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Abstract. The study of synonymy among propositional theories in doyiuim
logic, begun in [36], is extended to the first-order case.

1 Introduction

Quantified equilibrium logic (QEL) has been developed ir439] as a logical founda-
tion for answer set programs with variables. In particuteg,version of QEL presented
in [39] and [23] can be considered adequate for the genensttdider version of stable
model semantics as given in [16]. This version of QEL is basethe logicQHTL ,
called quantified here-and-there logic with static domams decidable equality. Logic
programs or general theories are strongly equivalent vagpect to QEL (or stable
model semantics) if and only if they are logically equivdlenQHT?Z, [23].

In answer set programming (ASP) strong equivalence (aner dtims of equiv-
alence between programs) has been recognised as provitingpartant conceptual
and practical tool for program simplification, transforinatand optimisation. Follow-
ing its initial study in [22], the concept of strong equivade for logic programs in ASP
has given rise to a substantial body of further work lookindifierent characterisations
[15,43], new variations and applications of the idea [8428, as well as developing
systems to test for strong equivalence [35, 9]. Recentesof this work on program
transformation [10, 45] has been extended to the first-ardse.

In basic areas of mathematics, like algebra and geometeyisofamiliar with the
idea that theories may be presented in different ways wifarént primitive concepts.
Similarly, if one consideres taxonomies, classificatidmesoes, ontologies and in gen-
eral any knowledge-based system, there are often manyatiffevays to represent ap-
parently the same information. This motivates the search fmoncept of equivalence
or synonymy that applies to logic programs or nonmonotdmoties that are formu-
lated in different vocabularies. This idea was pursued &} y&hich proposed a formal
concept of synonymy applying to logic programs and propmsil theories in equi-
librium logic and answer set semantics. The aim of the pitgsaper is to extend this
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work to theories formulated in first-order logic by using gtified equilibrium logic.
We start following [36] by considering formal and informadgiderata that a concept
of synonymy should fulfil. We then introduce QEL as a logiaaliridation for ASP
and extensions, and present the main characterisatioroofgstquivalence from [23].
In §4 we propose a strong concept of equivalence or synonymyéartes in quanti-
fied equilibrium logic, give different characterisatiorfdtpand show that it fulfils the
adequacy conditions discussed in 2. The main charactsristithis concept are as fol-
lows. TheoriedI; and Il in distinct languages are said to be synonymous if each is
bijectively interpretable in the other. In particulargmeans that there is faithful inter-
pretation of each theory in the other and a one-one correfspme between the models
of the two theories. This correspondence preserves theepyopf being an equilib-
rium model or answer set. In additioff; has a definitional extensions that is strongly
equivalent to a definitional extension fff,. Moreover, in a suitable sensg; andI/,
remain equivalent or synonymous when extended by the addifinew formulas.

2 Synonymous Theories

What does it mean to say that two programs or theo¥igsand 7, in different lan-
guagesL; andL,, are synonymous? We consider six desiderata D1-D6 that hevbe
should be satisfied by any basic concept of synonymy. D1-0DI3#3D6 are quite gen-
eral and seem to be applicable to any theories describingdeling some knowledge
domain; D4 takes account of the special nature of a nonmaitwtw logic program-
ming system.

D1. Translatability. The languagé, of I7; should be translatable, via a mapping, say
7, into the languagé€, of I1,. The translatiorr should be uniform, so we require
it to be recursive.

D2. Semantic correspondence. There should be a correspondlireiation between
the structures of2; and L., in particular a mappind’ from L,-structures toZ; -
structures that respects the translatian the sense that for anf,-structureZ and
L, -formulag,

FI)EeelkET(p)

D3. Equivalence. Under translatiofi; and/, should be in an obvious sense equiva-
lent.

D4. Intended models. The semantic correlation should reshedhtended models of
the two theories. In the present case this means preseharoperty of being an
equilibrium model or answer set is an answer sefl; iff F(M) is an answer
set ofIT;.

