Yet Another Proof of the Strong Equivalence Between
Propositional Theories and Logic Programs

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{j ool ee, Ravi.Palla}@su. edu

Abstract. Recently, the stable model semantics was extended to thaxsgh
arbitrary propositional formulas, which are beyond théitianal rule form. Ca-
balar and Ferraris, as well as Cabalar, Pearce, and Valvendeved that any
propositional theory under the stable model semantics ednred into a logic
program. In this note, we present yet another proof of ttgalteUnlike the other
approaches that are based on the logic of here-and-therpraaf uses familiar
properties of classical logic. Based on this idea, we pitesprototype implemen-
tation for computing stable models of propositional thestising the answer set
solverbLv. We also note that every first-order formula under the stedneel
semantics is strongly equivalent to a prenex normal formsghwoatrix has the
form of a logic program.

1 Introduction

Recently, the stable model semantics was extended to thaxsgharbitrary proposi-
tional formulas, which are beyond the traditional rule fdfim2]. Ferraris [2] showed
that nonmonotone aggregates can be naturally expresdesléxtended syntax. On the
other hand, Cabalar and Ferraris [3] showed that every gitpoal theory under the
stable model semantics is strongly equivalent [4] to a Iggimgram. They provided
two proofs based on the logic of here-and-there, one by sgiatmansformation, and
the other by constructing a logic program using counterrsodithe theory. An ap-
proach similar to the first proof was taken in [5], where théhats presented a set of
rules for rewriting a propositional theory into a disjunetiogic program. These rules
are an extension of the rules for turning a program with riesig@ressions into a logic
program [6], which led to an implementationp [7]. The system is essentially a pre-
processor to the answer set solwev ! for handling programs with nested expressions.

In this note, we present yet another proof of the theoremmamgtequivalence be-
tween propositional theories and logic programs. Unlilkedther approaches that are
based on the logic of here-and-there, our proof is based aparator that character-
izes strong equivalence in terms of classical logic, usmegdended signature with two
groups of atoms, the original one corresponding to the &hetorld, and a group of
newly introduced atoms referring to the “here” world. Thi nnly shows that the re-
duction is possible, but also tells us howgeneratestrongly equivalent logic programs
based on equivalence in classical logic.

Yhttp://ww. dbai . tuwi en. ac. at/ proj /dl v/

2 Joohyung Lee and Ravi Palla

The reduction idea has led us to develop a prototype impleatien, which we call
F2LP,? that computes the stable models of an arbitrary proposititeory. Similar to
NLP, the system turns a propositional theory into a disjundtigéc program and calls
DLV.

We also apply the reduction idea to first-order formulas urtde new definition
of stable model semantics, recently proposed in [8]. We sthatvany first-order the-
ory under the stable model semantics is strongly equivateatprenex normal form
whose matrix has the form of a logic program. Thus the syittddference of arbitrar-
ily nested connectives and quantifiers is not essential dmtvthe language proposed
in [8] and logic programs. On the other hand, since the prewemal form may con-
tain existential quantifiers, it is different from a logicogiram, where all variables are
assumed to be universally quantified.

In the next section, we review the definition of stable modeisarbitrary propo-
sitional formulas as well as the definition of strong equevale between propositional
formulas, and present how to find a logic program that is gfigoequivalent to a given
formula. In Section 3, we present a simpler transformatol,in Section 4, we extend
the reduction idea to arbitrary first-order formulas anderibat every first-order theory
is strongly equivalent to a prenex normal form. In SectionvB,present a prototype
implementation of computing the stable models of propostél theories.

2 Reducing propositional formulas to logic programs

We first review the definition of a stable model proposed in B8] restricting atten-
tion to the propositional case. This definition is esselytidfle same as the encoding
of formulas of equilibrium logic by quantified Boolean forfas given in [9], and is
equivalent to the fixpoint definition of a stable model progubin [2].

Let F’ be a propositional formula antda signature consisting of all atoms, . . ., p,,
occurring inF'. By SM[F'] we denote the second-order propositional sentence

F AYu((u < p) — —F*(u)),

wherep stands for the tuplgy, . . ., p,,, uis a tuple ofn distinct propositional variables
U, - . ., Uy, €quationu < p stands for

(ur = p1) Ao A (un — pn) A=((pr — ur) A A (P — un))
as in the definition of circumscription, arfd (u) is defined recursively, as follows:
- Pi = Ui
- 1*=1;

- (FOG)* = F*© G*, whereo € {A,V};
- (F->G)=(F*"—-G)N(F — Q).

