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Abstract. Since years ago and currently, the world has witnessed great devel-
opment and interest in the fields of Machine learning, Deep learning, which 
provides solutions at all levels, especially in medical image analysis. These de-
velopments have a huge potential for medical imaging technology, medical data 
analysis, medical diagnostics and healthcare in general, slowly being realized. 
We provide a short overview of recent advances and some associated challeng-
es in machine learning applied to medical image processing and image analysis. 
As this has become a very broad and fast expanding field we will not survey the 
entire landscape of applications, but put particular focus on deep learning in 
Magnetic Resonance Imaging (MRI). First, a brief introduction of deep learning 
and imaging modalities of MRI images is given. Then, common deep learning 
architectures are introduced. Next, deep learning applications of MRI images, 
such as image detection, image registration, image segmentation, and image 
classification are discussed. Subsequently, the deep learning tools in the appli-
cations of MRI images are presented. Finally; the limitation and future of Deep 
learning and a small conclusion. 

Keywords: First Keyword, Second Keyword, Third Keyword. 

1 Introduction 

Artificial intelligence is the branch of computer science devoted to creating systems 
toper form tasks that ordinarily require human intelligence. Artificial intelligence [1-
3] is not only a field of computer science that was created in the 1950s but also a 
thriving field with many practical applications and research hotspots. Artificial intel-
ligence attempts to simulate human intelligence and produce a new intelligent ma-
chine that would be able to process information with human consciousness, behavior, 
and thinking. Its ultimate goal is to develop brain-like robots. Artificial intelligence 
has been applied to many fields, such as image analysis, natural language processing, 
robotics, and expert systems .Machine learning [4-6] is the subfield of artificial intel-
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ligence in which algorithms are trained to perform tasks by learning patterns from 
data rather than by explicit programming [7]. Machine learning involves a number of 
disciplines such as probability theory, statistics, approximation theory, convex analy-
sis, and algorithm complexity theory. Machine learning mainly uses induction and 
synthesis to make computers acquire new knowledge by simulating human learning 
behavior and then reorganizes the existing knowledge to continually improve com-
puter performance. Machine learning has also been widely applied in many fields, 
such as computer-aided disease diagnosis[8-10] ,bioinformatics[11-13], and computer 
vision[14-16]. Medical image analysis and interpretation are fundamental cognitive 
tasks of a diagnostic radiologist. Effective computer automation of these tasks has 
historically been difficult despite technical advances in computer vision, a discipline 
dedicated to the problem of imparting visual understanding to a computer system. 
Recently, however, computer science researchers using a technique called deep learn-
ing have demonstrated breakthrough performance improvements in a variety of com-
plex tasks, including image classification, object detection, speech recognition, lan-
guage translation, natural language processing, and playing games [17,18]. However, 
deep learning [19] has overcome this obstacle by incorporating the feature engineer-
ing step into a learning step. That is, instead of extracting features manually, deep 
learning requires only a set of data with minor preprocessing, if necessary, and then 
discovers the informative representations in a self-taught manner [20,21].  

With the deepening of artificial neural networks [22], the concept of deep learning 
[23,24] has been proposed. Deep learning is not only an improvement in artificial 
neural networks, but also a new field in machine learning research [25-30]. The suc-
cessful application of deep learning brings machine learning closer to artificial intelli-
gence. The idea of the artificial neural networks arises from our understanding of the 
human brain, which comprises interconnections between neurons. The difference 
between artificial neural networks and the human brain is that any neuron in the hu-
man brain is connected to other neurons via a specific physical path, whereas neural 
networks contain discrete layers, connections, and data propagation directions. Since 
deep learning consists of more hidden layers in comparison to artificial neural net-
works, a more abstract high-level feature representation for different classes is formed 
by using multiple hidden layers to combine low-level features. Similar to artificial 
intelligence, deep learning also attempts to build and simulate the human brain to 
analyze the learning process of the neural network, which simulates the learning 
mechanism of the human brain when it attempts to understand unknown concepts. 
The deep learning system has been widely deployed in Google’s commercial prod-

ucts, such as Google Photos, Google Search, and Google Street View.  
 

