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Abstract. Monitoring is a critical task to manage modern applications using
cyber-physical systems such as in healthcare, environmental monitoring, water
and energy distribution or Industry 4.0. Its main goal is the optimization of the
equipment use, the prediction or avoidance of failures, and the change in the op-
erating modes of the system according to both the system goals and its current
condition. The abnormal situations that could lead to failures can have different
levels of severity, and can be nested in different ways. In this context, this paper
proposes a method to build a lattice, ordering those situations depending on the
constraints they rely on. This lattice represents a road-map of all the situations
that can be reached from a given one, desirable or undesirable. This helps in de-
cision support, by allowing the identification of the actions that can be taken to
correct the abnormality avoiding in this way the interruption of the system pro-
cesses.
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1 Introduction

Monitoring is a critical task to manage cyber-physical systems in different application
fields such as health and environmental monitoring, or water and energy distribution.
Its goal is to analyze an ongoing process to find out whether it behaves according to
expectations [12]. This allows the avoidance or prediction of undesirable behaviors or
situations, such as failures, and the change in the operating modes of the system ac-
cording to both the system goals and its current condition. Such is also the case of
Industry 4.0, whose main objective is to improve production and associated services
through the digitization and automation of manufacturing processes. Several fields and
technologies, such as the Internet of Things, Robotics, Cyber-Physical Systems, are
fundamental to Industry 4.0 in order to build intelligent machines, storage systems and
production facilities capable of exchanging information in an autonomous and smart
way.

Early detection of situations that may lead to failures in the Industry 4.0 scenario
requires the integration of data from heterogeneous data sources in real-time. There are
several works that propose the use of different technologies to deal with those issues.
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The approach presented in [13] exploits big data technologies for data-driven anomaly
detection in manufacturing processes. In [6], the authors propose an approach that uses
stream reasoning to face these issues dynamically, while applying classical reasoning
approaches to overcome the limitations of stream reasoning when needed. This proposal
is used to detect relevant situations, where a situation is a combination of one or several
sensor measurements linked through spatio-temporal relationships. Others approaches
are surveyed in [9].

Manufacturing processes are not always executed in optimal conditions, without
being stopped completely. Expert knowledge enables to describe these ”intermediate”
manufacturing conditions. The associated abnormal situations can have different levels
of severity, and be nested in different ways: they can impact other processes or resources
that participate in these processes, they can trigger other situations that represent a risk
of major interruption of the manufacturing process or a risk of accident.

Once a situation that may lead to failures is detected, decisions must be taken, such
as deciding whether the process should be interrupted or continued under sub-optimal
conditions. In order to help in decision making and choose the most appropriate ac-
tion, it is relevant to consider which other situations can be reached according to the
possible actions. Thus, this paper proposes an approach to establish an order among
the situations, depending on how their constraints are correlated. This order represents
a road-map of all the situations, desirable or undesirable, that can be reached from a
given one. In this way, it is possible to identify the actions that can be taken to correct
the abnormality, considering that certain actions can modify the value of a property and
thus change the state of the system, either by satisfying another constraint or, on the
contrary, by not satisfying constraints anymore.

The proposed approach uses the lattice theory [8,4,7] to provide an expressive for-
malization to order the situations by their level of generality or specificity. In this way
the hierarchy of situations is formally extracted from the situations definitions.

The remainder of the paper is structured as follows: in section 2 the related work
is presented. In section 3, the general approach is introduced, providing the definitions
for the construction of the hierarchy of situations. In section 4, the interpretation and
exploitation of the lattice to support the decision making is detailed. In Section 5, we
present some concluding remarks, including some perspectives for future work.

2 Related Work

As mentioned in the introduction, the definition of abnormal situations requires the
integration of data from different data sources, with different underlying meanings and
different temporal resolutions. Furthermore, these situations may share constraints and
involve similar resources. These challenges have been addressed from different areas of
research.

Most of the proposals coming from the Complex Event Processing (CEP) commu-
nity [3,1,17] offer relatively simple languages that allow to describe how information
from different sources should be processed. These languages do not include complete
support for reuse of patterns to form hierarchies of events. To overcome this limitation,
TESLA [2], an event specification language for CEP, supports content-based event fil-



tering and allows to capture relations among temporally related patterns of events. In
the same direction, in [15] the authors present a syntax for Description Logic Event
Processing (DELP) to represent both simple events and more complex events built on
simple events.

