
Lattice-based Discovery of Hybrid Relaxed
Functional Dependencies (Discussion Paper)

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese

University of Salerno, Department of Computer Science
via Giovanni Paolo II n.132, 84084 Fisciano (SA), Italy

{lcaruccio,deufemia,gpolese}@unisa.it

Abstract. Relaxed functional dependencies (rfds) are properties ex-
pressing important relationships among data. Thanks to the introduction
of approximations in data comparison and/or validity, they can capture
constraints useful for several purposes, such as the identification of data
inconsistencies or patterns of semantically related data. Nevertheless,
rfds can provide benefits only if they can be automatically discovered
from data. In this discussion paper we present an rfd discovery algo-
rithm relying on a lattice structured search space, and a new candidate
rfd validation method. An experimental evaluation demonstrates the
discovery performances of the proposed algorithm on real datasets.

Keywords: Functional Dependency · Discovery Algorithm · Approxi-
mate Match · Constraint Mining.

1 Introduction

Functional dependencies (fds) were originally used to verify database design
and assess schema quality. In the last decades, they have been used for several
new purposes, such as data profiling [1], query relaxation, data cleansing, and so
forth. To this end, their definition has been often extended in order to express
constraints in these and other emerging application domains [7].

Recent literature refers to extended fd definitions with the term relaxed
functional dependencies (rfds) [3]. In particular, there exist rfds relaxing on
the data comparison, which compare tuples by using data similarity rather than
equality, those relaxing on the extent, which admit the possibility for the rfd
to hold only on a subset of data, and finally, hybrid ones, which relax on both
criteria. Thresholds might be used in all categories, either to specify the similarity
degree or the minimum percentage of tuples on which the rfd should hold.

In order to exploit fds in practical domains several algorithms to discover
them from data have been proposed [2,16]. However, rfds are much more com-
plex to specify at design time, since they also require the specification of thresh-
olds for evaluating the similarity between attribute values and/or for deriving
the minimum extent.

Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.



In this discussion paper, we describe the algorithm proposed in [6], namely
DiMε, which is able to mine many different types of rfds, relaxing on the tuple
comparison and/or on the extent by using several tuple comparison methods
and coverage measures [3]. The discovery technique underlying DiMε generates
candidate rfds based on Difference Matrices created from input thresholds, and
on a lattice structure, also used within fd discovery algorithms [2], in order to
model the search space. Moreover, DiMε provides a new validation technique.

The paper is organized as follows. Section 2 reviews the rfd discovery algo-
rithms existing in the literature. Section 3 provides some background definitions
concerning rfds. Section 4 presents the DiMε algorithm, whereas Section 5
shows the experimental results. Concluding remarks are included in Section 6.

2 Related Work

The automatic discovery of fds is accomplished either through column-based or
row-based methods [1]. The former start generating candidate fds based on an
attribute lattice, verifying their validity, and then using holding fds to prune the
search space for candidate fds yet to be verified [2]; the latter compare attribute
values for each pair of tuples, in order to generate two different sets of attribute
subsets, namely agree-sets and difference-sets, from which candidate fds are de-
rived [8,16]. Finally, an hybrid algorithm has been proposed in [12]. With respect
to these algorithms, DiMε discovers a broader class of dependencies beyond fds,
which entails much more a complex validation phase. In fact, the validation of
fds merely requires to compute cardinalities of equivalence classes, whereas the
validation of rfds requires more complex computations on intersecting classes
induced by similarity functions.

Several discovery algorithms have been proposed for Matching dependencies,
e.g., [15], and Differential Dependencies, e.g., [14], two examples of rfd relaxing
on attribute comparison. While these discovery algorithms are each focused on
a specific rfd, DiMε is designed for a more generic class of rfds [4], including
rfds relaxing on the tuple comparison method, those relaxing on the extent,
and finally, hybrid ones relaxing on both.

