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Abstract
In the work the local parametric training of Algebraic Bayesian networks is considered. The theorem
about the change of Dirichlet distribution parameters during transition from a priori to a posteriori
probability distribution on propositional quantum formulas is formulated and proved. The proof is
based on the conjugation property of the multinomial and Dirichlet distributions.
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1. Introduction

One of the main points in machine learning models research is the training of the model —
parametric synthesis and structural synthesis. There is a complex mathematical apparatus
that determines the correctness of operations behind specific algorithms and calculations.

This is also correct for Algebraic Bayesian networks. The object of the research is approach
to local parametric training of Algebraic Bayesian network, what is training of network repre-
sented by knowledge pattern. The a priori distribution of probabilities presented in a knowl-
edge pattern is studied and approaches to the formation of the a posteriori distribution resulting
from learning are considered.

2. Related works

Neural networks [1, 2, 3, 4, 5] and probabilistic graphical models are one of the machine learn-
ing models. Belief Bayesian networks, [6, 7, 8], Markov networks [9, 10, 11] and Algebraic
Bayesian networks [12], which are the subject of the research, belong to the class of proba-
bilistic graphical models.
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Figure 1: Example of algebraic Bayesian network and the presentations of the first knowledge pattern
in it as the ideal of conjuncts and vector of quantum probabilities

Approach for generating the structure of Bayesian network basing on con-straint-based,
assessment-based and search-based methods is described in [6]. The use of Belief Bayesian
networks for prediction of students expulsion is the subject of research [7]. The detection and
prediction of emergencies on atomic power plants by Bayesian network was studied in [8].

One of the main ideas during the work with probabilistic graphical models is their decompo-
sition in smaller parts, which describe some information about the object [13]. These parts are
knowledge patterns in Algebraic Bayesian network theory [12]. Fig. 1 presents an example of
one of the possible Algebraic Bayesian network graphical representation: the non-directional
graph with knowledge patterns in nodes.

The representation of knowledge pattern in the form of proposal formulas-quantum set is
used in the context of this research [12], moreover, each propositional formula has scalar or
interval probabilities estimate in N.Nilsson interpretation [14]. Other possible representations
of knowledge pattern are ideals of conjuncts or disjuncts [12]. The work [15] has description
of transition matrix between the set of propositional-formulas-quanta, ideal of conjuncts and
ideal of disjuncts.

Main operations of probabilistic-logical inference during the work with Algebraic Bayesian
networks are consistency maintaining, a priori and a posteriori inference [16].

Consistency maintaining is verification of correctness of probability estimates which are
presented in the network and their changing if it is necessary and possible [17].

A priori inference is receipt of probability estimates of some propositional formula based on
the estimates presented in the network [12].

A posteriori inference is the process of changing estimates in network basing on some in-
formation, which is presented as evidence. Also the evidence probability is calculated in this
process. The study [18] describes the sensitivity of local a posteriori inference.

When working with Algebraic Bayesian networks it is necessary to receive the probabili-
ties of elements in network. The research [19] provides an approach for obtaining algebraic
Bayesian network with interval estimates basing on data set with missing values. The approach
for receiving quantum probabilities with scalar estimates is investigated in [13] is the subject
of this research.

3. Local parameter training of Algebraic Bayesian networks

Tasking of local parametric training of algebraic Bayesian networks is proposed in the pa-
per [13].



𝑥1 𝑥2 𝑥3 𝑥̂1𝑥̂2𝑥̂3
0 1 0 010
? 1 0 ?10
? ? 1 ??1
1 0 0 100
? 1 ? ?1?
1 1 1 111
0 0 ? 00?
? ? 0 ??0
0 1 1 011

Table 1
The example of conversion data set presented as the set of atom variables to the quanta data set (? —
missing value)

The input data set is the set of quanta with missing values, in other words, it is the set of
implementations of the conjunctions of random binary elements.

For illustrative purposes, let us consider random binary elements above the alphabet 𝑥1, 𝑥2, 𝑥3.
We will be interested in the implementations of their conjunctions 𝑥̂1𝑥̂2𝑥̂3. The designation 𝑥̂
is used to represent a random binary element that may be set as false or true (0 and 1 respec-
tively for convenience). In this case the implementation (observation) can be either complete
or incomplete.