Feature representation plays an important role in medical image processing 
and analysis. As a technology, deep learning methods have two obvious 
advantages in feature representation, as follows:   
 

 Deep learning can be used to automatically find features from a given dataset for 
each specific application. In general, traditional feature extraction methods are 
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based on some prior knowledge to extract features in a particular application. Thus, 
these methods are semi- automatic learning methods. 

 Deep learning can find new features that are suitable to specific applications, but 
have never been previously discovered by researchers. Traditional feature extrac-
tion methods are often limited by some a priori knowledge, which can only extract 
some features associated with a particular application. 
 

Additionally, the two elements that affect the results of medical image processing and 
analysis, are image acquisition and image interpretation, as follows:  

 

 Image acquisition: As we all know, the better the image quality, the better the 
results obtained in image processing and analysis. However, the quality of the im-
age depends on image acquisition; therefore, the better the image acquisition, the 
higher the image quality. Magnetic Resonance Imaging (MRI) does not only have 
the characteristics of non-invasive and good soft tissue contrast, but also does not 
expose subjects to high ionizing radiation. Since MRI can provide a lot of invalua-
ble information about tissue structures, such as shape, size, and localization, it is 
attracting more and more attention for clinical routine and computer-aided diagno-
sis [31-33]. Therefore, in this article, we focus on MRI images. 

 Image interpretation: In clinical practice, most medical image interpretations are 
basically performed by clinicians to determine whether the subjects are abnormal.  
However, due to limitations with regard to the clinician’s personal skills, subjectiv-

ity, energy, and other factors, the medical image interpretations by clinicians often 
differ significantly. To obtain accurate image interpretation results, it is imperative 
to develop an automatic image interpretation system that includes many functions, 
such as image detection, image registration, image segmentation, and image classi-
fication. To realize this system, many machine learning methods have been widely 
applied. However, due to the fact that deep learning architectures can obtain high-
level latent features, many researchers have applied deep learning architectures to 
the development of this automatic image interpretation system. Therefore, in this 
survey, we focus on deep learning the subjects are abnormal. However, due to limi-
tations with regard to the clinician’s personal skills, subjectivity, energy, and other 

factors, the medical image interpretations by clinicians often differ significantly. 
To obtain accurate image interpretation results, it is imperative to develop an au-
tomatic image interpretation system that includes many functions, such as image 
detection, image registration, image segmentation, and image classification. To re-
alize this system, many machine learning methods have been widely applied. 
However, due to the fact that deep learning architectures can obtain high-level la-
tent features, many researchers have applied deep learning architectures to the de-
velopment of this automatic image interpretation system. therefore, in this survey, 
we focus on deep learning.   
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2 Deep Learning Architectures   

Deep learning systems encode features by using an architecture of artificial neural 
networks, an approach consisting of connected nodes inspired by biologic neural net-
works. Systematic methods to train neural networks on the basis of a process called 
back-propagation were developed in the 1980s [34]. However, success in training the 
deep multilayer neural networks needed for hierarchical representations was limited 
by the difficulty of the underlying optimization problem as well as the limits of the 

computing hardware of that early era. Consequently, research attention in machine 
learning for the next few decades drifted toward other techniques such as kernel 
methods and decision trees. Deep learning is a type of representation learning in 
which the algorithm learns a composition of features that reflect a hierarchy of struc-
tures in the data. Complex representations are expressed in terms of simpler represen-
tations [35].These deep learning systems propose an end-to-end approach by learning 
simple features (such as signal intensity, edges, and textures) as components of more 
complex features such as shapes, lesions, or organs, therefore leveraging the composi-
tional nature of images(see Fig. 1). 

