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Abstract  
In the article there are Neuro-Fuzzy Cognitive Temporal Models (NFCTM) described. Those 
provide accounting of indirect and indirect mutual impact of all the multidimensional time 
series (MTS) components with their temporary delays relative to each other and are oriented 
on forecasting of multidimensional time series. Neuro-Fuzzy Cognitive Temporal 
Componental Models, which provide the formation of forecasted values of the MTS 
components with the temporary delays demanded, are used in NFCTM concepts in order to 
accomplish the temporal transformation. There is the way of NFCTM coordinated training 
described, which consists in Neuro-Fuzzy Componental Temporary Models for each of the 
NFCTM component and also in coherence of these Neuro-Fuzzy Componental Temporary 
Models (NFCTM) between each other.  There is an MTS forecasting method offered in 
condition of unreliability the nonlinearity of the interaction, partial inconsistency and 
interdependence of the MTS components, that is based on NFCTM. There are experimental 
studies conducted and the results of using the proposed method are presented on the example 
of the problem of multidimensional forecasting of the state of the urban environment in 
Moscow. The use of the proposed method may be in demand to provide reliable forecasting of 
the state of the urban environment in various regions of Russia and other countries, including 
into account the complex epidemiological situation. 
Keywords1 
multidimensional time series, Neuro-Fuzzy Cognitive Temporal Model, Neuro-Fuzzy 
Componental Temporal Model.  

1. Introduction 

Methods based on random process theory, mathematical statistics, and pattern recognition are used 
to predict multidimensional time series (MTS). At the same time, as a rule, they are based on approaches 
to forecasting of one-dimensional time series and do not fully take into account the non-linear nature of 
interaction between the components of the MTS, different quality, insufficient volume and incomplete 
information [1-3]. 

Currently, neural network and fuzzy methods are well established to solve these problems [4, 5], the 
limitations of which are the difficulty of taking into account the indirect interplay of MTS components 
and their partial coherency. 

The multi-criteria nature of analysis and forecasting requires minimization of prediction errors for 
all MTS components at the same time. However, this is generally impossible to achieve for complex 
systems and processes in real-world conditions of uncertainty, non-linearity of interaction, partial 
inconsistency and substantial interdependence of TDM components. 

Fuzzy cognitive maps and prediction methods based on them are aimed at solving such problems 
[8-10]. However, their use is also limited by the insufficient capacity of the system dynamics models 
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used and the lack of consideration of the different time delays of the interdependent components of the 
MTS. 

The article deals with Neuro-Fuzzy Cognitive Temporal Models (NFCTM) which provide direct 
and indirect interaction of all components of multidimensional time series (MTS) with their time delays 
relative to each other, and are focused on predicting multidimensional time series. The method of 
coordinated training of NFCTM is described, which consists in training of Neuro-Fuzzy Component 
Temporal Models for each NFCTM concept, as well as in matching of these Neuro-Fuzzy Component 
Temporal Models of NFCTM.  

There are experimental studies conducted and the results of using the proposed method are presented 
on the example of the problem of multidimensional forecasting of the state of the urban environment in 
Moscow. The use of the proposed method may be in demand to provide reliable forecasting of the state 
of the urban environment in various regions of Russia and other countries, including into account the 
complex epidemiological situation. 

2. Neuro-Fuzzy Cognitive Temporal Models for predicting multidimensional 
time series 

Let’s present the MTS as follows: 
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where S – multidimensional time series; ( )( ) ( )
1 ..t t

t NS s s=  – time «slice» of the MTS at the t-th instant of 

time; ( )t
js  – the value of the j-th component of the MTS at the t-th instant of time; i

jL  – maximum time 
delay of the j-th component of the MTS relative to the i-th; ,i jϕ  – operator for accounting for the 

interaction between the j-th and i-th MTS components; iF  – transformation for definition ( )t
is , 

1, ..., ,i N=  N – quantity of the MTS components. 
Article [9] proposes a new type of NFCTM focused on MTS forecasting: 
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where С – multiple NFCTM concepts corresponding to MTS components; iF  – fuzzy temporal 

transformation implemented by the concept iC ; N – number of NFCTM concepts; ( )t
is  – predicted fuzzy 

value of the concept iC  at the t-th instant of time; ( ) ( )1 ..
j
it Lt

j js s −− ′ ′ 
 

 – subset of the input temporal fuzzy 

variables of the concept iC , associated with the corresponding output temporal fuzzy variables of the 
concept jC ; 

iN  – number of NFCTM concepts directly related to the concept iC ; j
il  – time delay for the 



corresponding input variable ( )j
it l

js −′  of the concept iC , 0..j j
i il L= ; W  – a set of fuzzy degrees of direct 

impact between all pairs of NFCTM concepts; ijW  – a subset of fuzzy degrees of impact  ( )j
it l

ijw
−

 of the 
concept jC  on the concept iC  taking into account the time delay j

il ;  ijϕ  – fuzzy operator accounting 
for the degree of impact of the output variable of the concept jC  on the concept's input variable iC . 