3 Relaxed Functional Dependencies

Informally, an rfd is a functional dependency that relaxes on the tuple compar-
ison, by using constraints on the distance or similarity between attribute values,
and/or that relaxes on the extent, by using a coverage measure to indicate the
minimum number or percentage of tuples on which the rfd must hold, and/or
by using conditions restricting the applicability domain of the rfd. In what
follows, we recall a formal definition of rfd from our previous survey [3].

Definition 1 (Relaxed functional dependency). Consider a relational data-
base schema R, and a relation schema R = (A1, . . . ,Am) of R. An rfd ϕ on R
is denoted by

XΦ1

Ψ≤εÐÐ→ YΦ2 (1)



where

– X =X1, . . . ,Xh and Y = Y1, . . . , Yk, with X,Y ⊆ attr(R) and X ∩ Y = ∅;
– Φ1 = ⋀

Xi∈X
φi[Xi] (Φ2 = ⋀

Yj∈Y
φj[Yj], resp.), where φi (φj, resp.) is a conjunc-

tion of predicates on Xi (Yj, resp.) with i = 1, . . . , h (j = 1, . . . , k, resp.). For
any pair of tuples (t1, t2)∈ dom(R), the constraint Φ1 (Φ2, resp.) is true if
t1[Xi] and t2[Xi] (t1[Yj] and t2[Yj], resp.) satisfy the constraint φi (φj,
resp.) ∀ i ∈ [1, h] (j ∈ [1, k], resp.).

– Ψ is a coverage measure defined on dom(R), quantifying the amount of tuples
violating or satisfying ϕ. Among the most commonly used coverage measures
there are the confidence, the g3-error, and the probability.

– ε is a threshold indicating the upper bound (or lower bound in case the com-
parison operator is ≥) for the result of the coverage measure.

Given r ⊆ dom(R) a relation instance on R, r satisfies the rfd ϕ, denoted
by r ⊧ ϕ, if and only if: ∀ t1, t2 ∈ r, if Φ1 indicates true, then almost always Φ2

indicates true. Here, almost always is expressed by the constraint Ψ ≤ ε. A more
general definition of rfd is provided in [3].

As an example, in a database of scientific publications it is likely to have
the same address and affiliation for authors with the same name. Thus, an fd
{Author} → {Address, Affiliation} might hold. However, these attributes might
have been stored using different abbreviations, hence the following rfd might
hold: Authorφ1 Ð→ {Addressφ2 ,Affiliationφ3}, where φ1, φ2, and φ3 are constraints
on a string similarity function. Moreover, since authors might change affiliation
during their life, or there might be homonimies, the previous rfd should tolerate
possible exceptions. This can be modeled by the following rfd:

Authorφ1

ψ(Author,Address,Affiliation)≤0.02ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ {Addressφ2 ,Affiliationφ3}

4 The DiMε Discovery Algorithm

The discovery of rfds is the problem of finding a set of minimal rfds holding

on a relation instance r. An rfd XΦ1

Ψ≤εÐÐ→ YΦ2 is minimal if there not exists a

subset Z ⊂X such that ZΦ1

Ψ≤εÐÐ→ YΦ2 holds on r.
For sake of simplicity and w.l.o.g, in the rest of the article we assume that

Y consists of a single attribute.
The Difference Matrix and ε-threshold (DiMε) discovery algorithm presented

in [6] starts from user-specified thresholds, and performs a level-by-level gener-
ation of candidate dependencies to be successively validated. Candidate rfd
generation is accomplished by means of an attribute lattice built by consid-
ering all the possible attribute combinations. Thus, DiMε generates attribute
sets X, and then formulates all the possible rfds X/{A} → A, with A ∈ X,
to be validated. With respect to fd discovery algorithms, DiMε exploits their
candidate generation strategies, and generalizes their pruning strategies, but it
provides a new validation technique dealing with similarity subsets, and taking
into consideration the possibility that an rfd might hold for a subset of tuples.



Tuple number Height Weight Shoe size
1 175 70 40
2 175 75 39
3 175 69 40
4 176 71 40
5 178 81 41
6 169 73 37
7 170 62 39

Table 1: A sample dataset.

