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Abstract. The study of synonymy among propositional theories in equilibrium
logic, begun in [36], is extended to the first-order case.

1 Introduction

Quantified equilibrium logic (QEL) has been developed in [37–39] as a logical founda-
tion for answer set programs with variables. In particular,the version of QEL presented
in [39] and [23] can be considered adequate for the general, first-order version of stable
model semantics as given in [16]. This version of QEL is basedon the logicQHT

s
=

,
called quantified here-and-there logic with static domainsand decidable equality. Logic
programs or general theories are strongly equivalent with respect to QEL (or stable
model semantics) if and only if they are logically equivalent in QHTs

=
, [23].

In answer set programming (ASP) strong equivalence (and other forms of equiv-
alence between programs) has been recognised as providing an important conceptual
and practical tool for program simplification, transformation and optimisation. Follow-
ing its initial study in [22], the concept of strong equivalence for logic programs in ASP
has given rise to a substantial body of further work looking at different characterisations
[15, 43], new variations and applications of the idea [8, 35,44], as well as developing
systems to test for strong equivalence [35, 9]. Recently, some of this work on program
transformation [10, 45] has been extended to the first-ordercase.

In basic areas of mathematics, like algebra and geometry, one is familiar with the
idea that theories may be presented in different ways with different primitive concepts.
Similarly, if one consideres taxonomies, classification schemes, ontologies and in gen-
eral any knowledge-based system, there are often many different ways to represent ap-
parently the same information. This motivates the search for a concept of equivalence
or synonymy that applies to logic programs or nonmonotonic theories that are formu-
lated in different vocabularies. This idea was pursued in [36] which proposed a formal
concept of synonymy applying to logic programs and propositional theories in equi-
librium logic and answer set semantics. The aim of the present paper is to extend this
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work to theories formulated in first-order logic by using quantified equilibrium logic.
We start following [36] by considering formal and informal desiderata that a concept
of synonymy should fulfil. We then introduce QEL as a logical foundation for ASP
and extensions, and present the main characterisation of strong equivalence from [23].
In §4 we propose a strong concept of equivalence or synonymy for theories in quanti-
fied equilibrium logic, give different characterisations of it, and show that it fulfils the
adequacy conditions discussed in 2. The main characteristics of this concept are as fol-
lows. TheoriesΠ1 andΠ2 in distinct languages are said to be synonymous if each is
bijectively interpretable in the other. In particular, this means that there is faithful inter-
pretation of each theory in the other and a one-one correspondence between the models
of the two theories. This correspondence preserves the property of being an equilib-
rium model or answer set. In addition,Π1 has a definitional extensions that is strongly
equivalent to a definitional extension ofΠ2. Moreover, in a suitable sense,Π1 andΠ2

remain equivalent or synonymous when extended by the addition of new formulas.

2 Synonymous Theories

What does it mean to say that two programs or theories,Π1 andΠ2, in different lan-
guages,L1 andL2, are synonymous? We consider six desiderata D1-D6 that we believe
should be satisfied by any basic concept of synonymy. D1-D3 and D5-D6 are quite gen-
eral and seem to be applicable to any theories describing or modelling some knowledge
domain; D4 takes account of the special nature of a nonmonotonic or logic program-
ming system.

D1. Translatability. The languageL1 of Π1 should be translatable, via a mapping, say
τ , into the languageL2 of Π2. The translationτ should be uniform, so we require
it to be recursive.

D2. Semantic correspondence. There should be a corresponding correlation between
the structures ofL1 andL2, in particular a mappingF from L2-structures toL1-
structures that respects the translationτ in the sense that for anyL2-structureI and
L1-formulaϕ,

F (I) |= ϕ⇔ I |= τ(ϕ).

D3. Equivalence. Under translation,Π1 andΠ2 should be in an obvious sense equiva-
lent.

D4. Intended models. The semantic correlation should respect the intended models of
the two theories. In the present case this means preserving the property of being an
equilibrium model or answer set:M is an answer setΠ2 iff F (M) is an answer
set ofΠ1.

D5. Idempotence. IfΠ1 is synonymous withΠ2 under the previous mappings, then
under corresponding mappings, sayτ ′ andF ′,Π2 should be synonymous withΠ1.

D6. Robustness.Π1 andΠ2 should remain synonymous under the addition of new
formulas, ie. for anyΣ,Π1 ∪Σ should be synonymous withΠ2 ∪ τ(Σ), similarly
Π2 ∪Π with Π1 ∪ τ

′(Π).