 

3. Description of the method for predicting multidimensional time series 
based on Neuro-Fuzzy Cognitive Temporal Models 

The method of prediction of MTS based on NFCTM consists of the stages discussed below. 
Stage 1. Identification of meaningful components of the MTS for determining the composition of 

NFCTM concepts. 
The implementation of the proposed method will be considered on the example of multidimensional 

forecasting of the state of the urban environment in Moscow. The state of the urban environment is 
characterized by the state of its facilities, systems and infrastructure and cannot be reduced to any single 
indicator. Basing on the results of previous studies [10-12], the following meaningful factors 
(components of MTS) characterizing the state of the urban environment have been determined: 

• C1 – ecology of the urban environment; 
• C2 – capacity of urban environment infrastructure; 
• C3 – income level of the population; 
• C4 – industrial consumption of fuel and energy resources; 
• C5 – life quality of the population; 
• C6 – sanitary and epidemiologic situation. 
Stage 2. Determining the fuzzy degrees of impact of the components of the MTS for different time 

delays and forming the structure of the NFCTM. 

To determine the degree of mutual impact  ( )j
it l

ijw
−

 taking into account time delays j
il  for NFCTM 

concepts, various methods of data analysis can be used, based on the establishment of interdependencies 
between all the components of the MTS. For example, for the example under consideration (due to the 
different quality of the urban environment, the expert nature of their assessment, the non-linear 
relationship between them and the non-stochastic uncertainty), a fuzzy extension of the multiple linear 
regression method has been chosen [13].  

In table 1 shows the formed matrix of fuzzy relations W  of impact of concept sources on concept 
receivers of NFCTM for solved task of multidimensional forecasting of urban environment state. For 
clarity, only modal values of fuzzy degrees of impact are shown. 

Table 1 
Formed matrix of fuzzy impact relationships between NFCTM concepts 

W j
il  1C  2C  3C  4C  5C  6C  

1C  
1 0 0,75 0 0,52 0 0 
2 0 0,84 0 0 0 0 
3 0 0,40 0 0,40 0 0 

2C  
1 0 0 0,79 1,0 0 0 
2 0 0 0 0 0 0 
3 0 0 0 0 0,52 0,57 

3C  
1 0,55 0 0,68 0,50 0,40 0,43 
2 0 1,0 0 0,46 0 0 
3 0,61 0 0 0,88 0,99 0 

4C  
1 0 0,48 0,67 0,79 0 0 
2 0 0,41 0 0,43 0 0 
3 0,41 0,40 0 0,54 0,49 0 



5C  
1 0 0,68 0,62 0,42 0,45 1,00 
2 0 0,40 0 0 0,48 0 
3 1,0 1,00 1,00 0,47 1,00 0,54 

6C  
1 0 0 0 0 0,53 0,59 
2 0 0 0 0 0,51 0 
3 0 0 0 0 0 0 

 
Formation of NFCTM structure consists in definition of structural relationships between NFCTM 

concepts weighted by fuzzy values  ( )j
it l

ijw
−

. The formed structure of the NFCTM for multidimensional 
forecasting of the state of the urban environment of Moscow is shown in figure 1. 
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Figure 1. Neuro-Fuzzy Cognitive Temporal Model for multidimensional forecasting of the state of 
the urban environment in Moscow 

As Neuro-Fuzzy Component Temporal Models iFS , that implement fuzzy temporal transformations 
 iF , modified ANFIS models (Adaptive Neuro-Fuzzy Inference System), providing generation of 
predicted fuzzy values of MTS components with required time delays [9]. 

The input variables of the model iFS  concept iC  are related to the output variables of those concepts 
that have a direct impact on the concept iC . At the same time input variables iC  are «weighted» by 

fuzzy degrees of impact  ( )j
it l

ijw
−

: 
( )


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j j j

i i it l t l t l j j
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          (3) 

where T – operation of the t-norm (min-operation). 
The output variables of the model iFS  of the concept iC  are intended to generate the predicted 

values of the i-th MTS component, corresponding to reasonable time delays. 



To build models iFS , both expert information about the components of the MVR and experimental data 
can be used. Next, we will consider a mixed version, when the model's rule base is formed by an expert, 
and its training is carried out on the basis of a training sample. Let's consider this particular case as an 
example of building the structure (and later parametric configuration) of a Neuro-Fuzzy Component 

Temporal Model 1FS . The input variables of the model 1FS  – ( ) ( ) ( ) ( ) ( )1 3 3 3 3
3 3 4 5 11 , , , ,
t t t t t

S s s s s s
− − − − − ′ ′ ′ ′ ′′ =  

 
     , the 

output variables of this model – ( ) ( ) ( ){ }1 2
1 1 11 , ,
t t t

S s s s
− −

=    . 