Other approaches to structurally define the event type composition in cyber-physical
systems (CPS) adopt the theory of concept lattice [16]. Concept lattice has been used
in machine learning, knowledge discovery and software engineering. In [14], a concept
lattice-based event model for CPS is presented. With this model, a CPS event is uni-
formly represented by three components: the event type, its internal attributes, and its
external attributes. The internal and external attributes together characterize the event
type. The model allows events to be composed across different components and devices
within and among both the cybernetic and physical domains.

Another approach is the use of rule-based models such as Adaptive Neuro Fuzzy
Interference Systems (ANFIS) models for monitoring wind turbine SCADA (Supervi-
sory Control and Data Acquisition) signals [10,11]. In order to obtain turbine condition
statements, the authors implement rules given by an expert who is familiar with the be-
havior of the turbine, typical faults and their root causes. There are two types of rules:
generic rules used to highlight anomalies, and specific rules providing specific condition
or potential root cause. In this case, it is possible to determine whether one antecedent
is contained in another or not. However, there is not a direct way to determine that an
antecedent or situation is partially occurring or that other violations must be satisfied
for another situation to occur.

In most of the solutions mentioned above, it is possible to observe a hierarchy of
events in the sense that complex events are composed of simple ones, but this hierarchy
does not directly provide the information that certain complex events may occur par-
tially in other complex events or that they share certain simple events or not. To the best
of our knowledge, no works have been done that attempt to establish a formal represen-
tation of a hierarchy among (abnormal) situations. For this, establishing an order among
situations permits taking into account the relations that exist among each other and to
support the actions to take to overcome the abnormal situations when they happen.

The contribution of the approach presented in this paper is a method that allows
to order not only the complex events already defined based on the simple events that
compose them, but also to order certain combinations of simple events that do not com-
pletely compose a complex event. Additionally, it is possible to consider occurrences of
simple events that imply the occurrence of other simple events for the construction of
the hierarchy of situations.

3 Proposed Approach

The idea driving this approach is to formally represent a hierarchy among situations that
may lead to failures. Therefore, through the use of this hierarchy of situations, decisions
can be made based on which others situation can be reached according to the constraints
that can be satisfied. This allows to adapt the maintenance schedule or to take further
measures to prevent unexpected downtime.
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Fig. 1: Situations with the constraints (R) and implications among the constraints (T ).

In this section, we firstly introduce the definitions that are necessary for the con-
struction of the hierarchy of situations, and secondly, we describe the steps for building
the hierarchy.

3.1 Structure definitions

In order to formally represent a hierarchy of situations, let us consider the following
structure 〈S, C,R, T 〉 where:

– S = {s1, s2, s3, . . . , sn} is the set of all the situations,
– C = {c1, c2, c3, . . . , cm} is the set of all the constraints,
– R ⊆ S × C is a binary relation that links a situation with a constraint and
– T ⊆ C × C is a binary relation that links a constraint with another constraint.

A situation defines an abstract state of affairs that represents a particular scenario
of interest and involves observations linked through spatio-temporal relationships, re-
sources and processes. Let us note that situations are abstract, meaning that there may
be different instances of a given situation. Instances of the same situation can happen in
different periods of time, but they all satisfy the same constraints.

The set C contains all the constraints that are associated with one or more situations
in the set of situations S. These constraints concern different properties of the pro-
cesses, machines, resources or even the environment in which the tasks are executed.
For example, if we consider the variables MC1 Temp and MC2 Temp, corresponding to
the temperature of a component of a machine and the temperature of another component
of the same machine, then MC1 Temp< 40◦C and MC1 Temp>MC2 Temp are constraints
defined on them.

The binary relation R is used to establish that a constraint is involved in a situa-
tion. We write s1Rc1 to indicate that the constraint c1 is involved in the situation s1.
The R relation is therefore built from the relationships between the situations and the
constraints that are extracted from expert knowledge.

For example, consider the following set of constraints and set of situations, with six
constraints and six situations:

C = {c1, c2, c3, c4, c5, c6} and S = {s1, s2, s3, s4, s5, s6}.