The first two conditions provide the cornerstone of any formal approach to interthe-
ory relations. Different kinds of relations between theories are obtained by specifying
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additional conditions that the mappings should satisfy (see eg [30, 34, 41]). In this case
we require (D3, D5) that theories are in an obvious sense equivalent once the translation
maps are made available. Since we are dealing here with logicprograms and their gen-
eralisations in the ASP framework, we can understand this either in the weaker sense
of having the same answer sets, or in the sense of strong equivalence explained earlier.
The problem is that if we choose the weaker variant then we have virtually no hope to
fulfil condition D6 which requires that the theories remain equivalent when embedded
in any richer context. On the other hand, if we interpret D3 tomean that under suitable
translation manuals,Π1 andΠ2 are strongly equivalent, then we may expect thatΠ1

andΠ2 remain synonymous when extended with new rules.
Perhaps somewhat surprisingly we shall approach the problem of synonymy via the

classical theory of interpretations. Briefly we shall say that theories are synonymous
if each is faithfully interpreted in the other in such a way that the interpretations are
idempotent (see below); this is basically the standard approach followed in classical
predicate logic, see eg. [4, 40]. We adapt it here to the case of a nonmonotonic system
based on a non-classical logic.

3 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic programs was presented in [31]
as a foundation for answer set semantics and extended to the first-order case in [37, 38]
and in slightly more general, modified form in [39]. For a survey of the main properties
of equilibrium logic, see [32]. Usually in quantified equilibrium logic we consider a
full first-order language allowing function symbols and we include a second, strong
negation operator as occurs in several ASP dialects. For thepresent purpose we consider
the function-free language with a single negation symbol, ‘¬’. So, in particular, we shall
work with a quantified version of the logic HT ofhere-and-there. In other respects we
follow the treatment of [39].

3.1 General Structures for Quantified Here-and-There Logic

A function-free first-order languageL = 〈C,P 〉 consists of a sets of constantsC and
predicate symbolsP ; each predicate symbolp ∈ P has an assigned arity. Moreover,
we assume a fixed countably infinite set of variables, the symbols, ‘→’, ‘ ∨’, ‘ ∧’, ‘ ¬’,
‘∃’, ‘ ∀’ and auxiliary parentheses ‘(’,‘ )’. Variables and constant are generically called
terms. Atomsandformulasare constructed as usual;closedformulas, orsentences, are
those where each variable is bound by some quantifier. AtheoryΠ is a set of sentences.

If D is a non-empty set, we denote byAtD(C,P ) the set of atomic sentences of
L = 〈C,P 〉 with additional constant symbols for each element ofD. A here-and-there
L-structure with static domains is a tupleI = 〈(D, I), Ih, It〉 where

– D is a non-empty set, called thedomainof I.
– I : C ∪D → D is called theassignmentand verifiesI(d) = d for all d ∈ D.
– Ih ⊆ It ⊂ AtD(C,P ).
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We can think ofI as a structure similar to a first-order classical structure,but having
two parts or componentsh andt that correspond to two different points or “worlds”,
‘here’ and ‘there’ in the sense of Kripke semantics for intuitionistic logic [7], where the
worlds are ordered byh ≤ t. At each worldw ∈ {h, t} one verifies a set of atomsIw

in the expanded language for the domainD. We call the model static, since, in contrast
to say intuitionistic logic, the same domain serves each of the worlds.1 Sinceh ≤ t,
whatever is verified ath remains true att. The satisfaction relation forI is defined so
as to reflect the two different components, so we writeI, w |= ϕ to denote thatϕ is
true inI with respect to thew component. Evidently we should require that an atomic
sentence is true atw just in case it belongs toIw. Formally, ifp(t1, . . . , tn) ∈ AtD then

I, w |= p(t1, . . . , tn) iff p(I(t1), . . . , I(tn)) ∈ Iw.

Then|= is extended recursively as follows2:

– I, w |= ϕ ∧ ψ iff I, w |= ϕ andI, w |= ψ.
– I, w |= ϕ ∨ ψ iff I, w |= ϕ or I, w |= ψ.
– I, t |= ϕ→ ψ iff I, t 6|= ϕ or I, t |= ψ.
– I, h |= ϕ→ ψ iff I, t |= ϕ→ ψ andI, h 6|= ϕ or I, h |= ψ.
– I, w |= ¬ϕ iff I, t 6|= ϕ.
– I, t |= ∀xϕ(x) iff I, t |= ϕ(d) for all d ∈ D.
– I, h |= ∀xϕ(x) iff I, t |= ∀xϕ(x) andI, h |= ϕ(d) for all d ∈ D.
– I, w |= ∃xϕ(x) iff I, w |= ϕ(d) for somed ∈ D.

