
Inference Methods for Mamdani-Type Systems Based
on Fuzzy Truth Value
Vasily G. Sinuka, Sergey V. Kulabukhova

aBelgorod State Technological University named after V. G. Shukhov, Department of Software Engineering for
Computers and Computer-Based Systems, Belgorod, Russia

Abstract
The article introduces inference methods for Mamdani-type fuzzy systems, which can be implemented
with polynomial computational complexity for any t-norms and multiple fuzzy inputs. Center average
and center of gravity defuzzification methods were used for case of multiple rules in rule base. Network
architectures of systems corresponding to inference methods introduced in the article are provided.

1. Introduction

Mamdani’s approach addresses the question of interpretation of the expression “if 𝑋 is 𝐴 then
𝑌 is 𝐵”, where 𝑋 and 𝑌 are linguistic variables, 𝐴 and 𝐵 are linguistic values of 𝑋 and 𝑌
respectively. The source of uncertainty consists in the fact that “if 𝑋 is 𝐴 then 𝑌 is 𝐵” can be
interpreted in two different ways. First, the most obvious way is to consider this expression as
“𝑋 is 𝐴 and 𝑌 is 𝐵”, or as (𝑥, 𝑦) is 𝐴 × 𝐵, where 𝐴 × 𝐵 is a Cartesian product of fuzzy sets 𝐴 and
𝐵. Hence, with this interpretation “if 𝑋 is 𝐴 then 𝑌 is 𝐵” is a joint constraint on 𝑋 and 𝑌 . An
alternative way consists in understanding “if 𝑋 is 𝐴 then 𝑌 is 𝐵” as a conditional constraint or,
equivalently, an implication. Many different implications are known. This way was considered
in [Mik18] for systems with multiple inputs. The subject of this article is the development of
Mamdani’s approach.

For systems with multiple fuzzy inputs, which represent a formalization of terms of lin-
guistic variables or inaccurate measurements, inference methods based on max-min and max-
product composition operations are known [Rut10]. Operators min (taking minimum) and
product (arithmetical product) are t-norms [Als06] that correspond to Mamdani’s [Mam74]
and Larsen’s [Lar80] inference rules respectively. But for other t-norms, replacement of which
can be necessary for learning of fuzzy systems, implementation of inference for multiple fuzzy
inputs with polynomial computational complexity is impossible. In this article, methods that
solve this problem are considered.

The statement of the problem and estimation of complexity of fuzzy inference is made in
section 2. In section 3, an inference method using a measure of possibility for each input of a
multiple-input system is considered. Section 4 introduces an inference method based on fuzzy
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truth value. Sections 5 and 6 consider inference for a rule base with use of center average and
center of gravity methods respectively.

2. Statement of the problem

A linguistic model is represented by a fuzzy rule base 𝑅𝑘 , 𝑘 = 1, 𝑁 of the form:

𝑅𝑘 ∶ If 𝑥1 is 𝐴1𝑘 and 𝑥2 is 𝐴2𝑘 and … and 𝑥𝑛 is 𝐴𝑛𝑘 then 𝑦 is 𝐵𝑘 , (1)

where 𝑁 is the number of fuzzy rules, 𝐴𝑖𝑘 ⊆ 𝑋𝑖 , 𝑖 = 1, 𝑛, 𝐵𝑘 ⊆ 𝑌 are fuzzy sets, defined by
membership functions 𝜇𝐴𝑖𝑘 (𝑥𝑖) and 𝜇𝐵𝑘 (𝑦) respectively; 𝑥1, 𝑥2, … , 𝑥𝑛 are input variables of the
linguistic model, while

[𝑥1, 𝑥2, … , 𝑥𝑛]T = 𝒙 ∈ 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛.

Symbols 𝑋𝑖 , 𝑖 = 1, 𝑛 and 𝑌 stand for input and output variables spaces respectively.
Let us denote 𝑿 = 𝑋1 × 𝑋2 × ⋯ × 𝑋𝑛 and 𝑨𝒌 = 𝐴1𝑘 × 𝐴2𝑘 × ⋯ × 𝐴𝑛𝑘 , whereas

𝜇𝑨𝒌 (𝒙) = T1
𝑖=1,𝑛

𝜇𝐴𝑖𝑘 (𝑥𝑖), (2)

whereT1 is an arbitrary t-norm, then rule (1) can be represented in the form of fuzzy implication

𝑅𝑘 ∶ 𝑨𝒌 → 𝐵𝑘 , 𝑘 = 1, 𝑁 .

