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ABSTRACT
We introduce a novel method to measure word ambiguity, i.e. local
entropy, based on a neural language model. We use the measure to
investigate entropy in the written text of opinions published by the
U.S. Supreme Court (SCOTUS) and the German Bundesgerichts-
hof (BGH), representative courts of the common-law and civil-law
court systems respectively. We compare the local (word) entropy
measure with a global (document) entropy measure constructed
with a compression algorithm. Our method uses an auxiliary corpus
of parallel English and German to adjust for persistent differences
in entropy due to the languages. Our results suggest that the BGH’s
texts are of lower entropy than the SCOTUS’s. Investigation of low-
and high-entropy features suggests that the entropy differential is
driven by more frequent use of technical language in the German
court.

KEYWORDS
neural language models, NLP, Word2Vec, entropy, civil law, com-
mon law, judiciary, comparative law

ACM Reference Format:
Roland Friedrich, Mauro Luzzatto, and Elliott Ash. 2020. Entropy in Legal
Language. In Proceedings of the 2020 Natural Legal Language Processing
(NLLP) Workshop, 24 August 2020, San Diego, US. ACM, New York, NY, USA,
6 pages. https://doi.org/

1 INTRODUCTION
The world’s legal systems feature two major traditions which have
spread to almost all countries. These systems are the “civil law”
as the continuation and refinement of the Roman “jus civile”,
and the “common law”, as it originated in England after the Norman
conquest in 1066 [4]. To oversimplify somewhat, a broad distinction
of the systems is that at civil law judges make decisions from codi-
fied rules, while in the common law judges make decisions based
on previous decisions.

In civil law commentaries, cf. e.g. [22], it is argued that common
law lacks a strong principled foundation. On this view, common law
is not systematised and without a general “strategy” but is rather
driven by “trial and error” on a case by case basis. On the other
hand, common law permits (judges) to adapt novel, pioneering
and innovative ideas or doctrines more easily, and, as Posner [23]
argued, it could be economically more efficient. Some evidence
suggests that nations that followed the common law system have
had better growth prospects than civil-law countries [15], although
whether this effect is causal is not well-established.
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A proffered reason for the relative inefficiency of civil-law in-
stitutions is that it is too rigid and cannot adapt well to changing
circumstances. Code-based decision-making requires complex leg-
islation that is costly to maintain, decipher, apply, and revise. These
points are anecdotal, and there is not much good empirical evidence
about them. Addressing these issues empirically is difficult because
you do not have both common-law and civil-law systems operating
in the same country. They also tend to be in different languages;
common-law countries tend to be English-speaking, while Latin-
Language and German-Speaking countries tend to have civil law.
Perhaps foremost, we lack good measures of the complexity of the
law.

Our goal is to produce some newmeasures of legal complexity in
a comparative framework.We draw on recent technologies in neural
language modeling to produce a new measure of local entropy at
the word level. We then map entropy levels across case texts in an
English-speaking common law court (the U.S. Supreme Court) and a
German-speaking civil law court (the German Bundesgerichtshof).

The U.S. Supreme Court (SCOTUS) and German Bundesgerichts-
hof (BGH) are the highest courts in the respective legal systems.
They are also two of the most influential judiciaries in the broader
system of international law. Within the common-law and civil-law
traditions, the SCOTUS and BGH are perhaps the most influential
high courts of the last century.

We investigate the legal writing style of both the U.S. Supreme
Court (SCOTUS) and the Bundesgerichtshof (BGH) from an infor-
mation theoretic perspective, based on a neural language model.
Concretely, we build our method on top of Mikolov’s et al. [19]
Word2Vec, in order to measure empirically the entropy at the token
level, i.e. the micro scale.

We ask whether the two legal systems which these courts rep-
resent can be discriminated, solely based on information theoretic
measures. We find that the BGH tends to have lower entropy than
the SCOTUS, reflecting greater use of low-entropy technical lan-
guage. Finally, in the case of the U.S. Supreme Court we further
investigate the temporal evolution of the entropy both at the micro
and macro level, by recording universal compression rates.