D5. Idempotence. Ifl7; is synonymous with/7; under the previous mappings, then
under corresponding mappings, sdyand F”, IT, should be synonymous witi; .

D6. Robustnessil; and I, should remain synonymous under the addition of new
formulas, ie. for any, I7; U X' should be synonymous withls U 7(X'), similarly
11, U IT with 1T, U T/(H).

The first two conditions provide the cornerstone of any fdrapgroach to interthe-
ory relations. Different kinds of relations between thesrare obtained by specifying
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additional conditions that the mappings should satisfg ég[30, 34, 41]). In this case
we require (D3, D5) that theories are in an obvious sensealgmit once the translation
maps are made available. Since we are dealing here with poggrams and their gen-
eralisations in the ASP framework, we can understand thiieein the weaker sense
of having the same answer sets, or in the sense of strongatejpie explained earlier.
The problem is that if we choose the weaker variant then we kiatually no hope to
fulfil condition D6 which requires that the theories remafjuivalent when embedded
in any richer context. On the other hand, if we interpret D&an that under suitable
translation manuald/; andIl, are strongly equivalent, then we may expect that
and I, remain synonymous when extended with new rules.

Perhaps somewhat surprisingly we shall approach the probsynonymy via the
classical theory of interpretations. Briefly we shall sagtttheories are synonymous
if each is faithfully interpreted in the other in such a wagttthe interpretations are
idempotent (see below); this is basically the standard agmtr followed in classical
predicate logic, see eg. [4, 40]. We adapt it here to the chaenonmonotonic system
based on a non-classical logic.

3 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic grams was presented in [31]
as a foundation for answer set semantics and extended togherfiler case in [37, 38]
and in slightly more general, modified form in [39]. For a styof the main properties
of equilibrium logic, see [32]. Usually in quantified eqbifium logic we consider a
full first-order language allowing function symbols and weelude a second, strong
negation operator as occurs in several ASP dialects. Fprésent purpose we consider
the function-free language with a single negation symb¢l,So, in particular, we shall
work with a quantified version of the logic HT bere-and-thereln other respects we
follow the treatment of [39].

3.1 General Structures for Quantified Here-and-There Logic

A function-free first-order languagé = (C, P) consists of a sets of constarffsand
predicate symbol#’; each predicate symbpl € P has an assigned arity. Moreover,
we assume a fixed countably infinite set of variables, the sysnb—’, * V', * A, * =,
‘F, 'V and auxiliary parenthese$¢’," )'. Variables and constant are generically called
terms Atomsandformulasare constructed as usualpsedformulas, orsentencesare
those where each variable is bound by some quantifidreAry!T is a set of sentences.
If D is a non-empty set, we denote By (C, P) the set of atomic sentences of
L = (C, P) with additional constant symbols for each elemenbofA here-and-there

L-structure with static domains is a tugle= (D, I), I", I'*) where

— D is a non-empty set, called tl®mainof Z.
— I: CUD — Dis called theassignmenand verified (d) = d for all d € D.
— I"CI' C Atp(C, P).
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We can think off as a structure similar to a first-order classical structoué having
two parts or components and¢ that correspond to two different points or “worlds”,
‘here’ and ‘there’ in the sense of Kripke semantics for itiauiistic logic [7], where the
worlds are ordered by < ¢. At each worldw € {h,t} one verifies a set of atond’

in the expanded language for the domainwWe call the model static, since, in contrast
to say intuitionistic logic, the same domain serves eacthefworlds' Sinceh < t,
whatever is verified ak remains true at. The satisfaction relation fdf is defined so
as to reflect the two different components, so we wiifey |= ¢ to denote thap is
true inZ with respect to thev component. Evidently we should require that an atomic
sentence is true at just in case it belongs t6*. Formally, ifp(¢4, ..., t,) € Atp then

va':p(tlavtn) iff p(I(tl)aaI(tn))EIw
Thenf= is extended recursively as follots

—Z,wEeAYIiff ZT,w E pandZ,w E 1.

—Z,hwkEeVYiff LwEyporZ wE .