Truth of a sentence in a structure is defined as follows:I |= ϕ iff I, w |= ϕ for each
w ∈ {h, t}; in this case,I is said to be amodelof ϕ. An structureI is a model of a
theoryΠ if it is a model of everyϕ ∈ Π , denoted byI |= Π . A sentenceϕ is valid if
it is true in all structures, denoted by|= ϕ. A sentenceϕ is aconsequenceof a theory
Π if every model ofΠ is a model ofϕ, in symbolsΠ |= ϕ. The resulting logic is
calledQuantified Here-and-There Logic with static domainsdenoted byQHTs(L). In
terms of satisfiability and validity this logic is equivalent to the logic introduced before
in [38].

The logicQHT
s(L) can be axiomatised as follows. We start with the usual axioms

and rules of intuitionistic propositional logic and add theaxiom of Hosoi

α ∨ (¬β ∨ (α→ β))

which determines 2-element, here-and-there models. This system is extended to first-
order logic (see [38, 39]) by adding the following axiom to obtain the usual non-static
version of first-order here-and-there logic:

∀x¬¬α(x) → ∃x(α(x) → ∀xα(x))

1 Alternatively it is quite common to speak of a logic withconstantdomains. However this is
ambiguous since it might suggest that the domain is composedonly of constants, which is not
intended here.

2 The reader may easily check that the following correspond exactly to the usual Kripke seman-
tics for intuitionistic logic given our assumptions about the two worldsh andt and the single
domainD, see eg [6]
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Finally, we add the following axiom for static domains, to obtainQHTs(L):

¬¬∃xα(x) → ∃x¬¬α(x)

Ono proved in [28] that the system obtained by extending the propositional calculus
with the axiom∀x(α(x) ∨ β) → (∀xα(x) ∨ β) is complete forQHT

s(L). In [23],
another complete calculus is obtained by extending the propositional calculus with the
axiom

∃x(α(x) → ∀xα(x))

In this paper we also consider the equality predicate,
.
= 6∈ P , interpreted by the following

condition for everyw ∈ {h, t}

– M, w |= a
.
= b iff I(a) = I(b) for all constantsa, b.

To obtain a complete axiomatisation, we then need to add the axiom of “decidible equal-
ity”

∀x∀y(x
.
= y ∨ x 6

.
= y).

We denote the resulting logic byQHTs
=

(L) (see [23] for details).
As usual in first order logic, satisfiability and validity areindependent from the

language. IfI = 〈(D, I), Ih, It〉 is anL′-structure andL′ ⊃ L, we denote byI|L the
restriction ofI to the sublanguageL:

I|L = 〈(D, I|L), Ih|L, I
t|L〉

Proposition 1. Suppose thatL′ ⊃ L, Π is a theory inL andM is anL′-model ofΠ .
ThenM|L is aL′-model ofΠ .

Proposition 2. Suppose thatL′ ⊃ L andϕ ∈ L. Thenϕ is valid (resp. satisfiable) in
QHT

s
=
(L) if and only if is valid (resp. satisfiable) inQHT

s
=
(L′).

This proposition allows us to omit reference to the languagein the logic so it can be
denoted simply byQHTs

=
.

3.2 Equilibrium Models

As in the propositional case, quantified equilibrium logic is based on a suitable notion
of minimal model.

Definition 1. Among quantified here-and-there structures we define the order � as fol-
lows: 〈(D, I), Ih, It〉 � 〈(D′, J), Jh, J t〉 if D = D′, I = J , It = J t andIh ⊆ Jh. If
the subset relation holds strictly, we write ‘�’.

Definition 2. LetΠ be a theory andI = 〈(D, I), Ih, It〉 a model ofΠ .

1. I is said to betotal if Ih = It.
2. I is said to be anequilibriummodel ofΠ (or short, we say: “I is in equilibrium”) if

it is minimal under� among models ofΠ , and it is total. It is denoted byI |=e Π .



54 David Pearce and Agustı́n Valverde

Notice that a total here-and-there model of a theoryΠ is equivalent to a classical first
order model ofΠ .

The logic defined by the equilibrium models is calledQuantified Equilibrium Logic
and it is also independent of the language, as seen by the following result.