2 RELATEDWORK
2.1 Entropy in Language
Shannon [27] in his seminal paper “Prediction and Entropy
of Printed English” initiated the information theoretic study of
natural languages. Similar to a theoretical physics approach, Shan-
non applied the mathematical tools he had previously conceived to
understand information. That paper has led to a rich literature on
measuring the information content in written and spoken text.

In this literature, a common and useful assumption is that lan-
guage is regular in the sense that the underlying stochastic data
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generating process is both stationary and ergodic, cf. e.g. [9]. Kon-
toyiannis et al. [14] discuss various estimators for the Shannon
entropy rate of a stationary ergodic process, and apply them to
English texts. Most notable is the Lempel–Ziv [28] algorithm, which
consistently estimates the entropy lower bound for stationary er-
godic processes.

A recent application of the Lempel-Ziv compression algorithm to
compare languages is Montemurro and Zanette [20]. They quantify
the contribution of word ordering across different linguistic families
to see if different languages had different entropy properties. They
find that the Kullback-Leibler divergence (difference in entropy)
between shuffled and unshuffled texts is a structural constant across
all languages considered.

A complementary paper comparing languages at the word level
is Bentz et al. [2]. They undertake a series of computer experiments
to measure the word entropy across more than 1000 languages.
They use unigram entropies which they estimate statistically. They
find that word entropies follow a narrow unimodal distribution.

Degaetano-Ortlieb and Teich [5] is an application looking at
changes in language entropy over time in a technical setting. They
investigate the linguistic development of scientific English, by
analysing the Royal Society Corpus (RSC) and the Corpus of Late
Modern English (CLMET) computationally. They consider 𝑛-gram
language models (for 𝑛 = 3) and track the temporal changes of the
Kullback-Leibler divergence, as a measure of local ambiguity. Their
main finding is that Scientific English, as it emerged over time, re-
sulted in an increasingly optimised code for written communication
by specialists.

2.2 Quantitative Analysis of Law
Our paper adds to the emerging literature in computational legal
studies. Exemplary of this literature is Carlson, Livermore and Rock-
more [3], who study the writing style of the U.S. Supreme Court.
Katz et al. [6] apply machine learning, combined with classical
statistical methods, as a novel approach to predict the behaviour of
the U.S. Supreme Court in a generalised, out-of-sample context.

Klingenstein, Hitchcock, and DeDeo [12] take an information-
theory approach to legal cases. They present a large-scale quan-
titative analysis of transcripts of London’s Old Bailey. They use
the Jensen-Shannon divergence to show that trials for violent and
nonviolent offenses become increasingly distinct. This divergence
reflects broader cultural shifts starting around 1800.

The use of neural text embeddings in law is illustrated by Ash
and Chen [1]. That paper investigates the use of legal language and
judicial reasoning in federal appellate courts, by using tools from
natural language processing (NLP) and dense vector representa-
tions. They show that the resulting vector space geometry contains
information to distinguish court, time, and legal topics.

The closest paper to ours is Katz and Bommarito [11]. They
experiment with a number of methods for measuring complexity
in law, applied to U.S. federal statutes. They use measures of lan-
guage entropy based on word probabilities, but do not use word
embeddings.

Table 1: Details of the corpora

Corpus tokens sentences

BGH Zivilsenat 30,166 410,612
BGH Strafsenat 11,313 110,645
U.S. Supreme Court 35,060 673,287
EuroParl German 73,439 1,967,341
EuroParl English 43,571 1,967,341

3 DATA AND METHODS
The code used in this paper is available at:

https://github.com/MauroLuzzatto/legal-entropy.

3.1 Data
Our analysis is based on the U.S. Supreme Court decisions from the
years 1924 to 2013, and the decisions of the German Bundesgericht-
shof (BGH), covering the years 2014 until 2019. We separated the
BGH data into rulings of the Zivil- and Strafsenat (civil and criminal
chambers).

Additionally, as a baseline, we use Koehn’s [13] EuroParl parallel
corpus in German and English, consisting of the proceedings of the
European Parliament from 1996 to 2006.

Some summary tabulations on the scope of the corpus are re-
ported in Table 1.

3.2 Pre-Processing
For our analysis we use Python as well as spaCy [8] and NLTK [18]
as our language processing tool.

We apply the standard preprocessing steps in order to train the
Word2Vec model in Gensim – for details cf. [24]. As an exception we
did not lemmatise and stem the tokens, and we kept capitalisation.
This makes English and German texts more comparable.