Situations Constraints Constraints (T )

s1 c1, c3, c6 c1, c2, c3, c4, c5, c6
s2 c1, c4, c6 c1, c2, c4, c5, c6
s3 c2, c4, c6 c2, c4, c5, c6
s4 c2, c5 c2, c5
s5 c3, c6 c3, c4, c5, c6
s6 c1, c6 c1, c2, c6

Table 1: Situations and the constraints concerned by them (in bold face the constraints that are
implied by other constraints)

The correspondingR relation, built from the set of situations S and the set of constraints
C, is shown in Table 1 (columns 1 and 2). For example, the 4th line in this table indicates
that if constraints c2 and c5 are satisfied (2nd column) then situation s4 happens (1st
column).

Another way to show relation R is depicted in Figure 1. In this figure, we can
observe how different situations share a part of the constraints in their definition, for
example s1 and s2 share constraints c1 and c6.

Some constraints can be more general than others, i.e. include others. Such is the
case with, for example, the constraints c1 and c2 defined as MC1 Temp < 40◦C and
MC1 Temp < 60◦C, respectively. If c1 is satisfied, then c2 is necessarily also satisfied.
Furthermore, some constraints may imply other constraints due to physical properties
extracted from expert knowledge or observations. For this reason, the T relation is
defined to indicate that if a constraint is satisfied, then another one is also satisfied. We
write c1T c2.

For example, let us consider the implications among the constraints from the set
of constraints C, presented before, shown in Figure 1 (arrows labeled with T ). These
implications are inferred either from mathematical properties, or from observations, or
extracted from expert knowledge. Taking into account these relations, the constraints
associated with each situation are established as shown in Table 1 (third column). This
allows to associate more constraints than those that are explicitly concerned by the
situations.

In order to formalize the relations between situations and constraints, two operators
are defined below, based on the use of both R and T relations. These operators are
defined on a set of situations or constraints because each situation can involve several
constraints, and several situations can have several constraints in common.

The first operator dXe enables the retrieval of the set of constraints associated to a
set of situations.

Definition 1 For a situation set X , X ⊆ S, let

dXe := {c ∈ C|∀x ∈ X : xRc ∨ ∃c′ ∈ C : xRc′ ∧ c′T c}

Considering the situations s1 and s2 of the example presented above, the constraints
involved in both situations are d{s1, s2}e = {c1, c2, c4, c5, c6}.



The second operator bYc conversely enables the retrieval of the set of situations
involving a set of constraints Y .

Definition 2 For a constraint set Y , Y ⊆ C, let

bYc := {s ∈ S|∀y ∈ Y : sRy ∨ ∃c′ ∈ C : sRc′ ∧ c′T c}

This operator retrieves the situations involving at least all the constraints in the set
Y . Therefore, considering the example presented above, if the constraints c2 and c5 are
chosen then the situations involving those constraints are b{c2, c5}c = {s1, s2, s3, s4}.
Let us note that these situations may involve other constraints, e.g. s3 with c4 and c6.

Using the elements of the structure 〈S, C,R, T 〉 and the two operators d.e and b.c
previously defined, the construction of the lattice representing the hierarchy of situa-
tions is detailed below.

3.2 Building the lattice

First the nodes of the lattice are described. As highlighted above, situations have com-
mon constraints, nested in different ways: inclusion, non-null intersections, etc. There-
fore, we propose to group them considering the constraints they share through the op-
erators defined in the previous section.

Algorithm 1 Calculate all the pairs (X ,Y) where X ⊆ S, Y ⊆ C, dXe = Y and
bYc = X (setofPairs)
Require: a set of Situations S and a set of Constraints C
Ensure: {(X ,Y)|X ⊆ S ∧ Y ⊆ C ∧ dXe = Y ∧ bYc = X}
1: consSet← {} //consSet is a set of constraint sets
2: setofPairs← {}
3: for all s ∈ S do
4: consSet← consSet ∪ {d{s}e}
5: end for
6: for all O1 ∈ consSet do
7: for all O2 ∈ consSet do
8: if O1 ∩ O2 6∈ consSet then
9: constSet← consSet ∪ {O1 ∩ O2}

10: end if
11: end for
12: end for
13: if C 6∈ consSet then
14: consSet← consSet ∪ {C}
15: end if
16: if {} 6∈ consSet then
17: consSet← consSet ∪ {{}}
18: end if
19: for all O ∈ consSet do
20: setofPairs← setofPairs ∪ {(bOc,O)}
21: end for
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Fig. 2: Lattice representing the hierarchy of situations (situations having exactly all the constraints
of the second component of the pair in the node are shown in bold face)

In our approach, we group situations and their constraints as pairs (X ,Y) where X
is a set of situations and Y is a set of constraints such that dXe = Y and bYc = X . The
first component of the pair is a set with all the situations that share all the constraints
of the second component. The second component is the set with all the constraints in
common among the situations from the first component.