Rule 𝑅𝑘 can be formalized as a fuzzy relation, defined over set 𝑿 × 𝑌 , i.e. 𝑅𝑘 ⊆ 𝑿 × 𝑌 is a fuzzy
set with membership function

𝜇𝑅𝑘 (𝒙, 𝑦) = 𝜇𝑨𝒌→𝐵𝑘 (𝒙, 𝑦).

Mamdani’s model defines the function 𝜇𝑨𝒌→𝐵𝑘 (𝒙, 𝑦) based on known membership functions
𝜇𝑨𝒌 (𝒙) and 𝜇𝐵𝑘 (𝑦) as follows [Rut10, Peg09]:

𝜇𝑨𝒌→𝐵𝑘 (𝒙, 𝑦) = T2(𝜇𝑨𝒌 (𝒙), 𝜇𝐵𝑘 (𝑦)) = 𝜇𝑨𝒌 (𝒙)
T2∗ 𝜇𝐵𝑘 (𝑦),

where T2 is an arbitrary t-norm.
The problem consists in defining fuzzy inference 𝐵′𝑘 ⊆ 𝑌 for a system, represented in the

form (1), if the inputs are assigned fuzzy sets 𝑨′ = 𝐴′
1 × 𝐴′

2 ×⋯ ×𝐴′
𝑛 ⊆ 𝑿 or “𝑥1 is 𝐴′

1 and 𝑥2 is
𝐴′
2 and … and 𝑥𝑛 is 𝐴′

𝑛” with the corresponding membership function 𝜇𝑨′(𝒙), which is defined
as

𝜇𝑨′(𝒙) = T3
𝑖=1,𝑛

𝜇𝐴′
𝑖
(𝑥𝑖), (3)

where T3 is an arbitrary t-norm.
According to fuzzy modus ponens rule [Zad73], fuzzy set 𝐵′𝑘 is defined by the composition of

fuzzy set 𝐴′ and relation 𝑅𝑘 , i.e.
𝐵′𝑘 = 𝑨′◦(𝑨𝒌 → 𝐵𝑘),

or, at the level of membership functions,

𝜇𝐵′𝑘 (𝑦) = sup
𝒙∈𝑿

{
𝜇𝑨′(𝒙) T4∗ (𝜇𝑨𝒌 (𝒙)

T2∗ 𝜇𝐵𝑘 (𝑦))
}
, (4)

where T4 is an arbitrary t-norm. Computational complexity of expression (4) equals 𝑂(|𝑿 |×|𝑌 |).



3. Inference method based on possibility measure for each
input

Let us consider the inference (4) when

T1 = T2 = T3 = T4 = T, (5)

then
𝜇𝐵′𝑘 (𝑦) = sup

𝒙∈𝑿

{
𝜇𝑨′(𝒙) T∗ (𝜇𝑨𝒌 (𝒙)

T∗ 𝜇𝐵𝑘 (𝑦))
}
. (6)

Due to associativity of t-norms, the expression (6) can be transformed into

𝜇𝐵′𝑘 (𝑦) = sup
𝒙∈𝑿

{
𝜇𝑨′(𝒙) T∗ 𝜇𝑨𝒌 (𝒙)

} T∗ 𝜇𝐵𝑘 (𝑦). (7)

Using (2) and (3) we can further transform (7):

𝜇𝐵′𝑘 (𝑦) = sup
𝑥1∈𝑋1
𝑥2∈𝑋2⋯
𝑥𝑛∈𝑋𝑛

{
𝜇𝐴′

1
(𝑥1)

T∗ 𝜇𝐴′
2
(𝑥2)

T∗ … T∗ 𝜇𝐴′
𝑛
(𝑥𝑛)

T∗ 𝜇𝐴1𝑘 (𝑥1)
T∗ 𝜇𝐴2𝑘 (𝑥2)

T∗ … T∗ 𝜇𝐴𝑛𝑘 (𝑥𝑛)
}

T∗ 𝜇𝐵𝑘 (𝑦).