We regard-F' as shorthand foF" — . Note that— corresponds tmot in the logic
program syntax. For instance, the rule

p < Notgq

2http://peace. eas. asu. edu/f2l p .

Strong Equivalence Between Propositional Theories andcliigpograms 3

is identified with the formula
g4 —Pp.

The operatof’ — F*(u) replaces each atom with the corresponding propositional
variable, and commutes with all propositional connectigrsept implication. If, in
the definition of this operator, we drop the second conjuediérm in the clause for
implication, thenF™(u) will turn into the formulaF'(u) referred to in the definition of
circumscription [10, 11]. A model of" is stableif it satisfies SMF].

According to [12, Section 2.6], a (propositional) formufais said to be strongly
equivalent to a formuld- if any formulaF’ that contains an occurrence Bfhas the
same stable models as the form@aobtained fromF” by replacing that occurrence
with G. This condition is more general than the original definitioom [4] not only
because it is applicable to arbitrary formulas, but alsabeeF' is allowed here to be
any subformula of”, not necessarily a “subconjunction.”

Ourreductionidea is based on the following propositionfi8], which generalizes
the main theorem from [13], stating that the strong equivedebetween two formulas
F and@ can be characterized in terms of equivalence (in classicat) between™*
andG*. Leto’ be a signature consisting of distinct atofp§, . . ., p/, } that are disjoint
from o, and letp’ stand for the tuple/,...,p,,. FormulaF*(p’) is obtained from
F*(u) by substituting the atomp’ for propositional variables.. Thus F*(p’) is a
transformation oft” in signaturer U ¢’. Equationp’ < p stands for

(PL = p1) A+ A(ph, — Pa)
as in the definition of circumscription.

Proposition 1 [8, Proposition 5] Formulas’ andG of signatures are strongly equiv-
alent iff

p' <p— (F(p) < G"(p)) 1)
is a tautology.

As usual, a formuld’ is in negation normal fornf, for every subformulaG — H
of F', formulaG is an atom, and/ is 1. An occurrence of a formul& in a formula?’
is positiveif the number of implications in¥’ containing the occurrence @f in the
antecedent is even, anegativeotherwise.

Definition 1. An implicationF — G of signatures U ¢’ is called acanonical impli-
cationif F' andG are formulas in negation normal form such that every ocauceeof
atoms fronmy”’ is positive, and every occurrence of atoms fiens negative.

For example,
PAg—T
is not canonical, while
(' V(=g AT")) — (s A=) ()
is canonical.

Given a formulaF of signatures U ¢/, by R(F') we denote the formula of signa-
ture o that is obtained fron¥ by dropping all occurrences 6in F. Note thatR(F),

4 Joohyung Lee and Ravi Palla

whereF is a canonical implication, can be identified with a logic gmam with nested
expressions [6], by identifying=" with not, ‘A’ with * ’, and v’ with * ;". For instance,
in logic programming notation, whefi is (2), R(F") can be written as

s, notp <« p; (notq, 7).

The following proposition tells us how to obtain a logic pram that is strongly
equivalent to a given formula.

Proposition 2 Given a formulaF', if G is a conjunction of canonical implications that
is equivalent taF™*, thenF” and R(G) are strongly equivalent.

The proof of Proposition 2 uses the observation that
P <p— (F" < (R(G))) 3)

is a tautology. In view of Proposition 1, it follows thAtand R(G) are strongly equiv-
alent. The fact that every propositional theory is stroregjuivalent to a logic program
follows from the fact that every formul&* can be equivalently rewritten as a conjunc-
tion of canonical implications. One way to do this is by fongia conjunctive normal
form (CNF) of F*(p’), and then converting each of its clauses into a canonicdidaxp
tion as follows. Given a clausg of signaturerUo’, by Tr(C') we denote an implication
whose antecedent is the conjunction of

— all p’ where—p’ € C, and
— all -p wherep € C,

and whose consequent is the disjunction of

— all p’ wherep’ € C, and
— all =p where—p € C.