We also used the phraser function fromGensim to treat idiomatic
bigrams, such as "New York", and trigrams, such as "New York City",
as single tokens.

Deserving special mention is the determination of sentence
boundaries, a challenging task in legal writing [26]. We found this
especially in the BGH civil case corpus, and less pronounced for the
U.S. Supreme Court and the EuroParl data. A multitude of abbrevi-
ations, dates and most importantly statues involve a “dot”, leading
to a significant number of erroneous sentence tokens when the
standard NLTK sentence tokenizer is naively applied. Therefore,
before using nltk. sent_tokenize we removed all “dots” which do
not indicate a sentence boundary, by compiling a look-up table in
order to use it in conjunction with regular expression operations
(RegEx).

3.3 Measuring Local Entropy using a Neural
Language Model

To train word embeddings we use Gensim’s [24] Word2Vec im-
plementation. Word2Vec is a popular word embedding algorithm
which uses a neural language model to predict local word co-
occurrence. A vector of predictive weights is learned, during the
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model training, for each word in the vocabulary. These weight vec-
tors can be interpreted as the geometric location of the word in a
semantic space, where words that are near each other in the space
are semantically related.

There are two architectural versions of Word2Vec, CBOW and
SkipGram. Simplified, in a CBOW model the neighbouring context
words are embedded to predict a left-out target word. In a SkipGram
model, the target word is embedded to predict whether a paired
word is sampled from the context or randomly sampled from outside
the context.

Once trained, the Word2Vec model gives a predicted probability
distribution across words given a context. Out of the box, Gensim
offers for the CBOW model a command which yields the prob-
ability of a word to be a centre (target) word, depending on the
context words to be specified. For the purposes of this project, we
implemented the SkipGram version with hierarchical softmax. This
model can be considered as the (neural) generalisation of the classi-
cal 𝑛-gram. This serves as our base in order to determine the local
entropies.1

The window size is a hyperparameter. Larger windows capture
more semantic relations whereas smaller windows tend to convey
syntactic information [10]. Our experiments showed that SkipGram
for a small context (window) size, e.g. |𝑐 | = 2, showed better results
than the default window size (|𝑐 | = 5).2

For the discussion of the local entropy calculation and its imple-
mentation, cf. Appendix A.

For the Kolmogorov-Smirnov test we used SciPy.

3.4 Measuring Global Entropy using
Lempel-Ziv Compression

The second entropy measure we compute uses the Lempel-Ziv algo-
rithm for sequential data. First, we compress the raw text using the
gzip compressionmodule interface in Python, with the compression
level set to its maximum value (= 9).

We define the compression ratio, 𝑟𝑖 , of an individual text, txt𝑖 , as
𝑟𝑖 := | txt𝑖 |

| gzip(txt𝑖 ) | , where | | denotes the size as measured in bits. The
inverse ratio 𝑟−1 yields the fraction of the compressed file in com-
parison to the original file. Note that 𝑟𝑖 > 0 for all documents 𝑖 and
equivalently for the entire corpus. When considering compression
rates for individual texts and the entire corpus, one should keep in
mind the sub-additivity of the Shannon entropy.

4 RESULTS
4.1 Local Entropy of Words
Our first analysis is to compare the distributions of the word en-
tropies across the different corpora. We would like to determine
the differences in the distribution of the local entropy values of
the language used by the BGH’s Straf- and Zivilsenat and the U.S.
Supreme Court. To this end, Figure 1 plots the respective empirical

1For a detailed discussion of predicting a context word from a target word, see https:
//stackoverflow.com/questions/45102484/predict-middle-word-word2vec.
2A recent experimental study for SkipGram models by Lison and Kutuzov [17], found
that for semantic similarity tasks right-side contexts are more important than left-
side contexts, at least for English, and that the average model performance was not
significantly influenced by the removal of stop words.

Figure 1: Empirical cumulative distribution functions
(ECDF) of the local entropy values for the BGH’s Straf- and
Zivilsenat and the U.S. Supreme Court, displaying the civil
law-common law hysteresis.