Associativity and commutativity of t-norms enables us to rearrange 𝜇𝐴′
𝑖
(𝑥𝑖) and 𝜇𝐴𝑖𝑘 (𝑥𝑖), which

allows us to obtain

𝜇𝐵′𝑘 (𝑦) = sup
𝑥1∈𝑋1
𝑥2∈𝑋2⋯
𝑥𝑛∈𝑋𝑛

{
(𝜇𝐴′

1
(𝑥1)

T∗ 𝜇𝐴1𝑘 (𝑥1))
T∗ (𝜇𝐴′

2
(𝑥2)

T∗ 𝜇𝐴2𝑘 (𝑥2))
T∗ … T∗ (𝜇𝐴′

𝑛
(𝑥𝑛)

T∗ 𝜇𝐴𝑛𝑘 (𝑥𝑛))
}

T∗ 𝜇𝐵𝑘 (𝑦),

and, since t-norms are non-decreasing,

𝜇𝐵′𝑘 (𝑦) = sup
𝑥1∈𝑋1

{𝜇𝐴′
1
(𝑥1)

T∗ 𝜇𝐴1𝑘 (𝑥1)}
T∗ sup
𝑥2∈𝑋2

{𝜇𝐴′
2
(𝑥2)

T∗ 𝜇𝐴2𝑘 (𝑥2)}
T∗ … T∗ sup

𝑥𝑛∈𝑋𝑛

{𝜇𝐴′
𝑛
(𝑥𝑛)

T∗ 𝜇𝐴𝑛𝑘 (𝑥𝑛)}
T∗ 𝜇𝐵𝑘 (𝑦),

what can be written as

𝜇𝐵′𝑘 (𝑦) = T
𝑖=1,𝑛

{
sup
𝑥𝑖∈𝑋𝑖

{𝜇𝐴′
𝑖
(𝑥𝑖)

T∗ 𝜇𝐴𝑖𝑘 (𝑥𝑖)}
} T∗ 𝜇𝐵𝑘 (𝑦) = T

𝑖=1,𝑛

{
Π𝐴𝑖𝑘 |𝐴′

𝑖

} T∗ 𝜇𝐵𝑘 (𝑦), (8)

where
Π𝐴𝑖𝑘 |𝐴′

𝑖
= sup

𝑥𝑖∈𝑋𝑖

{𝜇𝐴′
𝑖
(𝑥𝑖)

T∗ 𝜇𝐴𝑖𝑘 (𝑥𝑖)}

is a scalar value which, according to its definition in [Dub90], is a measure of possibility for
𝑖-th input, meaning how much 𝐴′

𝑖 corresponds to 𝐴𝑖𝑘 (or vice versa).
Thus, we have proved that inference method (8) is possible if all four t-norms are similar (5).

In contrast to [Rut10], this t-norm may be arbitrary.



4. Inference method based on fuzzy truth value

Applying the truth modification rule [Bor82]

𝜇𝑨′(𝒙) = 𝜏𝑨𝒌 |𝑨′(𝜇𝑨𝒌 (𝒙)),

where 𝜏𝑨𝒌 |𝑨′( ⋅ ) denotes the fuzzy truth value of a fuzzy set 𝑨𝒌 with respect to 𝑨′, representing
a compatibility membership function 𝐶𝑃(𝑨𝒌 , 𝑨′) of 𝑨𝒌 relatively to 𝑨′, while 𝑨′ is considered
as true [Zad78, Dub90]:

𝜏𝑨𝒌 |𝑨′(𝑣) = 𝜇𝐶𝑃(𝑨𝒌 , 𝑨′)(𝑣) = sup
𝜇𝑨𝒌 (𝒙)=𝑣

𝒙∈𝑿

{𝜇𝑨′(𝒙)}, 𝑣 ∈ [0; 1],

let us denote 𝑣 = 𝜇𝑨𝒌 (𝒙). Then we get:

𝜇𝑨′(𝒙) = 𝜏𝑨𝒌 |𝑨′(𝜇𝑨𝒌 (𝒙)) = 𝜏𝑨𝒌 |𝑨′(𝑣).