- IitEe—yiff It porZ,t E .

- I,hiEe—yiff It Ep —YandZ,h = porZ, h = .

- Z,wE—piff Z,t .

- I,t = Vap(z) iff Z,t = ¢(d) forall d € D.

— I,h = Vap(z) iff Z,t |= Vap(z) andZ, h = ¢(d) foralld € D.
- Z,w = 3zp(z) iff Z,w = ¢(d) for somed € D.

Truth of a sentence in a structure is defined as folldws: ¢ iff Z, w | ¢ for each
w € {h,t}; in this case[ is said to be anodelof . An structureZ is a model of a
theory I if it is a model of everyp € II, denoted byZ = II. A sentencey is valid if
it is true in all structures, denoted Iy . A sentencey is aconsequencef a theory
IT if every model ofII is a model ofy, in symbolsiI = . The resulting logic is
calledQuantified Here-and-There Logic with static domadiesioted byQHT*(L). In
terms of satisfiability and validity this logic is equivaten the logic introduced before
in [38].

The logicQHT? (L) can be axiomatised as follows. We start with the usual axioms
and rules of intuitionistic propositional logic and add théom of Hosoi

aV(=pV(a—pg)

which determines 2-element, here-and-there models. Vsiem is extended to first-
order logic (see [38, 39]) by adding the following axiom tdah the usual non-static
version of first-order here-and-there logic:

Ve-—a(z) — Jz(a(z) — Vaea(x))

! Alternatively it is quite common to speak of a logic witbnstantdomains. However this is
ambiguous since it might suggest that the domain is composkgcbf constants, which is not
intended here.

2 The reader may easily check that the following correspomaiixto the usual Kripke seman-
tics for intuitionistic logic given our assumptions abol two worldsh andt and the single
domainD, see eg [6]
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Finally, we add the following axiom for static domains, td@b QHT*(L):
——Jza(x) — Jz——a(x)

Ono proved in [28] that the system obtained by extending tlo@gsitional calculus
with the axiomVz(a(z) V 8) — (Vza(z) V §) is complete forQHT?®(L). In [23],
another complete calculus is obtained by extending thegsitipnal calculus with the
axiom

Jz(a(x) — Vea(z))

In this paper we also consider the equality predicate,P, interpreted by the following
condition for everyw € {h,t}

— M,w [ a = biff I(a) = I(b) for all constants:, b.

To obtain a complete axiomatisation, we then need to adddibesof “decidible equal-
ity”
VaVy(z =y Va #y).
We denote the resulting logic @HT? (L) (see [23] for details).
As usual in first order logic, satisfiability and validity airedependent from the
language. Iff = ((D,I),I", I') is anL’-structure and’’ O L, we denote byZ |, the
restriction ofZ to the sublanguagé:

I|£ = <(D7]|£)7Ih|£7]t|£>

Proposition 1. Suppose that’ > £, IT is a theory in£ and M is an £'-model ofI1.
ThenM| is aL’-model ofII.

Proposition 2. Suppose that’ > £ andy € L. Theny is valid (resp. satisfiable) in
QHTZ (£) if and only if is valid (resp. satisfiable) @HTZ (L').

This proposition allows us to omit reference to the languagkee logic so it can be
denoted simply byQHT?..

3.2 Equilibrium Models

As in the propositional case, quantified equilibrium logibased on a suitable notion
of minimal model.

Definition 1. Among quantified here-and-there structures we define ther etds fol-
lows: (D, I),I", Ity < (D", J),J", JYif D=D',1=J,I' = J andI" C J". If
the subset relation holds strictly, we writer™.

Definition 2. LetII be a theory and = ((D, I), I", I*) a model oflI.

1. T is said to beotalif 1" = I*.
2. T is said to be arequilibriummodel ofiI (or short, we say: 7 is in equilibrium”) if
it is minimal under<d among models aff, and it is total. It is denoted by =, IT.



54 David Pearce and Agustin Valverde

Notice that a total here-and-there model of a theldris equivalent to a classical first
order model off1.