Figure 2: Left Panel: Probability distributions of the local en-
tropy values of the European Parliaments German proceed-
ings (EuroParl de) and of its English translation (EuroParl
en). Right Panel: Empirical cumulative distribution func-
tions (ECDF) of the local entropy values for the BGH’s Straf-
and Zivilsenat, the U.S. Supreme Court, EuroParl Deutsch,
and EuroParl English.

cumulative distribution functions ECDFBGH-Z, ECDFBGH-Str and
ECDFSC.

As can be seen in the figure, in the interval [0, 4] the distri-
butions of the BGH’s criminal chambers and the U.S. Supreme
Court are similar, whereas for entropy values 𝑡 ≥ 4 we find that
ECDFBGH-Str (𝑡) > ECDFSC (𝑡), i.e. the Strafsenat’s curve is strictly
above the U.S. Supreme Court’s.

Comparing the Zivilsenat to the U.S. Supreme Court we find that
the difference between the ECDF curves of the Zivilsenat and the
U.S. Supreme Court is always strictly positive i.e. ECDFBGH-Z (𝑡) −
ECDFSC (𝑡) > 0, for every 𝑡 ∈ [0,max(entropy(BGH-Z))].

4.2 Adjusting for English-German Language
Differences

We use the EuroParl German corpus and its aligned English trans-
lation as a baseline for two reasons. First, we want to gauge the
quality of our local entropy method. Second, we would like to dis-
entangle language-specific effects, i.e. English vs. German, when
comparing the U.S. Supreme Court to the BGH.

Figure 2 demonstrates how the method behaves across languages
using the parallel, sentence aligned EuroParl German and English
corpora. As predicted by theory for a good translation, our method
yields two highly identical probability distributions (Left Panel).

https://stackoverflow.com/questions/45102484/predict-middle-word-word2vec
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Corpus Compression Ratio Entropy

EuroParl German 0.323
EuroParl English 0.322
U.S. Supreme Court 0.316
BGH Strafsenat 0.300
BGH Zivilsenat 0.283

Table 2: Inverse Compression Ratio Entropy, by Corpus. See
Subsection 3.4 for method details.

As seen in the Right Panel, the empirical cumulative distribution
functions of the local entropies are also very similar. It would be
interesting to further study the influence of 𝑛-grams on the local
entropy distribution of translations.

We quantified the distance between the empirical distribution
functions of the EuroParl English and German corpora via the
two-sided Kolmogorov–Smirnov test [7]. The null hypothesis 𝐻0
states that two observed and stochastically independent samples
are drawn from the same (continuous) distribution. We calculated
the value of the ECDF in steps of 1/10 in the interval [0, 16], i.e. the
range of the entropy values. The result for the 𝐷-statistics is 0.069
and for the two-tailed 𝑝-value 0.843, therefore we cannot reject 𝐻0.

Second, the comparison with the baseline suggests, that as we
hypothesised the (one might even argue scientific) use of German
and English, respectively, in the courts has significantly less local
entropy, as compared to the more colloquial and non technical use
of the language in political speeches. This results in the strict local
ambiguity order

ECDFBGH-Z ≺ ECDFBGH-Str ≺ ECDFSC ≺ ECDFEP-de,

and with ECDFEP-de ∼ ECDFEP-en.

4.3 Global Entropy of Documents
Now we produce the more global measure of entropy using the
compression-basedmeasure.We estimated themacroscopic entropy
of the different corpora by compressing the entire raw text file for
each and then calculating the corresponding inverse compression
ratios, as described above. A higher value means that the corpus
has higher entropy per segment of text. Put differently, a lower
value means that there is relatively more structure or predictability
in the underlying text features.

Table 2 reports the compression ratios for each corpus. As be-
fore, the values for the EuroParl corpora are almost identical, and
they have the highest entropy rate. This likely reflects the broader
diversity of issues covered in EuroParl relative to the law. The U.S.
Supreme Corpus has a slightly lower entropy rate. Meanwhile, the
BGH’s Strafsenat and Zivilsenat corpora yield substantially lower
values, with the BGH’s civil courts having the lowest ratio of 0.283.