Hence fuzzy modus ponens rule for systems with 𝑛 inputs can be represented as follows:

𝜇𝐵′𝑘 (𝑦) = sup
𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝜇𝐵𝑘 (𝑦))
}
. (9)

Computational complexity of expression (9) has order of 𝑂(|𝑣| × |𝑌 |). As proven in [Kut15,
Sin16]:

𝜇𝐶𝑃(𝑨𝒌 , 𝑨′)(𝑣) = T̃1
𝑖=1,𝑛

𝜇𝐶𝑃(𝐴𝑘𝑖 , 𝐴′
𝑖 )(𝑣𝑖) =

=(𝜇𝐶𝑃(𝐴𝑘1, 𝐴′
1)(𝑣1) T̃1 𝜇𝐶𝑃(𝐴𝑘2, 𝐴′

2)(𝑣2)) T̃1 𝜇𝐶𝑃(𝐴𝑘3, 𝐴′
3)(𝑣3) T̃1 … T̃1 𝜇𝐶𝑃(𝐴𝑘𝑛 , 𝐴′

𝑛)(𝑣𝑛),

where T̃1 is an extended according to the extension principle 𝑛-ary t-norm [Dub90] and

𝜇𝐶𝑃(𝐴𝑘𝑖 , 𝐴′
𝑖 )(𝑣𝑖) = sup

𝜇𝐴𝑘𝑖 (𝑥𝑖 )=𝑣𝑖
𝑥𝑖∈𝑋𝑖

{𝜇𝐴′
𝑖
(𝑥𝑖)}.

Particularly, if 𝑛 = 2, then

𝜇𝐶𝑃(𝑨𝒌 , 𝑨′)(𝑣) = T̃1
𝑖=1,2

𝜇𝐶𝑃(𝐴𝑘𝑖 , 𝐴′
𝑖 )(𝑣𝑖) = sup

𝑣1 T1 𝑣2 = 𝑣
(𝑣1,𝑣2)∈[0;1]2

{𝜇𝐶𝑃(𝐴𝑘1, 𝐴′
1)(𝑣1) T3 𝜇𝐶𝑃(𝐴𝑘2, 𝐴′

2)(𝑣2)}.

Computational complexity of the latter expression has order of 𝑂(|𝑣|2). In case T4 = T2 = T,
then associativity of t-norms allows us to transform (9) into

𝜇𝐵′𝑘 (𝑦) = sup
𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T∗ (𝑣

T∗ 𝜇𝐵𝑘 (𝑦))
}
= sup

𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T∗ 𝑣

} T∗ 𝜇𝐵𝑘 (𝑦) = Π𝑨𝒌 |𝑨′
T∗ 𝜇𝐵𝑘 (𝑦),

(10)
where 𝑘 = 1, 𝑁 and

Π𝑨𝒌 |𝑨′ = sup
𝑣∈[0;1]

{𝜏𝑨𝒌 |𝑨′(𝑣) T∗ 𝑣} (11)



is a scalar value which represents a generalization of an expression defined in [Yag83] and
means how much terms 𝑨𝒌 of rule 𝑘 correspond to input values 𝑨′ (or vice versa).

This means that using fuzzy truth values in (9) makes its computational complexity polyno-
mial and does not impose restrictions onto t-norms (5).

In case 𝑨𝒌 = 𝑨′, then 𝜏𝑨𝒌 |𝑨′(𝑣) = 𝑣, i.e. 𝐶𝑃(𝑨𝒌 , 𝑨′) is “true”. Hence

𝜇𝐵′𝑘 (𝑦) = sup
𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T∗ 𝑣

} T∗ 𝜇𝐵𝑘 (𝑦) = sup
𝑣∈[0;1]

{
𝑣 T∗ 𝑣

} T∗ 𝜇𝐵𝑘 (𝑦) = 1 T∗ 𝜇𝐵𝑘 (𝑦) = 𝜇𝐵𝑘 (𝑦),

what indicates the fulfillment of the first criterion of correspondence of an inference method
to approximate reasoning [Rut10].

Let us consider inference based on (10), which belongs to so-called FITA-approaches (First
Inference, Then Aggregate), i.e. when inference for every rule is performed prior to aggregation
of the result. Aggregation for Mamdani model is implemented by means of S-norms [Rut04].
For example, let us use the Lukasiewicz t-norm [Als06] in (10), which could not be used in
inference before due to the computational complexity:

Π𝑨𝒌 |𝑨′
T∗ 𝜇𝐵𝑘 (𝑦) = {0, Π𝑨𝒌 |𝑨′ + 𝜇𝐵𝑘 (𝑦) − 1}. (12)

FITA-fuzzy process based on (12) is illustrated in figure 1, where three fuzzy sets 𝐵𝑘 , 𝑘 = 1, 3
with Gaussian membership functions are depicted subsequently. Here we assume that these
fuzzy sets are normal, i.e. sup𝑦{𝜇𝐵𝑘 (𝑦)} = 1. Each of 𝐵′𝑘 is derived from a particular rule
according to formula (11) from fuzzy set 𝐵𝑘 by pushing it down. The membership function
obtained as union of fuzzy sets 𝐵′𝑘 , 𝑘 = 1, 3 using maximum operation is depicted at the bottom
of the figure. The maximum operation is an example of S-norms.