Forinstance, iC is (p'V—q’' Vrv=s), thenTr(C) is (¢ A—r — p'V—s). We can take?

in the statement of Proposition 2 to be the conjunctiofirg€”) for all clauses”' in a
conjunctive normal form of™*. In view of Proposition 1, it follows that every formula
is strongly equivalent to a logic program whose rules haeddhm

a;...;ag;Notagyq;...;N0ta; «— aj+1,...,am, N0 A, 41, ..., N0ta,
(0 <k <1< m < n)where alla; are atoms.
Examplel F=(p —q) — 1.

(=) =) =0 —=)NP—q)—=1)A((p—q) —T)
S (@ VPVI)YAN(G VPV)AN® Vg V) A(—g Vg Vi)
ANlpVr)A(—qVr).

3 For convenience, we will often drogp’)” from F*(p’) when there is no confusion.

Strong Equivalence Between Propositional Theories andcliigpograms 5

Under the assumption thét’, ¢’, ') < (p, ¢, r), the formula can be simplified to
(pVIYAND' NV -gVT)YN(=g VI YA (g V).
Applying Tr to each clause yields the following formuta
(p =) A"V =gV) A(d = 1") A (= —). (4)
ThusR(G) is
(p =) A(pV—=qVr)Alg—T)A(-r — —q). ®)
In logic programming notation, (5) can be written as follows
r < notp
p; notg; r

T — ¢
notqg «— notr .

(6)

Proposition 2 tells us that logic program (6) is stronglyieglent to(p — ¢) — .
Example2 F=p — ((¢ —r) Vs).

p—=((g—=r)Vvs) =@ — (((d =r")AN(g=7)V))A(p—(g—71)Vs)
= (' V(=g V)N (=qVT) V) A(=pV (g V) Vs)
S (P Vg VI VS)A (P VgV rVSYA(-pV gV rVs).

Applying Tr to each clause yields the following formuta

P'ANg =" VSYANP AN-r—=qgVs)A(=rA=s— —pV—q). (7
ThusR(G) is
(PAg—=1VS)ANPA-T—=¢gVS)A(-rA-s— —pV—q). (8)

In logic programming notation, (8) can be written as follows
rys =D g
notq; s <« p, notr 9)
notp; notq < notr, nots .

Proposition 2 tells us that logic program (9) is stronglyieglent to formulgp — ((¢ —) V s).

3 Simpler Transformation

The following observation shows how to disregard some rddunnies with the transla-
tion introduced in the previous section.

6 Joohyung Lee and Ravi Palla

Proposition 3 Let F' be a propositional formula of signature Under the assumption
p’ < p,if F*is equivalenttdz A H whereG is a conjunction of canonical implications
and H is a formula of signature that is entailed byR(G), then F* is equivalent to
(R(G))".

Example I'. F = (p — ¢q) — r as in Example 1. Note that in (4), the last implication
(—r — —q) is entailed by

R((=p = 1) AN@' V=gV)A(d — 1))
Therefore, by Proposition 37* is equivalent to

(Fp—=7r)A(PV—gVr)A(g—r))"

In other words, in view of Proposition F is strongly equivalent to the first three rules
of (6).

Example 2. F = p — ((¢ — r) V s) as in Example 2. Note that in (7), the last
implication is entailed by

R(p'ANg =7 VSYNP' N1 ——qVs)).
Therefore in view of Proposition 3* is equivalent to
(PAg—=rVs)A(pA-r——gVs)).

In other words, in view of Proposition F; is strongly equivalent to the first two rules
of (9).

Based on Proposition 3, we consider the following definitidrich leads to a sim-
pler transformation than the one given in Proposition 2.

Definition 2. For any formulaF of signatures, F°(u) is defined as follows:

—pfzui;

- 1°=1;

- (FVG)°=F*VvG*

- (FAG)=F°ANG®;

- (F - G) =(F*— G").

Note thatF is different fromF™* when we identifyF’ with a conjunctionF; A --- A F,, (n > 1),
Feis
FYN---NFES
where

‘ F* otherwise.

K2

FO:{G*—>H* if FyisG — H,

The following proposition tells us that, in Proposition2; can be considered in
place of F*.

Strong Equivalence Between Propositional Theories andcliigpograms 7

Proposition 4 Given a formulaF', if G is a conjunction of canonical implications that
is equivalent taF°, thenF and R(G) are strongly equivalent.