In order to find all the pairs and thus the nodes of the lattice, given a set of situations
S, a set of constraints C, and relationsR and T , Algorithm 1 is followed. Firstly, d{s}e
is computed for each situation s ∈ S (lines 3-5). Then, for any two sets in this set of
sets (consSet), their intersection is calculated. If this intersection is not yet contained
in the set, it is added (lines 6-12). This step is repeated until no new sets are generated.
If the set C of all the constraints and the empty set ({}) are not in consSet, they are
added (lines 13-18). These sets yield the minimum and maximum nodes of the lattice,
respectively. Finally, for every set O in consSet, bOc is computed (lines 19-21). By
the end, the set (setofPairs) of all the possible (X ,Y) pairs that satisfy dXe = Y and
bYc = X are obtained.

Considering the example in Figure 1 and Table 1, if the set of situations S and the
set of constraints C are given as input to the algorithm, then the output are the nodes
of the lattice shown in Figure 2. Let us note that since the situations are predefined, the
search for all pairs is done offline. If a situation is added, it is either added to a node or
a new node is created.

Once all the pairs are found, the next step is to order those pairs in a lattice to build
the hierarchy of situations. A lattice is an algebraic structure that consists of a partially
ordered set in which every two elements have a unique supremum (also called a least
upper bound or join) and a unique infimum (also called a greatest lower bound or meet).



A partial order is a pair (P,�) where P is a set and � is binary relation over P so
that it is reflexive, anti-symmetric and transitive.

For our lattice, we consider the set:
L = {(X ,Y)|X ⊆ S ∧ Y ⊆ C ∧ dXe = Y ∧ bYc = X}

and the following binary relation defined over it:

Definition 3 Let (X ,Y) and (X ′,Y ′) be two pairs where X , X ′ are sets of situations
and Y , Y ′ are sets of constraints. The situations in X ′ are reachable from X if the
constraints in Y ∩ Y ′ are satisfied, noted as (X ,Y) � (X ′,Y ′)⇔ X ⊆ X ′ ∧ Y ′ ⊆ Y .

3.3 Lattice proof

Theorem 1. (L,�) is a lattice.

Proof. The proof is done in two parts. In the first part it is proved that (L,�) is a par-
tially ordered set. In the second part, it is proved that for any two elements of the lattice
they have a unique supremum and a unique infimum.

Part 1. First it is proven that � is reflexive, i.e. ∀(X ,Y) ∈ L | (X ,Y) � (X ,Y).
By the definition of �, (X ,Y) � (X ,Y) ⇔ X ⊆ X ∧ Y ⊆ Y It is true since each set
is self-contained. Then, � is reflexive.

Now we prove that � is anti-symmetric, i.e. ∀(X ,Y), (X ′,Y ′) ∈ L|(X ,Y) �
(X ′,Y ′) ∧ (X ′,Y ′) � (X ,Y)⇒ (X ,Y) = (X ′,Y ′).
Let two sets (X ,Y), (X ′,Y ′) belong to L, and (X ,Y) � (X ′,Y ′) and (X ′,Y ′) �
(X ,Y). Applying the definition of � on both we obtain: X ⊆ X ′ ∧ Y ′ ⊆ Y and
X ′ ⊆ X ∧ Y ⊆ Y ′, respectively. Thus, on the one hand X ⊆ X ′ and X ′ ⊆ X means
that X = X ′, and on the other hand Y ′ ⊆ Y and Y ⊆ Y ′ means that Y = Y ′. Since
(X ,Y) = (X ′,Y ′), � is anti symmetric.