Next, we show how entropy varies over time in the SCOTUS
data. Fig. 3 shows the inverse compression ratio entropy measures
for the records of the U.S. Supreme Court in the last century. We
can see that entropy has decreased since the 1950s, indicating an
increase in the relative structure or predictability in the text.

This trend can be interpreted as a more formalised and standard-
ised writing style. The shift could be due to the ongoing expansion

Figure 3: Per document inverse gzip compression ratio of the
U.S. Supreme Court for the period 1924 until 2013 (higher
value means higher entropy).

Figure 4: Word clouds for Lowest-Entropy Words: Top left:
EuroParl German. Top right: EuroParl English; Bottom left:
BGH Zivilsenat. Bottom right: U.S. Supreme Court (SCO-
TUS).

of administrative (statutory) law in the U.S. system. Once statues are
extensively used, the need for efficient methods of referral emerge,
e.g. [§§ articles, sections, lit.,...], leading to a cryptic, pseudocode-
like style of writing. This code-like, technical style was already
extensively used by the BGH or the French Court of Cassation.

4.4 Low-Entropy Words are Functional
To further substantiate the above ideas, we selected from each cor-
pus (SCOTUS, BGH Zivil- and Strafsenat, EuroParl German and
English) tokens with the lowest local entropy value ≤ 1. Fig. 4 in-
cludes word clouds for the lowest-entropy words in our vocabulary.

For the BGH (bottom left) one recognises key phrases from
procedural law such as, e.g. ‘zurückverweisen’ (to send back a
request). We see technical language for civil cases, such as ‘Insol-
venzverfahrens’ (bankruptcy proceeding). For the SCOTUS, we see
procedural, criminal and civil technical phrases such as ‘beyond
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reasonable’ and ’qualified immunity’. For the EuroParl data, the
dominating lowest entropy phrases are procedural and related to
the Parliament’s sessions, such as, e.g. the German ‘siehe_Protokoll’
which corresponds to the English ‘see_Minutes’.

The very low entropy words, serve as functional foundations
in order to typify the respective environment and to set the tone.
These reoccurring phrases have a very precise meaning, as the
human reader recognises, and as quantitatively reflected in our
neural model.

An in-depth analysis of the precise distribution of the local en-
tropies along the different linguistic axes, and the broader syntactic
and semantic categories, is left for a separate publication.

5 CONCLUSION
Our analysis has shown that the writing style in civil law has lower
relative entropy than the common law, at least in the important
cases of the SCOTUS and BGH. We have shown this for two mea-
sures. First, local ambiguity, i.e. word entropy, produced using a
neural language model, and second, global entropy produced from a
compression ratio algorithm. Civil and common law writing styles
are distinguishable on a purely information-theoretic base.

The results are helpful from the perspectives of history and social
science. The original German legal doctrine is very much rooted
in jurisprudence and has been strongly influenced, especially after
the second half of the 19th century, by the development of natural
sciences. This systematic approach is reflected in the writing style.
Code-based legal writing requires, as argued above, efficient and
standardised mechanisms of referencing, common to all scientific
writing.

Our method innovates by using a neural language model, com-
bined with data compression algorithms, in order to empirically
determine both word and stylistic ambiguity, i.e. local and global
entropy. This approach proves to be fruitful and could integrate nat-
urally into future enhancements of (deeper) neural language models.
In future work these could provide an even finer spatio-temporally
resolution of how information is distributed on different linguistic
scales and time, ranging from the word to the corpus level.

In summary, our implementation and use of a local entropy
measure, based on a neural language model, has led to striking
results that contribute to an old debate on legal traditions. The
contribution could be important both from a linguistic but also
legal perspective. We foresee a broad range of further applications.
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A THEORY
Here we give a theoretical description of the steps underlying our
approach.

A.1 Preprocessing
Let 𝐶 be a non-empty set, the corpus. For 𝑛 ∈ N, consider the map

𝜋𝑛 : 𝐶 → 𝑉𝑛

where 𝑉𝑛 is the, possibly empty, set of 𝑛-grams (associated to 𝐶),
which satisfy𝑉𝑘 ∩𝑉𝑙 = ∅, for 𝑙 ≠ 𝑘 . Usually, the set of unigrams𝑉1,
is called the vocabulary of the corpus 𝐶 .