Here are some examples of complete (without missing values) implementations for 𝑥1, 𝑥2, 𝑥3 ∶

• 001,

• 010,

• 110,

• 111.

Examples of incomplete (with missing values) implementations(the missing value is marked
with ?):

• 00?,

• 0?0,

• ??0,

• ?1?.

It is possible that line in input data set is presented as the set of atom variables with 0, 1 or
missing value. That case can be easily converted to the quanta. The example for several lines
is presented in table 1.

When formalizing local parametric machine training with Dirichlet distribution (single and
conjugated distributions) the first step of the training is the creation of "a priori" knowledge
pattern with equal quanta probabilities. Application of such uniform distribution on quanta



corresponds to the implicit hypothesis that in conditions of complete uncertainty we can not
give preference to any quantum.

Although this is the subject of another study, it should be noted that this hypothesis is not
always true. For example, expert knowledge expressed as incomplete, inaccurate, nonnumer-
ical information may affect the choice of a priori distribution. It may become known from an
expert that features of a subject area are such that 𝑝(𝑥1) ≤ 𝑝(𝑥2), 𝑝(𝑥2) ≥ 0.75. The information
obtained (in fact, initially - knowledge obtained from the Expert Advisor with uncertainty) may
significantly affect the choice of a priori distribution.

According to the definition of quanta probability, the probability of each element will be 1/𝑘,
where 𝑘 is the number of quanta in knowledge pattern, 𝑘 = 2𝑛, where 𝑛 is a number of atoms
in alphabet, under which knowledge pattern is built.

During the first step of the algorithm the knowledge pattern is trained on a part of data set
without missing values.

During the second step the part of data set with missing values is used. On each step the
quantum with missing values is converted to the set of quanta without missing values, which
are not contradictory to the given. That means that these quanta are acquired from given
by all possible replacements of missing value by 0 or 1. Basing on the received set of quanta
the probabilities in the knowledge pattern are changed: for those quanta, which are in set,
the probabilities increase with the preservation of their ratio, for other they proportionally
decrease.

4. Probability distribution

Theorem
After the training of knowledge pattern by proposed method the probabilities of quanta in

knowledge pattern will be described by the Dirichlet distribution.
Theorem
Proof
Approaches to the analysis of what happens at receipt of additional data with conjugated dis-

tributions are considered deeply enough in modern probability and machine learning theories;
in the proof we will use receptions from[20].

The probabilities of quanta in "a priori" knowledge pattern can be described by Dirichlet
distribution with parameter vector set as unit vector. The probability density function in that
case is a gamma function with knowledge pattern dimensional as parameter:

Dir(𝑄𝑘) =
Γ(∑𝑘

𝑖=0 𝛼𝑖)
∏𝑘

𝑖=0 Γ(𝛼𝑖)

𝑘
∏
𝑖=0

p(𝑞𝑖)𝛼𝑖−1 =

=
Γ(𝑘)

∏𝑘
𝑖=0 Γ(1)

𝑘
∏
𝑖=0

p(𝑞𝑖)0 = Γ(𝑘),

where 𝑄𝑘 is the quanta vector with 𝑘 dimensional, Γ – gamma function and {𝛼𝑖} = {1} is the
distribution parameter vector.



Let us take a look at the data set. Every line of data set (which is presented as quantum 𝑞
with possible missing values) can be converted to the vector of 𝑘 dimension by next rule:

• this is the 1 value on position 𝑖, if quantum 𝑞𝑖 is not contradict to the 𝑞;

• this is the 0 value in other cases.

Index of quantum is its binary representation converted to decimal number system.
This interpretation of data set allows to consider each input line, corresponding to quantum

without missing values, as random experiment, the result of which is the one of the quanta.
The 1 value in the relevant vector shows, which quantum is the result.

Note, that each of this experiments is independent on others, as data set has no information
about the relationship between trials. Thus, the part of data set without missing values can be
considered as 𝑛𝑓 𝑢𝑙𝑙 independent experiments with 𝑘 possible results. That means that it can be
described by multinomial distribution.