Example I F = (p — gq) — r as in Example 1. Under the assumption that
@, d,7") < (. q,7),

P d)= (' = d)Np—q) =7
< (pVr)AE VgV) A (=g Vi)
S (p—=1"YANP VgV)N —71").
ThusF is strongly equivalent to
(7p =) APV ogVr)Alg—rT),

which is the same as in Examplé 1

Example 2’ F = p — ((¢ — r) V s) as in Example 2. Under the assumption that
#.q' 7' s") < (p.q,r),
Fo g ' s)=p" = (¢ =) Alg—r) Vs
= (p'V-g V' VYA (=p'VqgVrVvs)
PN =1 VSYNP A1 ——qV§).
ThusF is strongly equivalent to

(pANg—rVs)AN(pA-r——qVs),

which is the same as in Examplé 2

Due to lack of space, we do not provide a detailed comparistmwden our trans-
lation method and the others. However, we note that Praponsttnot only shows that
the reduction is possible, but also tells us how to genetaiagly equivalent logic pro-
grams of preferably smaller size, based on the notion ofvatgrce in classical logic.
This is in contrast with the other approaches that are baseagmactic rewriting rules
under the logic of here-and-there. For instance, givenradita

(p—=aq)—r)—r
our translation yields the following program:

q;7;notr«—p
notp <« notgq .

On the other hand, the following program is obtained accwyth Section 3 of [5].

notp; r < notq
T
q;r;notr«—p

notp; r; notr <« notgq .

8 Joohyung Lee and Ravi Palla

However, clearly, any translation according to Propositio(or Proposition 2) in-
volves an exponential blowup in size in the worst case. lddiés shown in [5] that
there is no polynomial translation from propositional tfies to logic programs if we
do not introduce new atoms, and that there is one if we all@mth

4 Prenex Normal Form of First-Order Formulas

The translation from an arbitrary propositional theoryiatlogic program shows that
their syntactic difference is not essential, which allowistng answer set solvers to
compute the stable models of arbitrary propositional fdesuCan the result be ex-
tended to first-order formulas, of which the stable modela®ruos is presented in [8]?
We begin with a review of the stable model semantics preddntg8], which ex-
tends the definition of a stable model reviewed in Section firsb-order sentences.
Given a first-order sentende by SM F'] we denote the second-order sentence

F AYu((u < p) — —F*(u)),

wherep stands for the tuple of all predicate constapts. . . , p,, occurring inF’, u is
a tuple ofn distinct predicate variables, . .., u,, equationu < p is defined as in
circumscription [11], and™ (u) is defined recursively, as follows:

- pi(tla cee 7tm)* = ui(tla e atm)v

= (ti=t2)" = (t1 =t2);

- 1*=1;

- (FOG)* = F*© G*, where® € {A,V};
- (F->G)*=F*"—-G)N(F—-G);

— (QzF)* = QxF*, whereQ € {V,3}.

A model of F is stableif it satisfies SMF']. For the definition of strong equivalence
extended to first-order formulas, we refer the reader toi@edtof [8].

Proposition 1 can be extended to the case whesedG are first-order formulas [8,
Proposition 5]. Using the proposition, one can prove thatr¥irst-order formula is
strongly equivalent to a prenex normal form. The followirrgosition is essentially
Theorem 6.4 of [14].

Proposition 5 Every first-order formula is strongly equivalent to a prenexmal form.

The proposition follows from the fact that usual prenex nalrfiorm conversion
rules for first-order logic (e.g., [15, Lemma 2.29]) pres=rgtrong equivalence. Alter-
native to the proofin [14], this fact can be proved using [®@®dsition 5]. For instance,
VezF(x) — G is strongly equivalent t&lz(F(z) — G), wherex is not free inG.
Consider

(VzF(x) — G)" = (VaF(z) —
& Je(F(x) —

and

Strong Equivalence Between Propositional Theories andcliigpograms 9

Note that (10) and (11) are not (classically) equivaleneneyal, but they are equivalent
under the assumptigy’ < p, wherep is the tuple of all predicate constants occurring
in F(x) andG, andp’ is the tuple of new, pairwise distinct predicate constahtbe®
same length ap. Therefore, by [8, Proposition 5], we conclude that'(z) — G is
strongly equivalent tdz(F (z) — G).

Also, Proposition 2 can be straightforwardly extended tardifier-free first-order
formulas as follows. A first-order formul&' is in negation normal fornif, for every
subformulaG — H of F,

— formulaG is an atomic formula, and
— formulaH is L.