For a fixed 𝜈 ∈ N, set

V𝜈 :=
𝜈⋃

𝑛=1
𝑉𝑛

which is the set of (two-sided) uni-, bi-, tri- up to𝜈-grams, andwhich,
for 𝜈 large enough, yields an approximation (or pairwise disjoint
decomposition) of the corpus 𝐶 , which capture both syntactic and
semantic information.3 ThenV𝜈 is the (generalised) vocabulary up
to order 𝜈 . The elements𝑤 ∈ V𝜈 , orV if 𝜈 is fixed and clear from
the context, are tokens or 𝑛-grams, which might be considered as
𝑛-order words. We denote by |V| the size of V , i.e. the number of
pairwise different tokens.

The family of maps 𝜋𝑛 , and hence the specific sets𝑉𝑛 , determine
the preprocessing of the corpus data.

A.2 Local Entropy fromWord2Vec
The word2vec framework consists of a bundle of mathematical
objects [19, 25]. First, it defines a dense Hilbert space representation,

word2vec : V → R𝑁 ,

𝑤 ↦→ ℎ𝑤 ,

where 𝑁 ∈ N is the dimension of the coordinate space, which is
a hyper-parameter of the model. Let 𝔓(V) be denote the set of
discrete probability distributions on V . Then, there exists a map

𝑓𝑤2𝑣 : V → 𝔓(V),
𝑤 ↦→ 𝜇𝑤 ,

which associates to every token 𝑤 a probability distribution 𝜇𝑤 ,
namely the posterior (multinomial) distribution. The local entropy

or ambiguity is the map

𝐻 : V → R+,

𝑤 ↦→ 𝐻 (𝜇𝑤),
which assigns to every token𝑤 the Shannon entropy of the corre-
sponding probability distribution 𝜇𝑤 . The posterior distribution is
given by a Boltzmann distribution (softmax).

It is calculated as follows. Let𝑊 be the |V| × 𝑁 input weight
matrix from the input layer to the hidden layer and𝑊 the 𝑁 × |V|
weight matrix from the hidden layer to the output layer in the
SkipGram model with hierarchical softmax.

Every token 𝑤𝑖 ∈ V determines a pair of vectors (𝑣𝑖 , 𝑣𝑖 ), the
input vector 𝑣𝑖 and the output vector 𝑣𝑖 , which are given by the 𝑖th
row of𝑊 and the 𝑖th column of𝑊 , respectively.
3More general, i.e. functional neighbourhoods are of course possible, e.g. based on
grammatical information, as considered by Levy and Goldberg [16].

Let

𝑍𝑖 :=
|V |∑
𝑗=1

𝑒 ⟨�̃�𝑗 |𝑣𝑖 ⟩ (1)

be the local partition function corresponding to the target𝑤𝑖 , with
the sum taken over all tokens 𝑤 𝑗 ∈ V . (We use the bra-ket nota-
tion).

For the SkipGram model with context 𝑐 , the probability 𝜇𝑤𝑖
(𝑤𝑜 )

of a token𝑤𝑜 being an actual 𝑐-context output word of𝑤𝑖 , is given
by

𝑝 (𝑤𝑜 |𝑤𝑖 ) := 𝜇𝑤𝑖
(𝑤𝑜 ) :=

1
𝑍𝑖

𝑒 ⟨�̃�𝑜 |𝑣𝑖 ⟩ . (2)

Therefore, the local entropy of the target𝑤𝑖 (with context 𝑐) is
given by

𝐻 (𝑤𝑖 ) := 𝐻 (𝜇𝑤𝑖
) = −

|V |∑
𝑗=1

𝑝 (𝑤 𝑗 |𝑤𝑖 ) · log2 (𝑝 (𝑤 𝑗 |𝑤𝑖 )) . (3)

A.3 Gensim Implementation
We implemented our local entropy calculation for the SkipGram
model in Gensim, with the following parameters: context window=
2, 𝑁 = 300 and 30 training epochs with hierarchical softmax [21].

The output weight matrix𝑊 , and the input weight matrix𝑊 ,
are stored by Gensim in the files syn1 (for hierarchical softmax)
and syn0, respectively. Note, if negative sampling is used, then the
output weights are stored in syn1neg.
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