Finally, we show that� is transitive, i.e. (X ,Y) � (X ′,Y ′)∧ (X ′,Y ′) � (X ′′,Y ′′)
⇒ (X ,Y) � (X ′′,Y ′′).
Let (X ,Y), (X ′,Y ′), (X ′′,Y ′′) belong to L, and consider that (X ,Y) � (X ′,Y ′)
and (X ′,Y ′) � (X ′′,Y ′′). Now, if we apply the definition of � on both we get,
X ⊆ X ′ ∧ Y ′ ⊆ Y and X ′ ⊆ X ′′ ∧ Y ′′ ⊆ Y ′, respectively. Considering sets X ,
X ′, and X ′′ X ⊆ X ′ and X ′ ⊆ X ′′ means that X ⊆ X ′′ because ⊆ is transitive. Simi-
larly, Y ′′ ⊆ Y ′ and Y ′ ⊆ Y means that Y ′′ ⊆ Y . Then, (X ,Y) � (X ′′,Y ′′). Therefore,
� is transitive.

Part 2. Firstly, two lemmas are introduced:

Lemma 1. Let Y be a set of constraints and X a set of situations, then

Y ⊆ dbYce and X ⊆ bdXec.

Proof. bYc has all the situations involving the constraints in the set Y and the situations
involving constraints that are included by the constraints in the set Y . Then, dbYce
has all the constraints associated with the set of situations bYc. Therefore, the set of
constraintsY is contained in dbYce. The reasoning is the same for the set of situationsX .



Lemma 2. Let Y,Y ′ be sets of constraints and X ,X ′ be sets of situations, then

Y ⊆ Y ′ ⇒ bY ′c ⊆ bYc and X ⊆ X ′ ⇒ dX ′e ⊆ dXe.

Proof. We prove that dX ′e ⊆ dXe. By definition of d.e on X ′, dX ′e = {c ∈ C|∀x ∈
X ′ : xRc ∨ ∃c′ ∈ C : xRc′ ∧ c′T c} This is for all b ∈ X ′, and by hypothesis X ⊆ X ′.
Therefore,

dX ′e = {c ∈ C|∀x ∈ X ′ : xRc ∨ ∃c′ ∈ C : xRc′ ∧ c′T c}
⊆ {c ∈ C|∀x ∈ X : xRc ∨ ∃c′ ∈ C : xRc′ ∧ c′T c} = dXe

The same reasoning can be applied to prove Y ⊆ Y ′ ⇒ bY ′c ⊆ bYc. This lemma
shows that the more constraints are required, the fewer situations involve all of them.
Conversely, the more situations we consider, the fewer constraints they have in com-
mon.

Having defined the two lemmas and their respective proofs, we continue with the gen-
eral proof of the theorem.

For any two pairs (X ,Y) and (X ′,Y ′) we obtain:

– the infimum (greatest common pair) of (X ,Y) and (X ′,Y ′) as

(X ,Y) ∧ (X ′,Y ′) := (X ∩ X ′, dbY ∪ Y ′ce)

– the supremum (least common pair) of (X ,Y) and (X ′,Y ′) as

(X ,Y) ∨ (X ′,Y ′) := (bdX ∪ X ′ec,Y ∩ Y ′)

To prove the existence of the unique infimum, we have to show that (X ,Y) ∧
(X ′,Y ′) is smaller than both (X ,Y) and (X ′,Y ′), and any other common child of
(X ,Y) and (X ′,Y ′) is also a child of (X ,Y) ∧ (X ′,Y ′).
First we prove that (X ∩ X ′, dbY ∪ Y ′ce) � (X ,Y). By the definition of �, we have
X ∩ X ′ ⊆ X and Y ⊆ dbY ∪ Y ′ce.
The proof of X ∩ X ′ ⊆ X is trivial. For the other part of the conjunction we start from
Y ⊆ Y ∪ Y ′ applying Lemma 2 twice we obtain dbYce ⊆ dbY ∪ Y ′ce. In addition,
Lemma 1 expresses that Y ⊆ dbYce. Thus, combining the last two statements we
conclude that Y ⊆ dbYce ⊆ dbY ∪ Y ′ce. Therefore, Y ⊆ dbY ∪ Y ′ce.

The same method can be used to prove that (X ∩ X ′, dbY ∪ Y ′ce) � (X ′,Y ′).
Similarly, (X ,Y) ∨ (X ′,Y ′) is greater than both (X ,Y) and (X ′,Y ′), and it is

a child of any common parent of these two pairs. Only the proof for the infimum is
developed here since the proof for the supremum is similar.