(a) MHeightabs
(b) MHeightabs,Weightabs

Fig. 1: Difference Matrices for the dataset shown in Table 1.

Candidate RFD validation The validation of candidate rfds entails verify-
ing that two tuples are similar on the RHS attribute, whenever they are similar
on the LHS ones, and the property holds for a significant portion of the database.
This is done by generating similarity subsets of tuples and using them to validate
candidate rfds. As opposed to tuple partitions built in most fd discovery algo-
rithms, similarity subsets might also intersect. To better explicate the generation
process of similarity subsets, we introduce the concept of difference matrix.

Definition 2 (Difference matrix of an attribute). Let r be an instance of
a relation schema R, A an attribute of R, and δ a distance function defined on
the domain of A. The difference matrix for A is a matrix MA whose entry (i,j)
contains the value δ(ti[A], tj[A]) of the projections of tuples ti and tj on A.

As an example, let us consider the sample dataset in Table 1. Since it has
all numerical attributes, we use the absolute difference, denoted with abs, as a
distance function to construct the difference matrix MHeightabs

(Figure 1(a)).

The definition of difference matrix can be easily generalized to attribute sets,
in which an entry will contain an n-tuple of distance values, one for each attribute
in the set. The difference matrix for an attribute set X can be derived from
the difference matrices for the single attributes composing it, by concatenating
elements with the same coordinates. An example is provided in Figure 1(b).

We exploit the notion of difference matrix to generate the similar pattern
of a tuple t or a matrix row, which represents sets of tuples or matrix columns
satisfying a given constraint wrt t. Successively, we group the tuples sharing the
same similar patterns into similar pattern subsets.



Definition 3 (Similar pattern subsets). Let r be an instance of a relation
schema R, X = {A1, . . . ,An} an attribute set of R, MX∆ a difference matrix
for X, and φ = (φ1, . . . , φn) a sequence of constraints on the values of MX∆ . A
similar pattern of tuple ti of MX∆ , denoted as τ tiX , is the sequence (j1, . . . , jh)
with h ≤ ∣r∣ and M[i, jk] = (d1, . . . , dn), where dq satisfies the constraints φq
∀q ∈ [1, n] and ∀k ∈ [1, h]. A similar pattern subset SX for X is defined as

SX = {j1, . . . , jh}{i1,...,ik} with 1 ≤ k ≤ h ≤ ∣r∣, τ ipX = (j1, . . . , jh) ∀p ∈ [1, k] and

τ ivX ≠ (j1, . . . , jh) ∀v ∉ [1, k]. The set of different similar pattern subsets for X
is denoted as IX .

Example 1. If in the dataset of Table 1 the user specifies constraints based on the
abs function, the ≤ comparison operator, 1 as a threshold for both the attributes
Height and Shoe Size, and 10 for the attribute Weight, then the following sets of
similar pattern subsets are generated:

– IHeight = {{1,2,3,4}{1,2,3,4},{5}{5},{6,7}{6,7}};
– IWeight = {{1,2,3,4,6,7}{1,3},{1,2,3,4,5,6}{2,6},{1,2,3,4,5,6,7}{4},

{2,4,5,6}{5},{1,3,4,7}{7}};
– IShoe Size = {{1,2,3,4,5,7}{1,3,4},{1,2,3,4,7}{2,7},{1,3,4,5}{5},{6}{6}}.

In order to validate candidate rfds, DiMε reduces the number of similar
pattern subsets for the attributes of the LHS, by eliminating singletons (since
they correspond to the matrix diagonal entries that trivially compare each tuple
with itself) obtaining stripped similar pattern subsets.

Validation of RFDs relaxing only on the tuple comparison. Stripped
similar pattern subsets can be used to validate candidate rfds based on the
concept of similar pattern subset refinement.

Definition 4. A set ÎX is said to refine another set ÎX∪A if every similar pat-
tern subset in ÎX is contained in one of the subsets in ÎX∪A.