 

Fig. 1. Computer vision tasks such as detection, segmentation, and classification are typically 
carried out with algorithms based on features, classifiers, and shape extraction methods. Recent 
approaches based on deep learning represent an important paradigm shift where features are not 
handcrafted, but learned in an end-to-end fashion. Features describe the appearance of organs 
and points of interest in medical images. Classifiers integrate features to output a decision. 
Shape extraction and regularization recover a consistent shape despite classification noise. 
Deep learning proposes an end-to-end approach where features are learned to maximize the 
classifier’s performance. Shape regularization becomes implicit and often requires only mild 

post processing to recover the target shape. 
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2.1 Artificial neural network 

Artificial neural networks (ANNs) is one of the most famous machine learning mod-
els, introduced already in the 1950s, and actively studied since[36,Chapter 1.2].  
Roughly, a neural network consists of a number of connected computational units, 
called neurons, arranged in layers. There’s an input layer where data enters the net-
work, followed by one or more hidden layers transforming the data as it flows 
through, before ending at an output layer that produces the neural network’s predic-

tions. The network is trained to output useful predictions by identifying patterns in a 
set of labeled training data, fed through the network while the outputs are compared 
with the actual labels by an objective function. During training the network’s parame-

ters – the strength of each neuron – is tuned until the patterns identified by the net-
work result in good predictions for the training data. Once the pat- terns are learned, 
the network can be used to make predictions on new, unseen data, i.e. generalize to 
new data.it has long been known that ANNs are very flexible, able to model and solve 
complicated problems, but also that they are difficult and very computationally ex-
pensive to train. This has lowered their practical utility and led people to, until recent-
ly, focus on other machine learning models. But by now, artificial neural networks 
form one of the dominant methods in machine learning, and the most intensively stud-
ied.   

In the brain, neurons exchange information via chemical and electrical synapses. 
Electrochemical signals are propagated from the synaptic area through the dendrites 
toward the soma, the body of the cell (see Fig. 2, Fig. 3). When a certain excitation 
threshold is reached, the cell releases an activation signal through its axon toward 
synapses with neighboring neurons. Complex signals can be encoded by networks of 
neurons on the basis of this paradigm; for instance, a hierarchy of neurons in the visu-
al cortex is able to detect edges by combining signals from independent visual recep-
tors. 

 

 

Fig. 2.  
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Fig. 3.  

Conceptual analogy between components of biologic neurons (Fig. 2) and artificial neurons 
(Fig. 3). The concept of neural networks stems from biologic inspiration. (Fig. 2) In the visual 
cortex, there is a neural network able to detect edges from what is seen by the retina (gray cir-
cles = receptive areas of the retina). When the inner parts (smaller circles) of the three receptors 
are activated simultaneously, the simple cell neuron integrates the three signals and transmits an 
edge detection signal. (Fig. 3) An artificial neural network is composed of interconnected artifi-
cial neurons. Each artificial neuron implements a simple classifier model, which outputs a 
decision signal based on a weighted sum of evidences, and an activation function, which inte-
grates signals from previous neurons. Hundreds of these basic computing units are assembled 
together to build an artificial neural network computing device. The weights of the network are 
trained via a learning algorithm where pairs of input signals and desired output decisions are 
presented, much like the brain, which relies on external sensory stimuli to learn to achieve 
specific tasks. 

Artificial neural networks are inspired by this biologic process.  
The “deep” aspect of deep learning refers to the multilayer architecture of multi-

layer perceptron’s (see Fig 4).  
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Fig. 4. The basis for most deep learning research is the artificial neural network, a computa-
tional framework of interconnected nodes inspired by biologic neural networks. The “deep” 

aspect of deep learning refers to the multilayer architecture of these networks, which contain 
multiple hidden layers of nodes between the input and output nodes. This example has three 
input nodes, two hidden layers (each with four nodes), and two output nodes. 

2.2 Deep feed forward networks   

In machine learning, artificial neural networks are a family of models that mimic the 
structural elegance of the neural system and learn patterns inherent in observations. 
The perceptron [37] is the earliest trainable neural network with a single-layer archi-
tecture, composed of an input layer and an output layer. 
 

2.3 Stacked auto encoders 

An auto encoder [38-40] is a simple deep feed forward network, which includes an 
input layer, a hidden layer, and an output layer. An auto-encoder or auto-associate 
[41] is a special type of two- layer neural network that learns a latent or compressed 
representation of the input by minimizing the reconstruction error between the input 
and output values of the network, namely the reconstruction of the input from the 
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learned representations. Because of its simple, shallow structure, a single-layer auto 
encoder’s representational power is very limited. 