Proposition 3. LetΠ be a theory inL andM an equilibrium model ofΠ in QHTs
=
(L′)

with L′ ⊃ L. ThenM|L is an equilibrium model ofΠ in QHT
s
=
(L).

3.3 Strong equivalence for theories

We say that two setsΓ , ∆ of first-order sentences arestrongly equivalentif for every
setΣ of first-order sentences, possibly of a larger signature, the setsΓ ∪Σ,∆∪Σ have
the same equilibrium models.

Theorem 1 (Strong Equivalence of theories, [23]).For any setsΓ , ∆ of first-order
sentences, the following conditions are equivalent:

(i) the setsΓ and∆ are satisfied by the same here-and-there structures;
(ii) for every setΣ of first-order sentences, possibly of a larger signature, the setsΓ∪Σ

and∆∪Σ have the same equilibrium models, ieΓ and∆ are strongly equivalent.

Note that the above notion of equilibrium model coincides with the concept of stable
model for logic programs with variables presented in [16]. The concept of strong equiv-
alence and its characterisation can be found in [23]. By strong completeness, condition
(i) of Theorem 1 means thatΓ and∆ are logically equivalent inQHTs

=
.

4 Interpretability and Synonymy

We use the following notation and terminology. Boldfacex stands for a tuple of vari-
ables,x = (x1, . . . , xn), whileϕ(x) = ϕ(x1, . . . , xn) is a formula whose free variables
arex1,. . . ,xn, and∀x = ∀x1 . . . ∀xn. If ti are terms, thent = (t1, . . . , tn) denotes a
vectorof terms. LetL = 〈C,P 〉 be a first-order language,p 6∈ P a new predicate sym-
bol andL′ = 〈C,P ∪ {p}〉. LetΠ be a theory inL′. Explicit and implicit definability
are understood as follows

(i) p is said to beexplicitly definablein Π , if there is anL-formulaδτ
p (x) such that

Π |= ∀x(p(x) ↔ δτ
p (x)).

δτ
p is called thedefinitionof p.

(ii) p is said to beimplicitly definablein Π if for any modelsM1 andM2 of Π such
thatM1|L = M2|L we haveM1 = M2.
By the strong completeness theorem forQHT

s
=

proved in [23], this definition is
equivalent to the following one.

(ii’) p is implicitly definablein Π if

Π ∪Π [p/q] |= ∀x(p(x) ↔ q(x))

whereq 6∈ P is a new predicate symbol with the same arity asp andΠ [p/q] is the
theory obtained by replacing every occurrence ofp by q.



Interpretability and Equivalence in Quantified Equilibrium Logic 55

In other words,p is implicitly definable if whenever the interpretation of the L
predicates in models ofΠ is fixed, the interpretation ofp becomes fixed also. The above
definitions are readily extended to the case where several new predicates are definable
in a theory.

4.1 Interpolation and Beth properties in superintuitionistic logics

When the conditions (i) and (ii’) of explicit and implicit definability are always equiv-
alent, the logic in question is said to have theBeth property, [18]. Closely related to
Beth is the property ofinterpolation. A logic is said to have the interpolation property
if whenever

⊢ ϕ→ ψ

there exists a sentenceξ (the interpolant) such that

⊢ ϕ→ ξ and ⊢ ξ → ψ

where all predicate and constant symbols ofξ are contained in bothϕ andψ.
It can be shown that the interpolation property implies the Beth property in all super-

intuionistic predicate logics [18]. Moreover, Ono [28] showed that interpolation holds
in the logicQHTs of quantified here-and-there with constant domains.3 Consequently,
QHT

s also has the Beth property. Lastly, Maksimova showed in [24,25] that adding
pure equality axioms, eg decidible equality axiom, to any superintuitionistic logic pre-
serves the interpolation and Beth properties (see also [18]). We conclude therefore

Proposition 4. The logicQHTs
=

possesses the Beth property.

LetL1 = 〈C1, P1〉 andL2 = 〈C2, P2〉 be disjoint languages.4 By an interpretation
of L1 in L2 we mean

1. For each predicatep ∈ P1, anL2-formulaδτ
p explicitly definingp by the formula

∀x(p(x) ↔ δτ
p (x)); we denote byτ the set of all definitions.