The logic defined by the equilibrium models is call@dantified Equilibrium Logic
and it is also independent of the language, as seen by tloavfol) result.

Proposition 3. LetI7 be a theory inC andM an equilibrium model of7 in QHT? (L)
with £ > L. ThenM | is an equilibrium model off in QHTZ (£).

3.3 Strong equivalence for theories

We say that two set§', A of first-order sentences astrongly equivalenif for every
setX of first-order sentences, possibly of a larger signatueeséts"U X, AU X have
the same equilibrium models.

Theorem 1 (Strong Equivalence of theories, [23])For any setsl”, A of first-order
sentences, the following conditions are equivalent:

(i) the setsl" and A are satisfied by the same here-and-there structures;
(ii) forevery set” of first-order sentences, possibly of a larger signature gbts"U Y
and A U X have the same equilibrium models Jieand A are strongly equivalent.

Note that the above notion of equilibrium model coincidethwihe concept of stable
model for logic programs with variables presented in [16le Toncept of strong equiv-
alence and its characterisation can be found in [23]. Byngtmompleteness, condition
(i) of Theorem 1 means thdt and A are logically equivalent iQHT?..

4 Interpretability and Synonymy

We use the following notation and terminology. Boldfacstands for a tuple of vari-
ablesx = (x1,...,2,), Wwhilep(x) = ¢(z1, ..., z,) is aformulawhose free variables
arexy,...,x,, andvx = Va; ... Va,. If t; are terms, thew = (¢4,...,¢,) denotes a
vectorof terms. Letl = (C, P) be a first-order languagg,¢Z P a new predicate sym-
bolandf’ = (C, P U {p}). Let IT be a theory inC’. Explicit and implicit definability
are understood as follows

(i) pis said to beexplicitly definablen 17, if there is anC-formulad; (x) such that
IT = ¥x(p(x) < 67 ().

47 is called thedefinitionof p.

(i) pis said to bamplicitly definablein I7 if for any modelsM; and M- of IT such
that M, |, = Ma|, we haveM; = M.
By the strong completeness theorem @HT?. proved in [23], this definition is
equivalent to the following one.

(i) pisimplicitly definablen I7 if

ITUI[p/q] = Yx(p(x) < q(x))

whereq ¢ P is a new predicate symbol with the same aritypadII[p/q] is the
theory obtained by replacing every occurrence by q.
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In other words,p is implicitly definable if whenever the interpretation ofetif
predicates in models dT is fixed, the interpretation gf becomes fixed also. The above
definitions are readily extended to the case where sevenapredicates are definable
in a theory.

4.1 Interpolation and Beth properties in superintuitionistic logics

When the conditions (i) and (ii’) of explicit and implicit éeability are always equiv-
alent, the logic in question is said to have Beth property [18]. Closely related to
Beth is the property oihterpolation A logic is said to have the interpolation property
if whenever

Fe—9

there exists a senten¢dtheinterpolan) such that
Fe—¢ and FE— o

where all predicate and constant symbolg afe contained in botk and.

It can be shown that the interpolation property implies te&Bproperty in all super-
intuionistic predicate logics [18]. Moreover, Ono [28] sked that interpolation holds
in the logicQHT*® of quantified here-and-there with constant domdiGansequently,
QHT? also has the Beth property. Lastly, Maksimova showed inZ8#that adding
pure equality axioms, eg decidible equality axiom, to argesintuitionistic logic pre-
serves the interpolation and Beth properties (see alsd.\M& conclude therefore

Proposition 4. The logicQHT?. possesses the Beth property.