Let us compare the shapes of fuzzy sets 𝐵′𝑘 , derived with the use of Lukasiewicz’s t-norm,
to ones that were obtained using minimum and arithmetical product operations. In the first
case, membership functions are being “truncated”, in the second case they are being “scaled”
[Kru01].

5. Fuzzy system based on center average defuzzification
method

Let us consider the systems introduced in section 4 having fuzzy inputs and using the center
average defuzzification method [Rut04]. In this case, the crisp output value is defined by the
following formula:

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ 𝜇𝐵′𝑘 (𝑦𝑘)

∑𝑘=1,𝑁 𝜇𝐵′𝑘 (𝑦𝑘)
, (13)

where 𝑦 is the crisp output of a system, consisting of 𝑁 rules; 𝑦𝑘 are centers of membership
functions 𝜇𝐵𝑘 (𝑦), 𝑘 = 1, 𝑁 , i.e. points, for which

𝜇𝐵𝑘 (𝑦𝑘) = sup
𝑦∈𝑌

{𝜇𝐵𝑘 (𝑦)} = 1 (14)



0

1

Π𝐴1 |𝐴′

𝑦1

𝜇𝐵1 (𝑦)

𝑦

0

1

Π𝐴2 |𝐴′

𝑦2

𝜇𝐵2 (𝑦)

𝑦

0

1

Π𝐴3 |𝐴′

𝑦3

𝜇𝐵3 (𝑦)

𝑦

0

1

𝑦1

𝜇𝐵′1 (𝑦)

𝑦

0

1

𝑦2

𝜇𝐵′2 (𝑦)

𝑦

0

1

𝑦3

𝜇𝐵′3 (𝑦)

𝑦

0

1
𝜇𝐵′ (𝑦)

𝑦

Figure 1: Graphical representation of inference based on (12) and the Lukasiewicz t-norm

is true. According to expressions (9) and (13) we get

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ sup𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝜇𝐵𝑘 (𝑦𝑘))
}

∑𝑘=1,𝑁 sup𝑣∈[0;1]
{
𝜏𝑨𝒌 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝜇𝐵𝑘 (𝑦𝑘))
}. (15)



From (14) follows

sup
𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 1)
}
= sup

𝑣∈[0;1]

{
𝜏𝑨𝒌 |𝑨′(𝑣) T4∗ 𝑣

}
= Π𝑨𝒌 |𝑨′ , (16)

because a t-norm meets boundary condition T(𝑎; 1) = 𝑎 by definition. Substituting (16) into
(15), we get

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ Π𝑨𝒌 |𝑨′

∑𝑘=1,𝑁 Π𝑨𝒌 |𝑨′
. (17)

Therefore the result 𝑦 does not depend on the specific t-norm T2 when using the center average
defuzzification method for systems with fuzzy inputs.

Let us consider the inference with crisp input data, hence

𝜏𝑨𝒌 |𝑨′(𝑣) = 𝛿(𝑣 − 𝑣𝑘) =

{
1, if 𝑣 = 𝑣𝑘 ,
0, if 𝑣 ≠ 𝑣𝑘 ,

where
𝑣𝑘 = T1

𝑖=1,𝑛
𝜇𝐴𝑖𝑘 (𝑥 𝑖), 𝑘 = 1, 𝑁 ,

in which 𝑥 𝑖 , 𝑖 = 1, 𝑛 are crisp input values, and T1 is a t-norm formalizing the conjunction in
𝑘-th rule’s antecedent. Then

Π𝑨𝒌 |𝑨′ = sup
𝑣∈[0;1]

{
𝛿(𝑣 − 𝑣𝑘)

T2∗ 𝑣
}
= 𝑣𝑘 ,

considering that T2(1; 𝑣𝑘) = 𝑣𝑘 . Therefore, the output value is defined as follows:

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ 𝑣𝑘

∑𝑘=1,𝑁 𝑣𝑘
,

what turns out to be the zero order Takagi-Sugeno’s fuzzy inference algorithm [Kru01]. Thus,
system output does not depend on t-norms T2 and T4 in the case of crisp input data and the
center average defuzzification method. The structure of a fuzzy system that is described by
expression (17) is shown in figure 2.

