
Advanced Syntax and Compilation for
Probabilistic Production Rules with PRM

Gaspard Ducamp1,2, Philippe Bonnard2, Christian de Sainte Marie2, and
Pierre-Henri Wuillemin1

1 LIP6 (UMR 7606), Sorbonne Université, 4 place Jussieu, 75005 Paris, France
prenom.nom@lip6.fr

2 IBM France Lab, 9 rue de Verdun, 94250 Gentilly, France
philippe.bonnard@fr.ibm.com, csma@fr.ibm.com, gaspard.ducamp@ibm.com

Abstract. Widely adopted for more than 20 years in industrial fields,
business rules offer the opportunity to non-IT users to define decision-
making policies in a simple and intuitive way. When used conjointly
with probabilistic graphical models (PGM) their expressiveness increase
by introducing the notion of probabilistic production rules (PPR). In this
paper we will present a new syntax for PPR making their use easier for
business users and showcase how we managed to adapt to the compilation
toolchain of an industrial rule engine accordingly.

Keywords: Uncertain reasoning · Business Rules · Probabilistic Rela-
tional Models · Bayesian Networks

1 Context

Business Rules Management Systems (BRMS), such as IBM Operational De-
cision Manager (ODM), are developed since the 90’s to facilitate authoring,
testing, deploying and executing business policies by domain users, in the form
of conditions/actions rules. Syntactically close to the business language, these
ease the translation of decision-making and business strategies, making them
accessible to users with no programming experience. When developing intelli-
gent systems, it may be inevitable to deal with uncertainty. This issue can have
multiple origins such as measurement errors, noisy automatic process or even
the modeling process itself. Handling such uncertainty in a BRMS could allow
business user to represent and reason with complex and real-world data.

Numerous methods have been used in the rule-based system community to
deal with uncertainty, using certainty factors [3], likelihood ratio (Hart et al.
[8]) or even fuzzy logic [20]. However, there was some limitations using such ap-
proaches, mainly due to interpretation being incoherent with probability theory
[9] or inconsistency in the conclusions when performing chains of inference [13].

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Bayesian techniques, mostly based of Bayesian networks [14, 19], have been used
to model domains with uncertainty but are not suited for complex systems in-
volving high design and maintenance costs [11]. Another solution could be to
use models that combine first-order logic and probabilistic reasoning, such as
Markov logic networks [15], but their abstract structure is incompatible with
business rules’ principles. The following results are part of a PhD thesis whose
primary ideas where discussed in [5].

This paper will start with a brief introduction on probabilistic rules and
their relevance in an industrial context as well as their current limitations. We
will then illustrate how we propose to increase their expressivity using a tight
coupling of a BRMS with an object-oriented PGM. To illustrate our paper we
will take the example of a state willing to monitor and manage its cities’ water
resources according to their daily consumption and possible episodic drought.

2 Uncertainty with production rules

When using a BRMS, users have to define the objects that will be manipulated
by the rule engine through classes and attributes declaration. They will be dy-
namically instantiated in working memory during the execution of the program.
In our case the working memory will contain objects representing cities, water
towers and level sensors (that could be either working or broken), as shown in
Figure 1.a.

Sensor

IdSensor
Model
LastMaintenance
State

WaterTower

IdTower
Type
Manufacturer
Capacity
LastMaintenance
Enabled
Level

City

Name
Population
IdCity
WaterLevel

State

Name
Population
IdState

1
1..n

1
0..n

1

1

(a)

WaterTower

level

Sensor

state

sensor

City

watertowers waterlevel

(b)

Fig. 1: (a) Class diagram for the water shortage example (the hollow diamond
shape indicates that a state ’has’ at least one city and a city is only in one state).
Red variables are probabilistic as opposed to blue ones whose values are always
deterministic (certain). (b) PRM class dependencies schema

Alongside the object data model, users have to define a set of rules. The
activation/execution of those rules is managed by inference algorithms such as
RETE [7, 17]. The rule presented in Table 1, for example, is used to identify
broken sensors inside water towers, allowing technicians to be alerted when
maintenance is required. However one would like to add uncertainty in rules,
for instance in order to perform predictive maintenances rather than corrective
ones, reducing the risk of unexpected breakdowns. Previous work [2, 1] showed

that a loose coupling between a rule engine and probabilistic graphical models
(Bayesian networks initially, then probabilistic relational models) allowed rea-
soning and making decision with uncertain data. However, a number of problems
have been raised with those approaches [5], mainly related to accessibility issues
for a business user, the proposed syntaxes requiring a deep understanding of
the probabilistic model used. In particular, they require business user to define
separate decision thresholds on each separate uncertain variable. For instance,
to define a rule that represents the policy of water usage being restricted under
certain conditions of temperature and water stock level, the user has to explicit
the minimal probability of the temperature reaching the specified policy thresh-
old and the minimal probability of the stock being below the specified policy
threshold; and so on for each probabilistic variable in each condition of each
rule.