4 Lattice Interpretation and Exploitation

An illustrative case study is described below and is used to highlight how the lattice can
be used and the advantages it offers to support the decisions that need to be made when
an abnormal situation is detected in an industrial framework.

The case study is based on a manufacturing production line composed of several
machines. These machines are equipped with sensors on different components. The



Set of constraints C

ID Properties Restriction Device ID Properties Restriction Device
c1 Oil temp. > 40◦C M1 c13 Power output < 500 kW PL1
c2 Oil temp. > 60◦C M1 c14 Power output < 200 kW PL1
c3 Transformer temp. > 45◦C M1T1 c15 Conv. water temp. > 60◦C M3Cv1
c4 Controller temp. > 40◦C M1Ct1 c16 Conv. water temp. > 80◦C M3Cv1
c5 Generator curr. < 800 A M1G1 c17 Trans. grid temp. < 35◦C M3T1
c6 Platform temp. < 35◦C PL1 c18 Generator temp. > 45◦C M3G1
c7 Platform temp. > 40◦C PL1 c19 Converter temp. > 60◦C M3Cv1
c8 Gearbox temp. > 40◦C M2GB1 c20 Converter temp. > 80◦C M3Cv1
c9 Gearbox temp. > 60◦C M2GB1 c21 Rotor speed < 200 rpm M4R1
c10 Generator speed < 500 rpm M2G1 c22 Rotor speed < 100 rpm M4R1
c11 Environment temp. < 25◦C PL1 c23 Rotor Pitch angle < 5◦ M4R1
c12 Power output > 2000 kW PL1

Table 2: Constraints definition.

sensors collect data on the properties described in Table 2. This scenario is formally
represented using the manufacturing domain ontology introduced in [5]. It enables to
represent a production line: the machines that compose it, the tasks they perform and
the observations made by the sensors as well as the context in which the observations
are measured.

Several abnormal situations that could lead to failures in this scenario are defined
from expert knowledge. Each of them is expressed as a set of constraints. For reasons
of space, situations are not described in detail, but the situations represented here cover
the following types of failures: hydraulic oil leakage, cooling system filter obstructions,
converter and rotor malfunctions and global malfunctions of the production line. The
defined abnormal situations are shown in Table 3 with a brief description of what they
represent; and the constraints concerned by them are described in Table 2.

Some situations represent conditions that can lead to the same potential failure,
indicating different levels of severity. For example, situations s1 and s2 both represent
situations that could lead to the same failure but s2 indicates a higher severity since the
temperature threshold is higher than the temperature threshold for s1. In this case, the
actions to be taken may be more decisive or follow a safety protocol, since the situations
are of higher severity.

The resulting lattice from the scenario described above is shown in Figure 3. By
observing the hierarchy of situations, it is possible to notice that in the upper part of the
lattice the constraints which are involved in most of the situations are verified. The fur-
ther we go down in the lattice, the more the situations are specific as they include more
constraints. The stronger constraints are close to the bottom of the diagram, meaning
that these situations embed those situated higher up in the lattice.

The lattice provides a structure that represents the order in which the situations may
arise according to which constraints are verified. Considering that certain actions can
modify the value of a property and thus change the state of the system, either by sat-
isfying another constraint or on the contrary by not satisfying a constraint anymore,



Set of situations S

Situation Constraints (T ) Description

s1 c1,c3,c4,c5,c6 M1 oil leakage
s2 c1,c2,c3,c4,c5,c6 M1 oil leakage
s3 c6,c8,c10,c11 Increase M2 oil temp.
s4 c6,c8,c9,c10,c11 Increase M2 oil temp.
s5 c7,c8,c9,c10,c11 Increase M2 oil temp.
s6 c15,c17,c18 M3 filter obstruction
s7 c15,c16,c17,c18 M3 filter obstruction
s8 c6,c17,c19 M3Cv1 malfunction
s9 c6,c17,c19,c20 M3Cv1 malfunction
s10 c15,c16,c17,c18,c19 M3Cv1 malfunction
s11 c12,c21,c23 M4R1 malfunction
s12 c12,c21,c22,c23 M4R1 malfunction
s13 c13,c21,c23 PL global malfunction
s14 c13,c14,c21,c23 PL global malfunction

Table 3: Situations and their concerned constraints (the constraints that are implied by other
constraints are in bold face)

the lattice allows the analysis of the actions to take. It implies, from the decision sup-
port point of view, reaching a node situated lower in the lattice if new constraints are
satisfied, or higher in the other case.