2. An induced mapping, also denoted byτ , fromL1-formulas (resp.L1-terms) toL2-
formulas (resp.L2-terms) such that
(a) τ(x) = x and for everya ∈ C1, τ(a) ∈ C2; if t = (t1, . . . , tn) is a vector of

terms,τ(t) denotes(τ(t1), . . . , τ(tn));
(b) if t is a vector of terms, thenτ(p(t)) = δτ

p (τ(t)); τ(t1
.
= t2) = τ(t1)

.
= τ(t2);

(c) τ is extended recursively byτ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ), τ(ϕ ∨ ψ) = τ(ϕ) ∨
τ(ψ), τ(ϕ → ψ) = τ(ϕ) → τ(ψ), τ(¬ϕ) = ¬τ(ϕ), τ(∀xϕ) = ∀xτ(ϕ) and
τ(∃xϕ) = ∃xτ(ϕ).

Any interpretationτ of L1 in L2 induces a mappingFτ from L2-structures toL1-
structures: ifI = 〈(D, I), Ih, It〉, thenFτ (I) = 〈(D, J), Jh, J t〉 is defined as follows:

3 Ono’s axiomatisation ofQHTs uses the constant domains axiom∀x(α(x)∨β) → (∀xα(x)∨
β), as well as alternative axioms for propositional here-and-there, viz.p ∨ (p → (q ∨ ¬q))
and(p→ q)∨ (q → p)∨ (p↔¬q). However, the axioms given here are equivalent to Ono’s.

4 Any languages can be made disjoint by renaming. Alternatively we can allow thatL1 andL2

have a common sublanguage which any translations simply leave untouched, ie the sublan-
guage is always translated by the identity map.



56 David Pearce and Agustı́n Valverde

– For everya ∈ C1, J(a) = I(τ(a))
– p(t) ∈ Jw iff I, w |= δτ

p (τ(t))

It is easy to check that for anyL1-sentenceϕ and anyw ∈ {h, t}:

Fτ (I), w |= ϕ ⇔ I, w |= τ(ϕ) (1)

and therefore
Fτ (I) |= ϕ ⇔ I |= τ(ϕ) (2)

LetΠ1 andΠ2 be theories inL1 andL2 respectively and letτ be an interpretation of
L1 in L2. Thenτ is said to be aninterpretation ofΠ1 in Π2 if for all L1-sentenceϕ,

Π1 |= ϕ ⇒ Π2 |= τ(ϕ). (3)

In this case it is evident that

I |= Π2 ⇒ Fτ (I) |= Π1. (4)

Generally speaking the mapFτ associated with an interpretationτ of L1 in L2 does not
preserve the ordering� betweenL2-structures. However the following properties are
easy to check and will be useful later:

Lemma 1. Let τ be an interpretation ofL1 in L2, and letI be a totalL2-structure.
Then (i)Fτ (I) is a totalL1-structure; and (ii) ifI ′ � I, thenFτ (I ′) � Fτ (I).

An interpretation ofΠ1 in Π2 is said to befaithful if the converse of (3) also holds,
ie we haveΠ1 |= ϕ iff Π2 |= τ(ϕ). As in classical interpretability theory, further
special cases of interpretation can be obtained by imposingadditional conditions on the
syntactic and semantic translations.

Proposition 5. Let τ be an interpretation ofΠ1 in Π2. Then the following are equiva-
lent.
(i) For everyL2-formulaψ(x) there is anL1-formulaϕ(x) such thatΠ2 |= ∀x(ψ(x)↔
τ(ϕ(x))); ie τ is surjective.
(ii) There is an interpretationσ ofL2 in L1 such that for everyL2-formulaψ,Π2 |=
∀x(ψ(x) ↔ τ(σ(ψ(x)))).
(iii) The mappingFτ from models ofΠ2 into models ofΠ1 is an injection.

An interpretation satisfying any of (i)-(iii) of Proposition 5 is said to besurjective.
Such interpretation preserve the property of being an equilibrium model, in the follow-
ing sense.

Proposition 6. Let τ be a surjective interpretation ofΠ1 in Π2. For any modelM of
Π2, if Fτ (M) is an equilibrium model ofΠ1 thenM is an equilibrium model ofΠ2.

If τ is a surjective and a faithful interpretation, then it is said to be abijective in-
terpretationof Π1 in Π2. It is easy to verify that ifτ is a bijective interpretation ofΠ1

in Π2, then the interpretationσ of Π2 in Π1, defined by condition (ii) in Prop. 5, is
also bijective. The interpretationσ is called theinverseof τ and we say that the two
programs or theories aresynonymouswith respect toτ andσ.
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Proposition 7. If τ is a bijective interpretation ofΠ1 in Π2 then the mappingFτ is a
one-one correspondence between models ofΠ1 and models ofΠ2.