For any clause” in a CNF of a quantifier-free first order formul@; (C) from
Section 2 can be extended in a straightforward way. The #égualn be placed either
in the consequent or the antecedent (properly negated).

Corollary 1 Any first-order formula is strongly equivalent to a prenexmal form
whose matrix is a conjunction of implicatiods— G whereF' andG are formulas in
negation normal form.

The matrix of a prenex normal form indicated in Corollary lirishe form of a
logic program. Thus, similar to the propositional case, $ietactic difference of ar-
bitrarily nested connectives and quantifiers is not esakebétween the new language
proposed in [8] and logic programs. On the other hand, simeg@tenex normal form
may contain existential quantifiers, it is different fromogilc program, where all vari-
ables are assumed to be universally quantified. For instacerding to [8], the stable
models of formuladz p(x) represent thap is a singleton, as in circumscription. This
has no counterpartin logic programs, since their stableatsaate limited to Herbrand
interpretations. For a related discussion, see [16].

5 Implementation

Our implementation, which we caRLP, turns an arbitrary propositional theory into a
logic program and callsLv to compute its stable models. When the input is already in
the syntax obLv input language, its operation is just as wbhaVv does. The system is
available at

http://peace. eas. asu.edu/f2lp .

The ASCII representations of propositional connectivesiia the syntax of2Lp
are summarized in the following chart:

Symbol - A |V

v_|= L il
ASClIl representation [not [& ||

|
|-> [false Jtrue

Example 1 is written in the syntax 62LP as follows:

10 Joohyung Lee and Ravi Palla

(p->q)->r.

F2LP turns this formula into the followingLv input:

r :- not p.

pl r | g.bar :-.
r:- g.

g_bar :- not q.
‘- g, g_bar.

Note that this program is slightly different from the logimgram shown in Exampl€ 1
(the first three rules of (6)). This is becausev, like most other answer set solvers,
does not allow negation as failure in the head of a rule. Hewedt’can be simulated
by introducing new atoms (Section 4 of [17]). The method aepb the occurrence of
notp in the head of a rule with a new atginand adds ruleg < notp and« p,p. The
stable models of the program correspond to the stable mofldte original program
by disregarding the presence of the new atoms. In the exaabhplee,q_bar is a new
atom, and the last two rules are added. Aft@cp calls DLv to compute the stable
models, it removes all occurrences of the new atonisgt' ") from the stable models
returned bybLv.

Example 2 is written in our syntax as follows:

p->((g->r) | s).
This is turned into the followin@Lv input by F2LP:

rl s:-p @

g_bar | s :- p, not r.
g_bar :- not q.
‘- g, g_bar.

6 Conclusion

Our contributions in this note are as follows. First, we prasd a new proof of the the-
orem on strong equivalence between propositional theariddogic programs. Unlike
the other approaches that are based on the logic of heréhanel-our proof relies on
familiar properties of classical logic. Due to this factyquoof indicates how corre-
sponding logic programs can be generated using equivatargformations in classical
logic. Second, using the same reduction idea, we showedthgtary first-order for-
mulas under the stable model semantics, recently propad& ican be turned into a
prenex normal form whose matrix has the form of a logic prograhird, we presented
a prototype implementation for computing the stable modetrbitrary propositional
formulas based on the reduction method.

For future work, we plan to investigate how the methods ofiihg minimally
equivalent theories in classical logic can be applied toifigdninimally equivalent
logic programs. Recently, Cabalat al.[18] proposed two notions of minimal logic
programs. It would be interesting to see how these appreaieaelated.

Strong Equivalence Between Propositional Theories andcliigpograms 11

Acknowledgements

We are grateful to Paolo Ferraris, Vladimir Lifschitz aneé #inonymous referees for
useful comments on this paper. The authors were partigtiyated by DTO AQUAINT.

A Appendix: Proof of Proposition 2

Due to lack of space, we present the proof of Proposition £, evtiich follows imme-
diately from Proposition 1 and the following proposition.

Proposition 6 Let F' be a formula of signature and G' a conjunction of canonical
implications that is equivalent t6*. Then

p'<p— (F" < (RG))
is a tautology.

The proof of Proposition 6 uses the following lemmas, mostluith can be proven
by induction.

Lemma 1. For any formulaF’ of signaturer, the formula
p'<p— (F(p)—F)
is logically valid.
Lemma 2. Every formulaF' is equivalent taR(F™).
Lemma 3. For any two formulag” and G of signatures U ¢/,
(F « @) — (R(F) < R(G))
is a tautology.