Let£; = (Cy, P) andL, = (Cs, P») be disjoint languagebBy aninterpretation
of £ in L2 we mean

1. For each predicate € P, anL»-formulad,, explicitly definingp by the formula
Vx(p(x) < 67 (x)); we denote by the set of all definitions.
2. Aninduced mapping, also denotedyfrom £, -formulas (respL;-terms) toL,-
formulas (respL.-terms) such that
(@) 7(z) = x and for everyu € C1, 7(a) € Cy;if t = (t1,...,t,) is a vector of
terms,r(t) denoteg7(¢1),...,7(tn));
(b) if tis a vector of terms, then(p(t)) = 6, (7(t)); 7(t1 = t2) = 7(t1) = 7(t2);
(c) T is extended recursively by(p A ¢) = 7(p) A T(¢), T(0 V ) = T(p) V
(), T(p = ¥) = 7(¢) = 7(¢), 7(=p) = ~7(p), T(Vayp) = VaT(p) and
7(3xp) = JzT(P).

Any interpretationr of £, in Lo induces a mappind’- from L,-structures tol;-
structures: iff = (D, I), 1", I*),thenF,(T) = (D, J), J", J*) is defined as follows:

% Ono’s axiomatisation BQHT* uses the constant domains axigma(z)VS) — (Vra(z)V
3), as well as alternative axioms for propositional here-dretd, viz.p V (p — (¢ V —q))
and(p — q) V (¢ — p) V (p < —q). However, the axioms given here are equivalent to Ono’s.
4 Any languages can be made disjoint by renaming. Alternigtive can allow thatC; and L
have a common sublanguage which any translations simple leatouched, ie the sublan-
guage is always translated by the identity map.



56 David Pearce and Agustin Valverde

— Foreverya € C1, J(a) = I(7(a))
—plt)yeJv iff Z,wk d5(r(t))

It is easy to check that for an§; -sentence» and anyw € {h,t}:

FIwkEe < ILwkET(p) (1)

and therefore
FEDEe & IET() 2)

Let IT; andIl, be theories inC; andL, respectively and let be an interpretation of
L1 in Lo. Thent is said to be amterpretation ofll; in I1, if for all £,-sentencep,

Iy = ILET(p). 3)
In this case it is evident that
IEI, = F/(I)EIL. (4)

Generally speaking the md) associated with an interpretatierof £, in £, does not
preserve the ordering betweenl,-structures. However the following properties are
easy to check and will be useful later:

Lemma 1. Let 7 be an interpretation ofZ; in L5, and letZ be a total L,-structure.
Then (i) F-(Z) is a total £, -structure; and (i) ifZ’ < Z, thenF.(Z') < F,(I).

An interpretation ofl1; in Il is said to befaithful if the converse of (3) also holds,
ie we havell; = ¢ iff Il = 7(p). As in classical interpretability theory, further
special cases of interpretation can be obtained by imp@&dgional conditions on the
syntactic and semantic translations.

Proposition 5. Letr be an interpretation of7; in I15. Then the following are equiva-
lent.

(i) ForeveryLs-formulasy(x) there is an’, -formulap(x) such thatll, = Vx (1 (x)«—
T(¢(x))); ie T is surjective.

(i) There is an interpretatior of L5 in £; such that for everys-formulay, 1, =
Yx(ih(x) o 7(0($(x))).

(i) The mappingF; from models of I, into models of7; is an injection.

An interpretation satisfying any of (i)-(iii) of Proposith 5 is said to bsurjective
Such interpretation preserve the property of being an gqiuiln model, in the follow-
ing sense.

Proposition 6. Let T be a surjective interpretation dff; in I1. For any modelM of
II,, if F-(M) is an equilibrium model of7; then M is an equilibrium model ofT5.

If 7 is a surjective and a faithful interpretation, then it isdst be abijective in-
terpretationof I1; in II5. It is easy to verify that if- is a bijective interpretation aff,
in I1,, then the interpretation of 115 in II;, defined by condition (ii) in Prop. 5, is
also bijective. The interpretatian is called theinverseof  and we say that the two
programs or theories asynonymouwith respect ta- ando.
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Proposition 7. If 7 is a bijective interpretation ofi; in I1, then the mappind’ is a
one-one correspondence between model$,0dnd models of/5.

Given an inverse interpretation, we can map(,-structuresZ to L,-structures
F,(Z) in the same way as before. It is readily seen thatF.(M)) = M if M is
a model ofI1,; however the equality need not hold for other structuregrfen the
classical case).