Based on the refinement notion, we derive the following lemma for rfds.

Lemma 1. A relaxed functional dependency XΦ1
Ð→ AΦ2

holds on an entire
database instance if and only if ÎX refines ÎA.

Example 2. Let us consider the database instance of Table 1. If we set the con-
straints as defined in Example 1, then according to Lemma 1 the rfd

{Heightφ1
,Weightφ2

} Ð→ Shoe Sizeφ3

holds on the entire database. In fact, since ÎHeight,Weight = {{1,2,3,4}{1,2,3,4}}
and ÎShoe Size = {{1,2,3,4,5,7}{1,3,4},{1,2,3,4,7}{2,7}, {1,3,4,5}{5}}, each sim-

ilar pattern in ÎHeight,Weight is included in a similar pattern of ÎShoe Size.

Alternatively, the refinement property between sets of stripped similar pat-
tern subsets can be verified by calculating ∣∣ÎZ ∣∣, which is defined as:

∣∣ÎZ ∣∣ =
∑ti∈r(∣sti ∣ − 1)

2
∀sti ∈ ÎZ (2)



It represents the number of pairwise similar tuples in ÎZ . Since for an attribute
set W ⊂ Z, ÎZ always refines ÎW , it means that ÎX∪A always refines ÎX . However,
we know that an rfd XΦ1 Ð→ AΦ2 holds only if ÎX is a refinement of ÎA. Thus,
since ÎX∪A cannot have similar pattern subsets of size greater than those in ÎX ,
the rfd holds if ÎX∪A and ÎX are equal, which yields the following lemma.

Lemma 2. A relaxed functional dependency XΦ1 Ð→ AΦ2 holds on an entire
database instance if and only if ∣∣ÎX∪A∣∣ = ∣∣ÎX ∣∣.

Validation of hybrid RFDs. In case of hybrid rfds, DiMε should also con-
sider as valid the rfds holding on a subset of tuples, according to a coverage
measure and a user-defined threshold. In this case, it is not possible to use the
previously defined lemma to validate candidate rfds. In particular, to accom-
plish the validation process it is necessary to calculate the satisfiability degree of
the instance according to a coverage measure. In this paper, DiMε relies on the
g3-error coverage measure [9], but it can also work with other coverage measures
by overloading the function computing the measure from similar subsets.

The computation of the g3-error for rfds with hybrid relaxation is an
np-complete problem [13], since the minimum vertex cover problem can be
reduced to it. A solution to this problem can be found in polynomial time in case
of disjoint similar pattern subsets, in which case, we can use the same strategy of
afd discovery [9]. However, since in case of intersecting similar pattern subsets
each of these tuples can fall in more than one similar pattern subset of IX , it
is not possible to perform a computation local to each similar pattern subset,
but more a global analysis is required. Thus, we provide an greedy solution for
calculating the g3-error in polynomial time [10].

5 Evaluation

We implemented DiMε1 in the Java, by using the Levenshtein distance for com-
paring textual attributes, the absolute difference for comparing numerical ones,
and the g3-error as the coverage measure for extent evaluation [11]. The ex-
periments have been performed on a machine with an Intel Xeon W 3.2GHz
8-core CPU, 64 GB RAM, with a 64-Bit Java environment. We considered six
real-world datasets from the UCI Machine Learning repository2. During the ex-
periment sessions we varied the similarity and the coverage measure thresholds
simultaneously, in the range [0,4] with step 1, and in the range [0,0.4] with step
0.1. Only, for the Abalone dataset we considered the range [0.0,0.4].

Figure 2 shows the number of rfds extracted by DiMε according to several
tuple comparison thresholds, whereby each line represents a different extent
threshold. We can observe that the highest number of rfds is usually discovered
with g3-error thresholds slightly above zero. Concerning the variation of tuple

1https://dastlab.github.io/dime/.
2https://archive.ics.uci.edu/ml/index.php

https://dastlab.github.io/dime/
https://archive.ics.uci.edu/ml/index.php


(a) Car-Data (b) Cars (c) Abalone

(d) Breast-cancer (e) Bridges (f) Lymphography

Fig. 2: Number of rfds varying the similarity and the extent thresholds.