Here is an example of one fuzzy production rule of the model 1FS  for the concept 1C  of NFCTM: 
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(4) 

where , ,L M H    – fuzzy sets of prerequisites and conclusions of model rules 1FS . 
Figure 2 shows an example of a Neuro-Fuzzy Component Temporal Model 1FS . 
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Figure 2. Neuro-Fuzzy Component Temporal Model 

The model 1FS  consists of the following layers of elements. 
 Layer 1. Layer elements are used to determine the degrees of truth for input variable values relative 

to the corresponding fuzzy statements of the prerequisites of all model rules. For p-th rule (p = 1, …, 
P) models: 
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Layer 2. Layer elements aggregate the truth degrees of rule prerequisites. For p-th rule:  
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Layer 3. Layer elements activate rule conclusions according to the degrees of truth of their 
prerequisites based on the implication operation (here, Mamdani implication). For the considered rule:  

( )( ) ( )1 min , .
t

pM s Mµ α=



  (7) 



Layer 4. The layer element performs the max-disjunction operation, accumulating the activated 
conclusions of all the model rules: 

( ) ( )( ) ( )( ) ( )( )( )1 1 1 1max , ..., , ..., .
t t t t

L M Hs s s sµ µ µ=
  

     (8) 

Layer 5. Layer elements are designed to normalize and output model output variable values with 
required time delays: 
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t t t t t t
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Next, we use the notation ( )t
is  for normalized values ( )

,
t

i norms . 
Value of the output fuzzy variable ( )t

is  of the model iFS  if necessary, is defuzzified using the «center 
of gravity» method [14]: 
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where 
( )t
is  – defuzzified value of the output variable 

( )t
is  of the model iFS  in timepoint t; ( )( )t

idef s  – 

defuzzification operator using the «center of gravity» method; ( )
,
t

i ms  – m-th the discretized value of a 

variable ( )t
is , 1, ...,m M= ; ( )

( )( ),t
i

t
i ms

sµ


 – degree of the identity of the variable ( )t
is  for the value ( )

,
t

i ms ; 

( )( )t
iSupp s  – variable carrier ( )t

is .  

Set of values { }( ) | 1, ...,t
is i N=  at the output of the corresponding models { }| 1, ...,iFS i N=  

comprehensively characterizes the predicted state of the urban environment at a given time t. 
Stage 3. The coordinated training of NFCTM 
For coordinated training of NFCTM, a method is proposed comprising the following two 

procedures: 
firstly, training Neuro-Fuzzy Component Temporal Models for each NFCTM concept; 
secondly, matching of Neuro-Fuzzy Component Temperature models with each other. 
Training procedure for Neuro-Fuzzy Component Temporal Models iFS  is preceded by the 

formation of training samples: 
( ) ( ) ( )1 ( ),..., ( ) | 1,..., , ( ) , 1, ..., ,

j
it Lt t

j j i is k s k j N s k k K−−   ′ ′ ∈ =      
    (11) 

where ( ) ( ) ( )1 ( ),..., ( ) | 1,..., , ( )
j
it Lt t

j j i is k s k j N s k−−  ′ ′ ∈  
  
    – input and output variable values in k-th example; K 

– number of examples in the training sample. 
For the models iFS  implementing Mamdani’s inference algorithm [14], modal values and blur 

degrees of fuzzy sets of prerequisites and rule conclusions are configurable parameters. 
Training procedure for all NFCTM models iFS  includes the following steps.  
Step 1. For each example of the training selection based on the values of input variables 
( ) ( )1 ( ),..., ( ) | 1,...,

j
it Lt

j j is k s k j N−−  ′ ′ ∈  
  
   the model iFS  calculates the value of the output variable ( )

( ) ( )t
i curs k . 

Step 2. For all examples of teaching sample, the error function is calculated, depending on the 
parameters of the model to be configured: 
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1

1 ( ) ( ) .
K

t t
i i i cur

k
E s k s k

K =

= −∑    (12) 



Step 3. In accordance with the learning algorithm (e.g., an error reverse propagation algorithm or a 
genetic algorithm), adjustments are made to the parameters to be adjusted. 

Steps 1-3 are iteratively repeated, and model training is considered complete when for each of them 
the total error does not exceed the set threshold. 