4.2 \Verifying the adequacy conditions

Let us now consider synonymy in light of the adequacy cood#iD1-D6. First we
consider the sense in which two synonymous theories canrsdmyed equivalent.

Proposition 8. Let I1; and I1; be synonymous wrt ando. Thenll, U 7 is strongly
equivalent with/'7; Uz. Thusi; and > have a common definitional extension, ie there
is atheoryll in Lo U Ly, suchthatll, U7 =11, U = I1.

In fact Proposition 8 can be strengthened to an equivaléneetheories are bi-
jectively interpretable if and only if they have a common digfbnal extension. This
expresses one way in which the two theories are in an obviensesequivalent once
enriched with suitable translation manuals. Notice tod¢ there is a close relationship
between/l, and the translation(11;) of II; (similarly betweenT; and the translation
o(Il) of II). ltis already clear thafl, = 7(II1). Although it is not generally true,
even in the classical case, tH@t = 7(11;), we do however have:

Corollary 1. LetIl; andIl; be synonymous wrtandc. For anyLs-formulayp, 11, =
p e T10(p), andlls E ¢ = 7(I11) | 10(p).

Next we turn to condition D4.

Proposition 9. Let I1; and I, be theories inC; and £, respectively, synonymous wrt
7 ando. Then the bijective mappingj. from models of7, to models ofl7; preserves
the equilibrium property, ieM . I1; iff F.(M) =, II;.

Clearly, condition D5 is satisfied and the presence of anrgevterpretation pro-
vides the sense in which the correspondence betdigeand 1, is idempotent. Lastly
we consider D6.

Proposition 10. Let I7; and I, be theories inC; and £, respectively synonymous wrt
7 ando. LetIT a set ofC;-formulas. TherdI; U IT is synonymous withl, U 7(IT) wrt
Tando.

5 Literature and Related Work

In classical logic there is a large and well-developed bddyark on interpretability
dating from the 1950s. The first systematic treatments obisymous theories in this
context can be found in [3, 4], a more algebraic approach eafobnd in [20]. The
classical version of Proposition 6 is essentially containg3], though a more detailed
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statement and proof can be found in [40]. Outside the field ath@matics, the classi-
cal theory of interpretability and definitional equivaleneas extended and applied to
empirical forms of knowledge in [29, 34, 30]; see also [41] fomore recent account
of translatability issues in such contexts. The theory tdrpretations and equivalence
in nonclassical logics is less developed, however espgdmthe case of superintu-
itionistic logics much is known about key properties, suslméerpolation and Beth, on
which interpretability theory depends, see eg. [24—26fhincontext of nonmonotonic
logic programming the study of different kinds of equivaleetween programs is rel-
atively new (see references in section 1). Until now the ecdgwograms in different
languages has only been considered in [36]. There has beendiscussion of the role
and properties of definitions in ASP in [17,12]..

6 Concluding Remarks

We have argued that formal approaches to intertheory oalstileveloped for mathe-
matical and scientific knowledge can be applied to systentisgi¢ programming and
nonmonotonic reasoning used for practical problem solaing knowledge represen-
tation in Al. In particular, we have described how the theofyinterpretability and
definitional equivalence can be applied in the context of-6rder logic programs un-
der answer set semantics and nonmonotonic theoreis in #tensyof quantified equi-
librium logic. In this setting we regard theories as synooumif each is bijectively
interpretable in the other, and we have characteriseddlason in different ways. We
also showed that this reconstruction satisfies a numbetuwafiire, informal adequacy
conditions. The applicability of what is essentially a siaal logical approach in a non-
classical context relies on two essential features: firatumderlying logic has several
properties such a@eththat help to relate the syntax to the semantics of definitams
translations; secondly, in ASP and equilibrium logic thesy concept of equivalence
between theories is fully captured in the underlying monmtdogic (quantified here-
and-ther@. This allows us to define a robust or modular concept of exence across
different languages.