(a) Car-Data (b) Cars (c) Abalone

(d) Breast-cancer (e) Bridges (f) Lymphography

Fig. 3: Runtimes by varying the similarity and the extent thresholds.

comparison thresholds, in most cases the number of rfds drastically drops when
increasing them from 0 to 1. This is mainly due to the fact that with a zero
threshold many key dependencies are obtained, which are likely to be invalidated
when the tuple comparison threshold becomes greater than zero.

Figure 3 shows the execution times of DiMε. In general, although we expect
higher execution times on datasets with more columns and/or rows, this is not
necessarily true, because the attribute value distributions might heavily affect
the computation steps to be performed, since they influence the number of tuple
similarities, and hence the number of rfd candidates to be processed.



6 Conclusion and future work

The problem of discovering rfds adds a considerable complexity to the depen-
dency discovery process, since the relaxation criteria reduce the possibilities of
pruning search paths, and prevent the possibility to exploit the properties of
disjoint partitions during the validation phase. The performed evaluation high-
lights the effectiveness of DiMε in the discovery of rfds relaxing on both the
tuple comparison and the extent dimensions. In the future, we would like to
further investigate the considered problem in order to derive an algorithm for
rfd discovery capable of automatically inferring the threshold ranges of their
validation, as done in [5], instead of requesting them to the user.

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: A survey. The
VLDB Journal 24(4), 557–581 (2015)

2. Abedjan, Z., Schulze, P., Naumann, F.: DFD: Efficient functional dependency dis-
covery. In: CIKM ’14. pp. 949–958 (2014)

3. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies – A survey
of approaches. IEEE TKDE 28(1), 147–165 (2016)

4. Caruccio, L., Deufemia, V., Polese, G.: Evolutionary mining of relaxed dependen-
cies from big data collections. In: WIMS ’17. pp. 5:1–5:10 (2017)

5. Caruccio, L., Deufemia, V., Polese, G.: Discovering relaxed functional dependencies
based on multi-attribute dominance. IEEE TKDE (2020), to appear

6. Caruccio, L., Deufemia, V., Polese, G.: Mining relaxed functional dependencies
from data. Data Min. Knowl. Discov. 34(2), 443–477 (2020)

7. Chang, S.K., Deufemia, V., Polese, G., Vacca, M.: A normalization framework for
multimedia databases. IEEE TKDE 19(12), 1666–1679 (2007)

8. Flach, P.A., Savnik, I.: Database dependency discovery: A machine learning ap-
proach. AI communications 12(3), 139–160 (1999)

9. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algo-
rithm for discovering functional and approximate dependencies. The Computer
Journal 42(2), 100–111 (1999)

10. Johnson, D.S., Garey, M.R.: Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman & Co. (1979)

11. Kivinen, J., Mannila, H.: Approximate inference of functional dependencies from
relations. Theoretical Computer Science 149(1), 129–149 (1995)

12. Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency dis-
covery. In: SIGMOD ’16. pp. 821–833 (2016)

13. Song, S.: Data Dependencies in the Presence of Difference. Ph.D. thesis, The Hong
Kong University (2010)

14. Song, S., Chen, L.: Differential dependencies: Reasoning and discovery. ACM
Transactions on Database Systems 36, 16 (2011)

15. Song, S., Chen, L.: Efficient discovery of similarity constraints for matching depen-
dencies. Data & Knowledge Engineering 87, 146–166 (2013)

16. Wyss, C., Giannella, C., Robertson, E.: FastFDs: A heuristic-driven, depth-first
algorithm for mining functional dependencies from relation instances extended
abstract. In: DaWaK ’01. pp. 101–110 (2001)


	Lattice-based Discovery of Hybrid Relaxed Functional Dependencies (Discussion Paper)