Procedure for matching all Neuro-Fuzzy Component Temporal Models , 1, ...,iFS i N=  is performed 
after their individual training and consists in such change of modal values and degrees of blur of fuzzy 

degrees of impact 

( ){ }| 0, ...,
j

it l j j
ij i iw l L
−

=  between concepts of NFCTM, which provides maximum 

increase of prediction accuracy of each component of MTS without deterioration of prediction accuracy 
of at least one of other components of MTS. This procedure is preceded by a teaching sample consisting 
of data for all TDM components: 
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    (13) 

where Q – Number of examples in this additional teaching sample. 
Procedure for matching all NFCTM , 1, ...,iFS i N=  consists in the following steps.  
Step 1. For each example from a matching training sample based on the values of input variables 
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output variables ( )
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Step 2. For all sample examples for all models , 1, ...,iFS i N=  error functions that depend on 

configurable fuzzy impact parameters  ( ){ }| 0, ...,
j

it l j j
ij i iw l L
−

=  between NFCTM concepts: 

( ) ( )( )2

( )
1

1 ( ) ( ) , 1, ..., .
Q

t t
i i i cur

q
E s q s q i N

K =

= − =∑    (14) 

Step 3. According to the genetic algorithm used (e.g, [15]) According to the used genetic algorithm, 

adjustment of customizable parameters of fuzzy degrees of impact is performed  ( ){ }| 0, ...,
j

it l j j
ij i iw l L
−

=  

between NFCTM concepts thus, to ensure maximum increase in accuracy of forecasting each of the 
components of MTS without deterioration of prediction accuracy of at least one of the other MTS 
components.  

Steps 1-3 are iteratively repeated, and the procedure for matching all NFCTM is considered 
successful if the total error for each of these models does not exceed a certain set threshold (For well-
aligned MTS components), or for these models, the Ejworth-Pareto principle will be implemented, [14], 
which, in relation to consistent NFCTM training, is expressed in that it is impossible to maximize the 
prediction accuracy of any MTS component without deteriorating the prediction accuracy of at least 
one of the other MTS components. 

Stage 4. MTS forecast based on trained NFCTM. 
MTS forecasting is performed based on a trained NFCTM and consists in calculating the values of 

output model variables , 1, ...,iFS i N=  by the corresponding sets of values of the input variables of these 
models that are set each time. 

Experiments were carried out and the results of using the proposed method on the example of 
multidimensional and forecasting the state of the urban environment in Moscow were obtained. Figure 
3 illustrates the results obtained. 

 
 



 
Figure 3. Illustration of the results of multidimensional forecasting of the state of the urban 
environment of Moscow based on NFCTM 

Table 2 presents a comparative assessment of the results of multidimensional forecasting of the state 
of the urban environment in Moscow using an artificial neural network (ANN) and the developed 
NFCTM. As a comparison, a multilayer perceptron with a hidden layer of 24 neurons was used, which 
showed the best among various ANN variants. 

The comparative assessment showed that the use of the proposed method based on NFCTM in small 
sample conditions allows to increase the accuracy of the forecast of MTS by an average of 10-15% 
compared to the best-performing ANN. 

 
Table 2 
Comparative evaluation of the multidimensional forecasting results 

No MTS components Forecasting error, MAPE, % 
ANN NFCTM 

1. Ecology of the urban environment 7,40 6,91 
2. The infrastructure power of the urban environment 1,51 0,13 
3. Income level of the population 8,72 9,85 
4. Industrial consumption of fuel and energy resources 2,35 1,62 
5. Population life quality 2,12 0,55 
6. Sanitary and epidemiological situation 5,35 5,31 

The article describes Neuro-Fuzzy Cognitive Temporal Models focused on predicting 
multidimensional time series and providing for the direct and indirect mutual impact of all components 
of the MTS with their time delays relative to each other under conditions of uncertainty. 

To implement fuzzy temporal transformations of NFCTM concepts, Neuro-Fuzzy Component 
Temporal Models are used, which are modified ANFIS-type models, and provide the formation of 
predicted values of MTS components with the required time delays. 

The proposed method of consistent training of NFCTM is described, which consists, firstly, in 
training Neuro-Fuzzy Component Temporal Models for each concept of NFCTM, and secondly, in the 
coordination of these NFCTM. 

A method for MTS predicting under conditions of uncertainty, non-linearity of mutual impact, 
partial inconsistency and interdependence of MTS components, based on NFCTM, has been developed. 



Experimental studies are conducted and the results of using the proposed method are presented on 
the example of the problem of multidimensional forecasting of the state of the urban environment in 
Moscow. A comparative assessment showed that using this method based on NFCTM in small sample 
conditions allows to improve the accuracy of the MTS forecast by an average of 10-15% compared to 
the best ANN results. 

The use of the proposed method may also be in demand to ensure reliable forecasting of the state of 
the urban environment in different regions of Russia and other countries, including taking into account 
the difficult epidemiological situation. 
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