6. Fuzzy system based on the center of gravity defuzzification
method

Let us consider those systems introduced in section 4 having fuzzy inputs and using a discrete
variant of the center of gravity defuzzification method [Rut04]

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ 𝜇𝐵′𝑘 (𝑦𝑘)

∑𝑘=1,𝑁 𝜇𝐵′𝑘 (𝑦𝑘)
, (18)
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Figure 2: Network structure of inference process based on (17)

where 𝑦 is the crisp output value, and 𝑦𝑘 are the centers of membership functions 𝜇𝐵𝑘 (𝑦), 𝑘 =
1, 𝑁 , defined by expression (14). Fuzzy set 𝐵′ is derived by the union of fuzzy sets 𝐵′𝑘 , 𝑘 = 1, 𝑁
using the maximum operator or any other S-norm, i.e.

𝜇𝐵′(𝑦) = S
𝑘=1,𝑁

𝜇𝐵′𝑘 (𝑦). (19)

From (18), (9) and (19) we get

𝑦 =
∑𝑘=1,𝑁 𝑦𝑘 ⋅ S

𝑗=1,𝑁

{
sup
𝑣∈[0;1]

{
𝜏𝑨𝒋 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝜇𝐵𝑗 (𝑦𝑘))
}}

∑𝑘=1,𝑁 S
𝑗=1,𝑁

{
sup
𝑣∈[0;1]

{
𝜏𝑨𝒋 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝜇𝐵𝑗 (𝑦𝑘))
}}. (20)



Let us denote 𝜇𝐵𝑗 (𝑦𝑘) = 𝑏𝑗𝑘 . From (14) follows 𝑏𝑘𝑘 = 𝜇𝐵𝑘 (𝑦𝑘) = 1. According to (12), the S-norm
can be written as follows:

S
𝑗=1,𝑁

{
sup
𝑣∈[0;1]

{
𝜏𝑨𝒋 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝑏𝑗𝑘)
}}

= S
(
Π𝑨𝒋 |𝑨′ , S

𝑗=1,𝑁
𝑗≠𝑘

{
sup
𝑣∈[0;1]

{
𝜏𝑨𝒋 |𝑨′(𝑣) T4∗ (𝑣

T2∗ 𝑏𝑗𝑘)
}}

)
.

(21)
The network architecture corresponding to expression (20) with substitution (21) is represented
in figure 3. If T4 = T2 = T, then

S
𝑗=1,𝑁

{
sup
𝑣∈[0;1]

{
𝜏𝑨𝒋 |𝑨′(𝑣) T∗ (𝑣

T∗ 𝑏𝑗𝑘)
}}

= S
(
Π𝑨𝒋 |𝑨′ , S

𝑗=1,𝑁
𝑗≠𝑘

{
Π𝑨𝒋 |𝑨′

T∗ 𝑏𝑗𝑘

}

)
. (22)

In this case the network architecture of the system takes the form represented in figure 4. If

𝑏𝑗𝑘 ≈ 0 for 𝑗, 𝑘 = 1, 𝑁 , 𝑗 ≠ 𝑘, (23)

then expressions (21) and (22) will take the form of (17), and the network architectures given
in figures 3 and 4 take the form of the architecture depicted in figure 2. Figure 5 provides an
example of fuzzy sets 𝐵𝑘 , 𝑘 = 1, 𝑁 that meet condition (23). Therefore, the center average and
center of gravity (defined by expression (13)) defuzzification methods lead to same results for
the same input data.

7. Conclusion

Inference based on fuzzy truth value enables us to spread Mamdani’s approach onto systems
with multiple fuzzy inputs regardless of the t-norms used, thereby eliminating exponential
computational complexity.

Moreover, the most important advantage of using the concept of fuzzy truth value is the
fact that the relation between the premise and fact is represented as a fuzzy set, in contrast to
methods [Rut10, Als06], which reduce this relation to a scalar value.

Representing all the relationships between the premises and facts within the same space of
truthfulness reduces the computational complexity of the inference result from exponential to
polynomial.

Expressions of output values for fuzzy systems utilizing measure of possibility generaliza-
tion (11) with the use of center average and center of gravity defuzzification methods were
introduced in the article.

Formulas (17), (20), (21), (22) were used to build network structures. Using learning algo-
rithms for their parameters they can be transformed into neuro-fuzzy systems.
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Figure 3: Network structure of inference process based on (21)
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