For example, if the constraints c15, c17 and c18 are satisfied then it means that the
situation s6 is happening, i.e. there is a cooling filter obstruction in the machine M3. The
lattice, and in particular the node ({s6, s7, s10}, {c15, c17, c18}); shows that situation
s7, a more critical situation than s6, is reachable if no action is taken or if the actions
taken imply the satisfaction of c16. In general, the actions aim at correcting the abnormal
property values causing them to return to normal values. In this case, a filter change ac-
tion in the cooling system would make the Converter water temp. and Generator
temp. properties decrease to values lower than their respective thresholds, i.e. the con-
straints c15 and c18 would no longer be satisfied. This would lead to the process at the
node ({s6, s7, s8, s9, s10}, {c17}) where only the constraint c17 is satisfied and other
situations can be reached from there. Ideally, it is always intended to go up on the lat-
tice to the node (S, {}) where none of the constraints are satisfied, meaning that no
abnormal situation is (partially) present.

A particular node in the lattice represents a possible state of the system. It should
be noted that the minimum of the lattice, the node ({}, C), may represent an unreach-
able state. That is, since this node includes all the constraints (C), it may be that two
constraints cannot be satisfied at the same time because they are exclusive, such as the
constraints c6 and c7. However, this node is necessary for the hierarchy to be a lattice.
If this happens in another node of the lattice that it is not the minimum, then there is a
problem in the definition of the R relation or of the T relation: it would be a situation
that can never be satisfied because it concerns constraints that are mutually exclusive.
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Fig. 3: Hierarchy of the situations defined in the illustrative case study.

For each node defined as (X ,Y), all situations in X are at least partially occurring,
i.e. a part of their constraints is satisfied. When one of the situations in X involves
exactly all the constraints in Y and no other, this means that this situation is occurring.
This is formally defined in Definition 4 (these situations appear in bold face in Figures
2 and 3).

Definition 4 For a pair (X ,Y), X ⊆ S and Y ⊆ C, let

‖(X ,Y)‖ := {s ∈ X |∀y ∈ Y : sRy ∧ @c′ ∈ C-Y : sRc′}

For example, ‖({s6, s7, s10}, {c15, c17, c18})‖ = {s6} means that the situation s6
happens in the node ({s6, s7, s10}, {c15, c17, c18}) because it involves only the con-
straints c15, c17 and c18.

Regarding the nodes where ‖(X ,Y)‖ is empty, this means that situations in X are
partially occurring or that they are potential situations that the system could reach. The
discovery of these combinations of constraints in common among certain situations can
give rise to the definition of new situations that allow the early stage detection of certain
”relevant” situations. This would allow preventive decisions to be taken.

5 Concluding remarks

This paper presents an approach that uses the lattice theory to represent a hierarchical
order among certain situations that lead to potential failures. This lattice is automatically



built from existing knowledge and represents a road-map of all the situations that can be
reached from a given one, desirable or not. This allows the identification of the actions
that can be taken to correct the abnormality.

Although the case study presented in the paper comes from the Industry 4.0 context,
the proposed approach can be applied to other application domains, where real time
monitoring is needed. In fact, in any monitoring application, the notion of situation
(normal or abnormal) exists. Their identification thanks to expert knowledge enables to
automatically build the hierarchy among the identified situations using our approach.

It is also to be remarked that in the case study presented, the T relation represents a
hierarchy between the constraints in the sense that one constraint may be more specific
than another, so that when it is satisfied, the more general constraint is also satisfied. The
T relation can also represent another type of relationship among the constraints such
as the fact that two different properties have a physical link, meaning that the values of
one directly affect the values of the other.

The following research lines will be addressed in future works. Firstly, a more ex-
tensive case with more complex situations, involving more constraints, will be explored.
This raises scalability and complexity issues to build the lattice. Therefore, tests will be
performed with different variants of Algorithm 1 to evaluate their relative efficiency.
Secondly, a more exhaustive and detailed study will be made on the constraints im-
plications that represent dependencies among constraints for the identification of new
situations or the refinement of existing ones.
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