Table 1: Example of rule used in a BRMS
rule SensorMaintenance {
 when {
 c: City() ;
 wt: WaterTower() in c.watertowers;
 s: Sensor(s.state==broken) from wt.sensor;
 } then {change the sensor}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C or c.waterlevel <104) ;
 } [with probability > .9]
 then {restrict water usage to key functions}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C);
 wl: agg {
 wt: WaterTower() in c.watertowers;
 } do {sum (wt.level)}where {w1 < 104};
 } [with probability > .9]
 then {restrict water usage to key functions}}

A Bayesian network (BN) is a compact representation of a joint probability
distribution over a set of random variables. These appear in the form of nodes in
a direct acyclic graph (DAG) where the absence of arcs represent conditional in-
dependences. Each node is associated with a conditional probability table (CPT)
that contains the conditional probabilities of the random variable with respect
to its parents. As said before, BNs are inadequate for modeling large scale world;
they quickly loses their expressivity due to the large number of obtained vari-
ables. Probabilistic relational models (PRM), on the contrary, are combining no-
tions from BNs and from the paradigm of object-oriented languages [18], where
the focus is set on classes of objects and by defining relations among them. The
expressiveness gained when adding notions of random variables and conditional
probabilities to classes, attributes, relations, interface, inheritance and instanti-
ations makes graphical models reusable and scalable [12]. The structuration of
information in a PRM being close to the one in the object data model of the rule
engine allows us to generate it directly from an annotated version of the model.

Figure 1.b shows an example of relation schema for PRM classes generated
from the model described in Figure 1.a. A class City contains an attribute called
waterlevel characterizing the availability of water resources: it is acting as a sum
aggregator over the level attribute of the water towers present in the reference
slot (dashed oval). Each tower is linked to a sensor analyzing its water level but
depending on the model, the date of its last maintenance and its state, the sensor
will work within a certain level of confidence, hence the uncertainty.

3 A new definition of PPR

To address the business user friendliness issue raised above, we have redefined the
treatment of uncertainty in the expression of rules by replacing the probability
thresholds attached to single variables by an aggregated notion of acceptable
risk on the evaluation of the conditions of the rule as a whole. The action part
of a rule will therefore be executed only if the set of conditions is verified with a
probability greater than the defined acceptable risk. This allows our probabilistic
rules to be more accessible but it required a redefinition of the rules compilation
phase to redistribute the overall risk to each individual condition. In the example
in Table 2, a city will restrict its water usages if there is a high probability that
either its temperature is high or its water resources are lower than 104 megalitres.

Table 2: A new syntax for probabilistic rule

rule SensorMaintenance {
 when {
 c: City() ;
 wt: WaterTower() in c.watertowers;
 s: Sensor(s.state==broken) from wt.sensor;
 } then {change the sensor}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C or c.waterlevel <104) ;
 } [with probability > .9]
 then {restrict water usage to key functions}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C);
 wl: agg {
 wt: WaterTower() in c.watertowers;
 } do {sum (wt.level)}where {w1 < 104};
 } [with probability > .9]
 then {restrict water usage to key functions}}

To achieve this, it is necessary to generate the PRM not only from the defined
object model but also from the set of rules. Since the rule engine does not know
how to interpret a probability over a set of conditions it is necessary to change
its toolchain and intervene during the rewriting phase to make such rules usable.

3.1 Compilation, PRM model and rule rewriting

Adapting the PRM model begins with the creation of a new class for each rule
(in red in Figure 2), then (i) the predicates present in the conditions are added
to the class, as well as the operators that connect them (in our case an or); (ii)
arcs are added and operator’s CPTs generated according to their nature; (iii)
the conditions are finally connected to a boolean random variable called risk
whose value will be queried at each inference, it acts as a conjunction between
the conditions.

RestrictAccessToWaterWaterTower

level

Sensor

state

sensor

City

watertowers waterlevel temp>40waterlevel<10

or

riskcity

Fig. 2: Class dependencies schema of the enhanced PRM

Because conditions are henceforth encoded in our PRM, the rule evaluation
will be based on the use of the probabilistic engine, reinforcing the coupling
between engines. Once the PRM enhanced with the new classes, probabilistic
rules are rewritten; after all the conditions, an evaluation of the comparison
between the value of the risk node and the specified threshold is added. It is at
this level of the rule that the main interaction between the rule engine and the
probabilistic engine will occur. A rewritten rule will have the following form:

Table 3: Rewritten rule

rule SensorMaintenance {
 when {
 c: City() ;
 wt: WaterTower() in c.watertowers;
 s: Sensor(s.state==broken) from wt.sensor;
 } then {change the sensor}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C or c.waterlevel <104) ;
 } [with probability > .9]
 then {restrict water usage to key functions}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C);
 wl: agg {
 wt: WaterTower() in c.watertowers;
 } do {sum (wt.level)}where {w1 < 104};
 } [with probability > .9]
 then {restrict water usage to key functions}}

rule RestrictAccessToWater {
 when {
 c: City ();
 evaluate (PRMengine.getRisk(“WaterShortageMode”, [c],

 [c.temperature>40]) > 0.9) ;
 } then {restrict water usage to key functions}}

When executing the rule and if the rule engine finds elements verifying the
conditions in the working memory, the calculation function of risk of the engine
is called with the following parameters, as shown in Table 3: (i) the name of the
class of the rule, in order to instantiate it in the probabilistic engine; (ii) the
objects in the condition part that are necessary to evaluate the value of the risk
variable (in our case a city); (iii) The value of the deterministic elements encoded
in the class. Since the city c is known by the rule engine, we can certainly verify
the truth value of the predicate (c.temperature > 40). These values will be used
as evidences in the system.

3.2 Runtime, PRM system and working memory

In order to be able to work with a PRM, we need to define its components (with
the PRM model) but also to instantiate them. To do so, we are mapping the
object existing in the working memory into a PRM system. As said before an
object corresponding to the rule is instantiated as well during the risk evaluation
process. Figure 3 shows such a system in a case where the working memory
contains only two cities, each linked to a certain number of water towers. If we
were computing the risk value given that the city c1 is being evaluated an object
r of type RestrictAccessToWater would be created, r.city mapped to c1 and the
value of r.temp > 40 updated with the truth value of c1.temperature > 40.

From a relation skeleton we can generate a BN called grounded BN, as shown
on Figure 3.b; we create a node for each attributes of the objects in the relation
skeleton and linked them according to the dependencies in the PRM model.
Once the grounded BN generated, we can compute the posterior of the r.risk
node given all the evidences.

System S

Cities : c1,c2
Water towers : wt1,wt2,wt3
Sensors : s1,s2,s3
RestrictAccessToWater : r

c1.watertowers = [wt1,wt2]
c2.watertowers = [wt3]
wt1.sensor = s1
wt2.sensor = s2
wt3.sensor = s3
r.city = c1

r

c1 c2

wt1 wt2 wt3

s1 s2 s3

(a)

c1.waterlevel

wt1.level wt2.level

s1.state s2.state

r.or

r.temp>40

r.waterlevel<10

r.risk

c2.waterlevel

wt3.level

s3.state

(b)

Fig. 3: (a) Relational skeleton based on Fig. 2 (b) Grounded BN from the skeleton

3.3 Probabilistic aggregation function

If the aggregation is no longer defined in the model but as a condition in the
rule, like in the example in Figure 4.a, the compiler detects its structure and
translate it into a PRM aggregation, the rule is rewritten accordingly. The PRM
model is enhanced with the addition of a class representing the rule (RestrictAc-
cessToWater) as well as with a class containing the aggregator (Aggregator.sum).
The evaluate instruction of the rewritten rule will be called with a list of water
towers instead of a city in order to instantiate references in consequence.

rule SensorMaintenance {
 when {
 c: City() ;
 wt: WaterTower() in c.watertowers;
 s: Sensor(s.state==broken) from wt.sensor;
 } then {change the sensor}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C or c.waterlevel <104) ;
 } [with probability > .9]
 then {restrict water usage to key functions}}

rule RestrictAccessToWater {
 when {
 c: City(c.temperature > 40°C);
 wl: agg {
 wt: WaterTower() in c.watertowers;
 } do {sum (wt.level)}where {w1 < 104};
 } [with probability > .9]
 then {restrict water usage to key functions}}

 (a)

RestrictAccessToWaterWaterTower

level

Sensor

state

sensor

Aggregator

watertowers sum temp>40wl<10

or

risk aggregator

(b)

Fig. 4: (a) Example of probabilistic rule using an aggregation function. (b) Class
dependencies schema of the enhanced PRM

3.4 Implementation

This development work was based on what was done in the Bayesian Insight
Service (BIS) plugin developed in [1]. Figure 5 illustrates how our new mod-
ule, PRIME (Probabilistic Reasoning Insight ModulE), fits into the ODM’s
toolchain. It intervenes directly during the process of rewriting the semantic
tree describing the rules (SemRuleset) but, unlike BIS, extends the definition
and optimization of the graphical model from the rules before rewriting them

(PRM enhancement process). Once the rules are rewritten, the graphical model
is serialized in order to be usable by a probabilistic engine in parallel with ODM,
in our case aGrUM (https://agrum.gitlab.io). At runtime, an API is used for
PRIME to interoperate with aGrUM, in order to request probabilistic values
keep the PRM system up-to-date (if a sensor is replaced, for example).