Rows corresponding to quanta with missed values need to be considered separately, since
for such rows the number of outcomes is more than one, what is impossible in a multinomial
distribution.

Each such line 𝑙 can be converted to the set of vectors {𝑟} of length 𝑘, such so |𝑟𝑖 | = 1∀𝑖 and
∑𝑖 𝑟𝑖 = 𝑙. This set of vectors can be similarly presented as the set of independent experiments,
described by multinomial distribution.

Thus, on each step the likelihood function on each step has multinomial distribution.
According to the Bayes theorem the 𝑗 step of training is:

p𝑗(𝑄|𝑥) =
p𝑗(𝑥|𝑄)p𝑗(𝑄)

∫𝑄 p𝑗(𝑥|𝑄)p𝑗(𝑄)𝑑𝑄
,

where p𝑗(𝑄) is a priori distribution, which is equal to the a posteriori distribution for each 𝑗 ≥ 1.
For 𝑗 = 0 the a priori distribution is Dirichlet distribution: p0(𝑄) = Dir(𝑄𝑘).

The Dirichlet distribution is conjugate prior to the multinomial distribution, so, a posteriori
distribution on each set is Dirichlet distribution.

Thus, the result of training will be the knowledge pattern with quanta probabilities which
have Dirichlet distribution.
The theorem is proved
Let us consider the knowledge pattern 𝐾𝑃 built over the atoms 𝑥1, 𝑥2. In case there is no

information about the subject area, the a posteriori distribution of quanta will set their proba-
bilities equal to 0.25. However, some information which is known before training, expressed,
for example, in expert estimates, may affect the a priori distribution. Let p(𝑥1) ≤ 0.5. In this
case the a priori probability of quanta is: p(00) = p(10) = 0.375, p(10) = p(11) = 0.125.

It should be noted that initial constraints have only limited the class of probability distribu-
tions from the whole simplex of possible distributions and narrowed interval estimates. The a
priori distribution was chosen as the mass center of the resulting figure in hyperspace. Gener-
ally speaking, when considering a priori distribution issues, there are tasks of constructing a
canonical representative — a knowledge pattern with scalar estimates — for an initial knowl-
edge pattern with interval estimates. In addition, the gamma distribution parameters can be af-
fected by the "uncertainty level" of the initial knowledge pattern — the extent to which possible



distributions of probabilities (compatible with the knowledge pattern) relative to the canoni-
cal representative vary. However, both formalization of this remark and consideration of the
degree of uncertainty are tasks of other studies.

Let us suppose that the training resulted in a knowledge pattern with a probability vector of
quanta 𝐏𝑞 . In works[12, 13] the approach to obtaining the probabilities of conjuncts 𝐏𝑐 and the
vector of probability of disjuncts 𝐏𝑑 is described. This approach allows to convert the result of
training proposed above to the vector of conjuncts or disjuncts.

In order to do this, we define the matrices 𝐉𝑛 and 𝐊𝑛 ∶

𝐉1 = [
1 1
0 1] , 𝐉𝑖+1 = [

𝐉𝑖 𝐉𝑖
𝟎 𝐉𝑖]

,

𝐊1 = [
1 1
1 0] , 𝐊𝑖+1 = [

𝐊𝑖 𝐊𝑖
𝐊◦
𝑖 𝐄 ] ,

where 𝐄 is a matrix with all elements equal to 1, 𝐊◦
𝑖 is received from 𝐊𝑖 by replacing first row

elements with 0.
The probabilities of conjuncts and disjuncts can be calculated in the next way:

𝐏𝑐 = 𝐉 × 𝐏𝑞 ;

𝐏𝑑 = 𝐊 × 𝐏𝑞 .

Conclusion

The study covers local parametric learning of Algebraic Bayesian networks. The training pro-
cess is described and the theorem on the probabilities of quanta in knowledge pattern having
Dirichlet distribution is proved.

Further researches in this direction are studying the distribution of probabilities for a knowl-
edge pattern represented as an ideal of conjuncts or disjuncts, as well as researching of the
families of distributions received in training with the expert’s knowledge, for example training
with obtaining interval estimates.
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