 

2.4 Deep belief networks  

A restricted Boltzmann machine (RBM) [42] is a single-layer undirected graphical 
model with a visible layer and a hidden layer. It assumes symmetric connectivity 
between visible and hidden layers, but no connections among units within the same 
layer. Because of the symmetry of the connectivity’s, it can generate input observa-
tions from hidden representations. Therefore, an RBM naturally becomes an auto-
encoder [42, 43], and its parameters are usually trained by use of a contrastive diver-
gence algorithm [44] so as to maximize the log likely hood of observations. 
 

2.5 Convolutional neural networks 

Convolutional neural networks [45-48] are also deep feed forward networks, and have 
been widely used in recognition tasks, such as document recognition [49], handwrit-
ing recognition [50], and image classification[51-54]. The only difference between 
the fully connected feed forward neural networks and the convolution neural networks 
is that the two adjacent layers of the two neural networks are connected in different 
ways. The former only has some nodes connected between the adjacent two layers, 
while the latter has all nodes connected between the adjacent two layers. The biggest 
problem of using a fully connected feed forward neural network is that there are too 
many parameters for the network. In general, increasing the parameters will not only 
lead to slower calculation speed, but will also lead to over fitting problems. To effec-
tively reduce the number of parameters in the neural networks, more reasonable neu-
ral network architectures are required. Therefore, convolutional neural networks were 
proposed to achieve this goal. Convolutional neural networks include two kernel lay-
ers, namely, the convolutional and pooling layers, as follows: 
 

 Convolutional Layer: Only a small patch of the previous layer is used as the input 
of each node in the convolutional layer, and the size of the small patch is often 3 × 
3 or 5 × 5. The convolutional layer attempts to analyze each small patch of the neu-
ral network in depth, which results in the higher abstraction of feature representa-
tion.  

 Pooling Layer: There is often a pooling layer followed by the convolutional layer. 
The pooling layer can effectively reduce the size of the matrix from the previous 
convolutional layer; thus, it can reduce the number of parameters in the neural 
network. Therefore, the use of pooling layers can not only speed up the calculation, 
but can also prevent the problem of over fitting. 
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Fig. 5. Building blocks of a typical CNN. A slight modification of a figure in [55]. 

3 Deep Learning Applications   

In recent years, many deep learning methods have been proposed for application in 
the field of MRI image processing and analysis, such as image detection, image regis-
tration, image segmentation, and image classification. All of these can be formulated 
as feature representation problems, and can thus be solved effectively by using deep 
learning methods to find an effective set of features. In this section, we review the 
recent progress of applying deep learning architectures in the image detection, image 
registration, image segmentation, and image classification of MRI images. 

 

3.1 Image detection  

Image detection plays an important role in computer- aided detection routines. Its 
main purpose is to find the tissues of interest, and then measure and analyze whether 
these tissues produce lesions. Localization and interpolation of anatomical structures 
in medical images are key steps in the radiological workflow. Radiologists usually 
accomplish these tasks by identifying certain anatomical signatures, namely image 
features that can distinguish one anatomical structure from others. Is it possible for a 
computer to automatically learn such anatomical signatures? The success of such 
methods essentially depends on how many anatomy signatures can be extracted by 
computational operations.  
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3.2  Image registration  

Image registration is the process of matching and superimposing two or more images 
at different times, different sensors (such as imaging equipment) or different condi-
tions (such as illumination, position, and angle) [56].  

Image registration has been widely applied in medical image processing. Its main 
purpose is to combine various medical images, which display their information in the 
same image, and thereby provide multiple information for clinical diagnosis. 

 

3.3 Image segmentation     

Automatic tissue segmentation in MRI images is of great importance in modern med-
ical research and clinical routines. Many medical image segmentation challenges have 
been held to encourage the development of automatic segmentation techniques, such 
as Ischemic Stroke Lesion Segmentation, Multimodal Brain Tumor Image Segmenta-
tion, MR Brain Image Segmentation, and cardiac MR Left Ventricle (LV) segmenta-
tion. Since most brain tumors can affect a patient’s health, and even shorten their life 

expectancy, automatic and reliable segmentation techniques for removing brain tu-
mors are required. However, most brain tumors have large spatial and structural vari-
ability, which makes them difficult to segment. Thus, automatic and reliable segmen-
tation has become a challenging problem. To address the problem, many deep learn-
ing-based brain tumor segmentation methods have been proposed [57-62]. 