Several avenues are left open for future exploration. Fampte, one might want
to study other kinds of interpretability relations, eg wéhne formulas] defining a
predicatep may contain additional parameters, or where the semanppimgZ;. may
relate models with different domains. Secondly, one mightesh for simple structural
properties on the models of two programs or theories that@uévalent to or sufficient
for synonymy. Thirdly, based on these or other propertigb@theories concerned, it
would be useful to develop systems for checking synonyneygttly extending current
methods for checking strong equivalence in the case of progin the same language
[9, 35].

References

1. C. Baral Knowlewdge Representation, Reasoning and Declarativel&mo SolvingCam-
bridge University Press, 2003.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Interpretability and Equivalence in Quantified EquilibrilLogic 59

M. Balduccini, M. Gelfond, R. Watson and M. Noguiera. Th8AJAdvisor: A case study in
answer set planning. lbogic Programming and Nonmonotonic ReasoningNMR 2001,
Springer LNAI 2173, 2001.

K. de Bouvére. Logical Synonymityndagationes Mathematica®? (1965), 622-629.

K. de Bouvére. Synonymous Theories. In J. Addison, L.kiteand A.Tarski (eds)Sym-
posium of the Theory of ModelNorth-Holland, Amsterdam, 1965, 402-406.

F. Calimeri, S. Galizia, M. Ruffolo, P. Rullo Enhancingsiinctive Logic Programming for
Ontology Specification. Proceedings AGP 2003

D. van DalenLogic and StructureSpringer, 1983..

D. van Dalen. Intuitionistic logic. Itandbook of Philosophical Logic, Volume III: Alter-
natives in Classical LogiKluwer, Dordrecht, 1986.

T. Eiter and M. Fink. Uniform equivalence of logic progmomder the stable model seman-
tics. InInt. Conf. of Logic Programming, ICLP’Q3/umbay, India. Springer, 2003.

T. Eiter, M. Fink, H. Tompits and S. Woltran Simplifying giz Programs under Uniform
and Strong Equivalence In V. Lifschitz and I. Niemela (edlegic Programming and Non-
monotonic Reasoning.PNMR 2004, Springer LNAI 2923, 2004.

T. Eiter, P. Trazler & S. Woltran. An Implementation foed¢®dgnizing Rule Replacements
in Non-Ground Answer Set Programs. in M. Fisclagml (eds),Jelia 2006 LNAI 4160,
Springer, 2006, 477-480.

H. EndertonA Mathematical Introduction to Logiécademic Press, 1972.

S. Erdogem and V. Lifschitz. Definitions in Answer Setd@@eanming in V. Lifschitz and I.
Niemela (eds)Proceedings LPNMR 200&pringer LNAI 2923, 2004.

K. Godel. Zum intuitionistischen aussagenkalkiiAnzeiger der Akademie der Wis-
senschaften Wien, mathematisch, naturwissenschaftilzese 69:65-66, 1932.

A. Heyting. Die formalen regeln der intuitionistischegik. Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften, Physikalisch-mattsetmaKlassgpages 42-56, 1930.
D. De Jongh and L. Hendriks. Characterization of stypmgjuivalent logic programs in
intermediate logicsTheory and Practice of Logic Programming(3):259—-270, 2003.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitznéw perspective on stable models.
1JCAI 2007.

P. Ferraris and V. Lifschitz. Weight Constraints as Ne$ixpressiondheory and Practice
of Logic Programmingto appear, 2004.

D. Gabbay and L. Maksimovalnterpolation and Definability: Modal and Intuitionistic
Logics. Ser. Oxford Logic Guides:46, Oxford University Press, Qaf@005

T. Janhumen, I. Niemela, D. Seipel, P. Simons, and Xed. Unfolding partiality and
disjunctions in stable model semantics. CoRR: cs.Al/08930arch, 2003.

S. Kanger. Equivalent TheorieBheorig 38 (1972), 1-6.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G, Gottlob, StriPend F. Scarcello. The DLV
System for Knowledge Representation and Reasoning. CofRRI/@211004, September,
2003.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly eailéwnt logic programsACM Trans-
actions on Computational Logi2(4):526-541, 2001.