Proof. Assume thaf’ «— G holds for all interpretations aof U ¢’, which includes the
interpretationd such thap! = (p’)! for all p € p. Itis clear thatF! = R(F)! and
G! = R(G)!, from whichR(F)! = R(G)! follows. Sincel range over all interpreta-
tions ofo, it follows thatR(F') — R(G). 1

Lemma 4. For any canonical implicatiorF of signatures U ¢’,

(p' <p) = (FAR(F)) < (R(F))")

is a tautology.

Proof of Proposition 6. Assumep’ < p andF* < G. By Lemma 1,F* — F
holds, so thaf™ is equivalent toa7 A F'. SinceF is equivalent taR(F*) according to
Lemma 2,G A F is equivalenttdz A R(F™*), which, in turn, is equivalent t& A R(G)
according to Lemma 3. By Lemma 4, it follows th@n R(G) is equivalent tq R(G))*.
|

12

Joohyung Lee and Ravi Palla

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Pearce, D.: A new logical characterization of stable n®dad answer sets. In Dix, J.,
Pereira, L., Przymusinski, T., eds.: Non-Monotonic Extens of Logic Programming (Lec-
ture Notes in Artificial Intelligence 1216), Springer-\é&gl (1997) 57-70

. Ferraris, P.: Answer sets for propositional theoriesPhoceedings of International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LRN2005) 119-131

. Cabalar, P., Ferraris, P.: Propositional theories amngly equivalent to logic programs.

Submitted for publication (2005)

. Lifschitz, V., Pearce, D., Valverde, A.n.: Strongly eqént logic programs. ACM Trans-

actions on Computational Logz(2001) 526-541

. Cabalar, P., Pearce, D., Valverde, A.n.: Reducing piitippnal theoreis in equilibrium logic

to logic programs. In: Proceedings of 12th Portuguese Cenée on Artificial Intelligence
(EPIA 2005). (2005) 4-17

. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressian logic programs. Annals of

Mathematics and Atrtificial Intelligenc2s (1999) 369-389

. Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: nlgofnpiler for nested logic program-

ming. In Lifschitz, V., Niemela, I., eds.: Proceedingstoé Seventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR'®8lume 2923 of Lec-
ture Notes in Computer Science., Springer-Verlag Heidgl(2003) 361 — 364

. Ferraris, P., Lee, J., Lifschitz, V.: A new perspectivesteible models. In: Proceedings of

International Joint Conference on Artificial Intelligen@@CAl). (2007)

. Pearce, D., Tompits, H., Woltran, S.: Encodings for égtitlm logic and logic programs

with nested expressions. In: Proceedings of Portuguestefamte on Artificial Intelligence
(EPIA). (2001) 306-320

McCarthy, J.: Circumscription—a form of non-monotorgéasoning. Artificial Intelligence
13(1980) 27-39,171-172

Lifschitz, V.: Circumscription. In Gabbay, D., Hogg€r, Robinson, J., eds.: The Handbook
of Logic in Al and Logic Programming. Volume 3. Oxford Unigdly Press (1994) 298-352
Ferraris, P., Lifschitz, V.: Mathematical foundatiasfsanswer set programming. In: We
Will Show Them! Essays in Honour of Dov Gabbay. King's Co#idgublications (2005)
615-664

Lin, F.: Reducing strong equivalence of logic programsrtailment in classical proposi-
tional logic. In: Proceedings of International ConferencePrinciples of Knowledge Rep-
resentation and Reasoning (KR). (2002) 170-176

Pearce, D., n Valverde, A.: Afirst order nonmonotoni@rgton of constructive logic. Studia
Logica80 (2005) 323-348

Mendelson, E.: Introduction to Mathematical Logic. Wadrth & Brooks (1987) Third
edition.

Texas Action Group: Technical discussions: Do we neéstantial quantifiers in logic
programming? (2007)

http://ww. cs. ut exas. edu/ users/ vl /tag/ di scussi ons. ht m

Janhunen, T.: On the effect of default negation on thesssjveness of disjunctive rules. In:
Proc. LPNMR 2001. (2001) 93-106

Cabalar, P., Pearce, D., Valverde, A.n.: Minimal logiagpams. Unpublished draft (2007)

