evaluate the error in latent layers to investigate whether
the method manages to silence it. The relative distance is
defined in (4) and sampled after every ResNet module. The
experiment is conducted on ResNet-152 and CIFAR-100.

5.3.1 Results
Though the input is perturbed by the same magnitude, the
error is amplified quite differently in Figure 2. With conven-
tional quantization, the error of the ADV-VQ-BWN model
increases up to 4 times of the ADV-Full model, which is a
possible explanation of the large robustness drop. While with
our method, the models managed to lower the error than its
full-precision counterpart throughout the inference.

[Xu et al., 2018] conclude that image quantization, i.e., re-
duction in color bit depth is an effective defense. However,
quantization of network weight instead weakens robustness.
[Lin et al., 2019] proved that it tends to intensify the Error
Amplification Effect when ε > 3/255, which even starts from
ε = 1/255 in our experiments (Table 1). Our method ob-
tains significant results, overcomes the threshold and further
pushes it beyond ε = 8/255 as in Figure 2.

5.4 Beyond standalone adversarial training
To prove the necessity of pairing, we append experiments
of adversarial training in vanilla quantization on ResNet-152
and CIFAR-100.

For adversarial training in vanilla quantization, models are
fed with perturbed samples only and updated by the original
min-max optimization. All adversarial samples are generated
with the same PGD attacker as in the white-box section and
all models are quantized for 120 epochs.

Figure 2: Our quantized models diminish the Error Amplification
Effect by a large margin and even outperform full-precision mod-
els. Abbreviations: NAT- for naturally trained, ADV- for adversari-
ally training, -VQ- for vanilla quantization, -EQ- for Error-silenced
Quantization, -Full for full precision, -BWN for binary weight, and
-TWN for ternary weight.

Training Clean FGSM PGD DDN C&W

Natural 56.39 11.26 19.53 12.55 18.33
Adversarial 49.64 10.07 16.66 10.80 16.10

Natural 54.88 10.16 17.99 10.23 16.30
Adversarial 50.51 9.87 17.63 11.70 16.40

Table 4: Robustness of adversarial training in vanilla quantization.
Test accuracy in %. Models are quantized to 1-bit and 2-bit in the
upper and lower part.

5.4.1 Results
As in the upper part of Table 4, adversarial training in vanilla
quantization retains limited robustness and is not compara-
ble to our method. For naturally trained models, adversarial
training promotes robustness to 19% against PGD but lags
1% behind our method. For adversarially trained models, ad-
versarial training fails to maintain the robustness and leaves a
drop of 5.5%, which is the triple of ours.

We hold that the following hypothesis may lead to the in-
consistent performances of adversarial training in the context
of ordinary training and quantization: (i) Quantization limits
the capacity of the model, while adversarial training requires
a significantly large capacity. (ii) With limited capacity, the
model faces difficulty in learning and therefore suffers from
lower accuracy on both clean and adversarial inputs. In con-
trast, the model learns to predict only clean inputs and infer
close activation on adversarial inputs with our method.

We apply additional experiments on 2-bit quantization to
demonstrate the hypothesis above. Though TWN models
learn higher accuracy on training set, which confirms our hy-
pothesis that adversarial training is hindered by limited net-
work capacity, they attain the same and even inferior results
on test set compared to BWN models. It draws conclusion
that while higher bandwidth enables adversarial training, it
itself undermines robustness ([Lin et al., 2019]). In contrast,
our method better balances the trade-off between adversarial
training and low bandwidth weight.



Pairing Clean FGSM PGD DDN C&W

Logit 54.09 13.18 20.31 12.20 19.70
Activation 49.65 11.80 18.01 13.10 19.70

Logit 50.74 10.78 19.03 11.20 16.90
Activation 49.54 10.26 18.37 11.04 16.18

Table 5: Robustness of EQ with different pairing target. Test accu-
racy in %. Models are quantized to 1-bit and 2-bit in the upper and
lower part.

6 Discussions
In this section, we discuss the equivalence of different pairing
scheme and assume pairing logits as a universal pairing. We
also discuss the obfuscated gradients problem which under-
mines many previous defenses and further secure the robust-
ness of our method.

6.1 Equivalence of different pairing
While we offer a general pairing object in (6) and (7) that
can be any layers, only the output logits is paired in experi-
ments. Here we reveal that though pairing the activation may
produce lower errors, pairing the logits achieves the same ac-
curacy and better balances training costs and performances.
We investigate ResNet-152 on CIFAR-100 and pair the acti-
vation after the 4th, 12th and 48th ResNet module.

In Table 5, the close accuracy of two pairing schemes
shown confirms that pairing more activation provides minor
improvements while it requires considerable additional com-
putations and storage of intermediate results. It brings a large
cost of memory space, especially when training with GPU.
Furthermore, pairing activation may introduce unnecessary
requirements on network capacity, as in the case of adversar-
ial training. The smaller gap between two pairing settings on
TWN is also an implication of it.

6.2 Secure the sense of robustness
A noticeable coincidence is that our simplified activation pair-
ing scheme, pairing logits, is considerably similar to the Ad-
versarial Logit Pairing forwarded in [Kannan et al., 2018].
With the method, the author claims state-of-the-art robustness
on ImageNet. However, it is found [Athalye et al., 2018] to
suffer severely from obfuscated gradients and provide a false
sense of security that can be easily circumvented with non
gradient-based attacks.

In [Athalye et al., 2018], it is reported that defenses suf-
fering from obfuscated gradients are vulnerable to black-box
attacks that operate by estimating instead of directly solv-
ing gradients. To thoroughly examine whether our method
is truly secure, we test it with L2 bounded Boundary at-
tack [Brendel et al., 2018] and NAttack [Li et al., 2019]
for decision-based and score-based black-box attacks, respec-
tively. We vary perturbation strength from ε = 0 to ε = 4 and
compare the accuracy of quantized models with full-precision
counterparts.

As shown in Figure 3a and 3b, our quantization achieve
consistently close or better than the ADV-Full model as the
strength varies. All results confirm that our method meets no

(a) Decision-based Boundary attack test accuracy (in %).

(b) Score-basedNAttack test accuracy (in %).

Figure 3: Black-box attack test results on CIFAR-100. Abbrevia-
tions: NAT- for naturally trained, ADV- for adversarially training, -
EQ- for Error-silenced Quantization, -Full for full precision, -BWN
for binary weight.

obfuscated gradient problem and provides a secured sense of
robustness. We suppose a possible explanation that we use
untargeted attacks for training while [Kannan et al., 2018]
use targeted attacks.

7 Conclusion
This paper aims to tackle the issue of achieving both robust-
ness and compactness in DNNs. Inspired by the Error Am-
plification Effect, we relax the capacity requirements of ad-
versarial training by pairing, and propose a quantization that
optimizes accuracy on benign and adversarial inputs simulta-
neously. Extensive experiments throughout four threat mod-
els, two datasets and two networks endorse the superior ro-
bustness of the proposed method over vanilla approaches and
even full-precision counterparts, while still reach high com-
pression rates. Appended by a guarded notion of secure from
obfuscated gradients, our method managed to bridge robust-
ness and compactness for DNNs and further applications.
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