V. Lifschitz, D. Pearce, and A. Valverde. A Charactdr@aof Strong Equivalence for Logic
Programs with VariableBroceedings LPNMR QBpringer, 2007, to appear.

L. Maksimova. Interpolation in superintuitionisticegglicate logics with equalityAlgebra
and Logig 36:543-561, 1997.

L.Maksimova. Interpolation in superintuitionisticcamodal predicate logics with equality.
In: M.Kracht, M. de Rijke, H.Wansing and M.Zakharyascheadit@s. Advances in Modal
Logic, Volume Ipages 133-141. CSLI Publications, Stanford, 1998.

L. Maksimova. Intuitionistic logic and implicit defindity. Annals of Pure and Applied
Logic 105(1-3): 83-102, 2000



60

27.

28.
29.

30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

David Pearce and Agustin Valverde

E. Oikarinen and T. Janhunen. Verifying the Equivaldmgic Programs in the Disjunctive
Case. In V. Lifschitz and |. Niemela (edt)ogic Programming and Nonmonotonic Reason-
ing, LPNMR 2004, Springer LNAI 2923, 2004.

H. Ono. Model extension theorem and Craig’s interpotatheorem for intermediate predi-
cate logics.Reports on Mathematical Logits (1983), 41-58.

D. Pearce. Some Relations between Empirical SystEpistemologiat (1981), 363-380.
D. PearceRoads to Commensurabilitgluwer (Synthese Library Vol. 187),1987.

D. Pearce. A new logical characterization of stable risoded answer sets. INon-
Monotonic Extensions of Logic Programming, NMELP, S®ringer LNCS 1216, 1997,
pages 57-70.

D. Pearce. Equilibrium LogidAnnals of Mathematics and A2006.

D. Pearce, I. P. de Guzman, and A. Valverde. A tableaaulal for equilibrium entailment.
In Automated Reasoning with Analytic Tableaux and Relatedddist TABLEAUX 20Q0
LNAI 1847, pages 352—367. Springer, 2000.

D. Pearce and V. Rantala. New Foundations for Metaseieymthesgl985.

D. Pearce and A. Valverde. Uniform Equivalence for Bhtiilm Logic and Logic Programs.
In V. Lifschitz and I. Niemela (edd)ogic Programming and Nonmonotonic Reasoning-
NMR 2004, Springer LNAI 2923, 2004.

D. Pearce and A. Valverde. Synonymous Theories in AnS&eProgramming and Equilib-
rium Logic. In Proceedings ECAI 2004, 2004.

David Pearce and Agustin Valverde. Towards a first ordailibrium logic for nonmono-
tonic reasoning. IfProceedings of European Conference on Logics in Artificigglligence
(JELIA), pages 147-160, 2004.

David Pearce and Agustin Valverde. A first order nonmamigctextension of constructive
logic. Studia Logica80:323-348, 2005.

David Pearce and Agustin Valverde. Quantified EquiliorLogic and the First Order Logic
of Here-and-There. Technical Report, Univ. Rey Juan Caplog6,

C. Pinter Properties Preserved under Definitional Edemce and Interpretations. In
Zeitschr. f. math. Logik und Grundlagen d. Mat?4: 481-488, 1978.

V. RantalaExplanatory TranslationKluwer (Synthese Library Vol 312), 2002.

P. Simons, I. Niemela, and T. Soininen. Extending anglémenting the stable model se-
mantics.Artificial Intellingence 138(1-2):181-234, 2002.

H. Turner. Strong equivalence for logic programs anduletheories (made easy). Rroc.
of the Logic Programming and Nonmonotonic Reasoning, LPNMRSpringer LNAI 2173,
pages 81-92, 2001.

H. Turner Strong Equivalence for Causal Theories In fédhiitz and I. Niemela (edt)ogic
Programming and Nonmonotonic ReasonibBNMR 2004, Springer LNAI 2923, 2004.
Stefan WoltranLPNMR 2007 to appear.