 

3.4 Image classification   

Image classification plays an important role in automatic disease diagnosis and cogni-
tive recognition, such as the classification of different severity diseases and the recog-
nition of different brain activities. Many deep learning methods have also been pro-
posed for performing image classification tasks in MRI images [63-65]. 

 

4 Deep Learning Tools 

Deep learning is a complex technology. To achieve the abovementioned deep learning 
architectures, researchers need to spend a lot of time and energy. Fortunately, in re-
cent years, many deep learning tools have been developed as shown in Table 1. These 
tools are convenient for researchers; thus, they promote the application of deep learn-
ing architectures. Some common and widely used deep learning tools are shown in 
Table 1. 
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Table 1.  

 
        Tools                         Links           

References  

Deep 

LearnToolbox  

https://github.com/rasmusbergpalm/DeepLearnToolbox   [66]  

Torch  http://caffe.berkeleyvision.org/   [67]  

Torch  http://torch.ch/   [68]  

Theano  http://deeplearning.net/software/theano  [69]  

Pylearn2  http://deeplearning.net/software/pylearn2/  [70]  

Keras  https://github.com/EderSantana/keras  [71]  

TensorFlow  https://www.tensorflow.org/  [72]  

CNTK  https://www.microsoft.com/enus/research/product/cognitive-

toolkit/  

[73]  

MXNet  https://github.com/dmlc/mxnet  [74]  

Chainer  http://chainer.org/  [75]  

Deeplearning4j  https://deeplearning4j.org/  [76]  

SINGA  http://www.comp.nus.edu.sg/ dbsystem/singa/̃   
[77]  

MatConvNet  http://www.vlfeat.org/matconvnet/  [78]  

maxDNN  https://github.com/eBay/maxDNN  [79]  

  

5 Limitations of Deep Learning 

Despite the variety of recent successes of deep learning, there are limitations in the 
application of the technique. First, deep learning is not the optimal machine learning 
technique for all data analysis problems.  

For problems in which data are well structured or optimal features are well- de-
fined, other simpler machine learning methods such as logistic regression, support 
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vector ma- chines, and random forests are typically easier to apply and more effective 
[80].  

Even in computer vision, where CNNs have become a dominant method, there are 
important limitations for deep learning. The most prominent limitation is that deep 
learning is an intensely data- hungry technology; learning weights for a large network 
from scratch requires a very large number of labeled examples to achieve accurate 
classification. However, unlike traditional approaches to computer vision and ma-
chine learning, which do not scale well with dataset size, deep learning does scale 
well with large datasets.  

Deep learning systems currently excel in emulating the kind of human judgment 
that is based purely on pattern recognition, where the most informative patterns can 
be discerned from previous training. However, no finite training set can fully repre-
sent the variety of cases that might be seen in clinical practice. More complex radiol-
ogy interpretation problems typically require deductive reasoning using knowledge of 
pathologic processes and selective integration of information from prior examinations 
or the patient’s health record. It is presently not clear how to train a deep learning 
system to emulate these more complex thought processes.   
 

6 Future Directions 

 
 The role of deep learning and its application to the practice of radiology must still 

be defined. Deep learning systems may be conceived as a new form of diagnostic test 
with various clinical usage scenarios [81]. A triage approach would run these auto-
mated image analysis systems in the background to detect life-threatening conditions 
or search through large amounts of clinical, genomic, or imaging data [82]. A re-
placement approach would use these systems for generating figure captions [83] or 
even fully automated interpretation of imaging examinations. An add-on approach 
would support the radiologist by performing time- consuming tasks such as lesion 
segmentation to assess total tumor burden. 
 

Conclusion 

In summary, the aim of this survey was to provide valuable insights for researchers, 
with regard to applying deep learning architectures in the field of MRI- based re-
search.  

Deep learning is a powerful and generic artificial intelligence technique that can 
solve image detection, recognition, and classification tasks that previously required 
human intelligence. The introduction of deep learning techniques in radiology will 
likely assist radiologists in a variety of diagnostic tasks.  
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