parsing
cheking

SemRuleset
Ruleset
rewriting

SemPRM

PRIME

PRM	Writer

.o3prm

data process

PRM
enhancement

PrmModel

plugin	processes

SemRuleset Compiling JAR

ARL

Fig. 5: ODM’s toolchain using the PRIME plugin

4 Current works

Since this work, emphasis has been placed on the performance of inferences
in PGM. When performing an inference based on message-passing algorithm
[10], we use a secondary structure called a Junction Tree where variables are
grouped into cliques according to their parents. The complexity of inference in
a BN is NP-Hard [4], growing exponentially in the tree-width of the network,
the tree-width being related to the size of its largest clique (determined by the
products of the domains of its variables) [16]. This is one of the major issues
when dealing with probabilistic aggregators, especially when they have a high
number of parents since there will be at least a clique of the size of this family.

In order to make the computation of posteriors possible we have proposed
a first approach based on aggregator decomposition [6]. Computing the distri-
bution of c1.waterlevel in Figure 3.b but for a city with 7 water towers (each
taking up to 10 values) would have needed at least 70 · 107 values to be stored
and multiple hours of calculation. By a simple manipulation of the structure of
the BN before the inference, we managed to reduce the number of parameters
to store to ≈ 40 · 103 and computation time to less than a second. This transfor-
mation makes inferences scalable and usable in an industrial context, but only
works with a certain type of aggregation functions. For this reason, we are cur-
rently working on a new approximate inference capable of working with complex
networks, regardless of the nature of the nodes which compose them.

Acknowledgments. This work was supported by IBM France Lab/ANRT
CIFRE grant #2018/0251

References

1. Agli, H.: Uncertain reasoning for business rules. Ph.D. thesis, Université Pierre et
Marie Curie - Paris VI (2017)

2. Ait-Kaci, H., Bonnard, P.: Probabilistic production rules. Tech. rep., IBM (2011)
3. Buchanan, B., Shortliffe, E.: Rule-based Expert System – The MYCIN Experi-

ments of the Stanford Heuristic Programming Project (01 1984)
4. Cooper, G.F.: The computational complexity of probabilistic inference using

bayesian belief networks. Artificial Intelligence (1990)
5. Ducamp, G., Bonnard, P., de Sainte Marie, C., Gonzales, C., Wuillemin, P.H.:

Improving probabilistic rules compilation using prm. In: RuleML+RR Doctoral
Consortium 2018 (2nd International Joint Conference on Rules and Reasoning).
Esch-sur-Alzette, Luxembourg (2018)

6. Ducamp, G., Bonnard, P., Wuillemin, P.H.: Uncertain reasoning in rule-based sys-
tems using prm. In: Florida Artificial Intelligence Research Society Conference
(2020)

7. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence (1982)

8. Hart, P.E., Duda, R.O., Einaudi, M.T.: Prospector-a computer-based consulta-
tion system for mineral exploration. Journal of the International Association for
Mathematical Geology (1978)

9. Heckerman, D., Shortliffe, E.: From certainty factors to belief networks. Artificial
Intelligence In Medicine (1992)

10. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques.
MIT press (2009)

11. Koller, D., Pfeffer, A.: Object-oriented bayesian networks. Proceedings of the Thir-
teenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-97) (1997)

12. Medina Oliva, G., Weber, P., Levrat, E., Iung, B.: Use of probabilistic relational
model (prm) for dependability analysis of complex systems. In: IFAC Proceedings
Volumes (IFAC-PapersOnline) (2010)

13. Ng, K.C., Abramson, B.: Uncertainty management in expert systems. IEEE
Expert-Intelligent Systems and their Applications (1990)

14. Pearl, J.: Probabilistic reasoning in intelligent systems: : networks of plausible infer-
ence (Morgan kaufmann series in representation and reasoning). Morgan Kaufmann
Publishers, San Mateo, Calif. (1988)

15. Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2),
107–136 (2006)

16. Robertson, N., Seymour, P.: Graph minors. ii. algorithmic aspects of tree-width.
Journal of Algorithms 7(3), 309 – 322 (1986)

17. Silva, B.: Verification of Business Rules Programs. Ph.D. thesis, Albert-Ludwigs-
Universität Freiburg (2012)

18. Torti, L., Wuillemin, P.H., Gonzales, C.: Reinforcing the object-oriented aspect of
probabilistic relational models. In: Proceedings of the 5th European Workshop on
Probabilistic Graphical Models, PGM 2010 (2010)

19. Weber, P., Medina-Oliva, G., Simon, C., Iung, B.: Overview on bayesian networks
applications for dependability, risk analysis and maintenance areas. Engineering
Applications of Artificial Intelligence (2012)

20. Zadeh, L.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)