Given an inverse interpretationσ, we can mapL1-structuresI to L2-structures
Fσ(I) in the same way as before. It is readily seen thatFσ(Fτ (M)) = M if M is
a model ofΠ2; however the equality need not hold for other structures (even in the
classical case).

4.2 Verifying the adequacy conditions

Let us now consider synonymy in light of the adequacy conditions D1-D6. First we
consider the sense in which two synonymous theories can be considered equivalent.

Proposition 8. LetΠ1 andΠ2 be synonymous wrtτ andσ. ThenΠ2 ∪ τ is strongly
equivalent withΠ1∪σ. ThusΠ1 andΠ2 have a common definitional extension, ie there
is a theoryΠ in L2 ∪ L1, such thatΠ2 ∪ τ ≡ Π1 ∪ σ ≡ Π .

In fact Proposition 8 can be strengthened to an equivalence:two theories are bi-
jectively interpretable if and only if they have a common definitional extension. This
expresses one way in which the two theories are in an obvious sense equivalent once
enriched with suitable translation manuals. Notice too that there is a close relationship
betweenΠ2 and the translationτ(Π1) ofΠ1 (similarly betweenΠ1 and the translation
σ(Π2) of Π2). It is already clear thatΠ2 |= τ(Π1). Although it is not generally true,
even in the classical case, thatΠ2 ≡ τ(Π1), we do however have:

Corollary 1. LetΠ1 andΠ2 be synonymous wrtτ andσ. For anyL2-formulaϕ,Π2 |=
ϕ↔ τσ(ϕ), andΠ2 |= ϕ⇒ τ(Π1) |= τσ(ϕ).

Next we turn to condition D4.

Proposition 9. LetΠ1 andΠ2 be theories inL1 andL2 respectively, synonymous wrt
τ andσ. Then the bijective mappingFτ from models ofΠ2 to models ofΠ1 preserves
the equilibrium property, ie.M |=e Π2 iff Fτ (M) |=e Π1.

Clearly, condition D5 is satisfied and the presence of an inverse interpretation pro-
vides the sense in which the correspondence betweenΠ1 andΠ2 is idempotent. Lastly
we consider D6.

Proposition 10. LetΠ1 andΠ2 be theories inL1 andL2 respectively synonymous wrt
τ andσ. LetΠ a set ofL1-formulas. ThenΠ1 ∪Π is synonymous withΠ2 ∪ τ(Π) wrt
τ andσ.

5 Literature and Related Work

In classical logic there is a large and well-developed body of work on interpretability
dating from the 1950s. The first systematic treatments of synonymous theories in this
context can be found in [3, 4], a more algebraic approach can be found in [20]. The
classical version of Proposition 6 is essentially contained in [3], though a more detailed
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statement and proof can be found in [40]. Outside the field of mathematics, the classi-
cal theory of interpretability and definitional equivalence was extended and applied to
empirical forms of knowledge in [29, 34, 30]; see also [41] for a more recent account
of translatability issues in such contexts. The theory of interpretations and equivalence
in nonclassical logics is less developed, however especially in the case of superintu-
itionistic logics much is known about key properties, such as interpolation and Beth, on
which interpretability theory depends, see eg. [24–26]. Inthe context of nonmonotonic
logic programming the study of different kinds of equivalence between programs is rel-
atively new (see references in section 1). Until now the caseof programs in different
languages has only been considered in [36]. There has been some discussion of the role
and properties of definitions in ASP in [17, 12],.

6 Concluding Remarks

We have argued that formal approaches to intertheory relations developed for mathe-
matical and scientific knowledge can be applied to systems oflogic programming and
nonmonotonic reasoning used for practical problem solvingand knowledge represen-
tation in AI. In particular, we have described how the theoryof interpretability and
definitional equivalence can be applied in the context of first-order logic programs un-
der answer set semantics and nonmonotonic theoreis in the system of quantified equi-
librium logic. In this setting we regard theories as synonymous if each is bijectively
interpretable in the other, and we have characterised this relation in different ways. We
also showed that this reconstruction satisfies a number of intuitive, informal adequacy
conditions. The applicability of what is essentially a classical logical approach in a non-
classical context relies on two essential features: first, our underlying logic has several
properties such asBeththat help to relate the syntax to the semantics of definitionsand
translations; secondly, in ASP and equilibrium logic the strong concept of equivalence
between theories is fully captured in the underlying monotonic logic (quantified here-
and-there). This allows us to define a robust or modular concept of equivalence across
different languages.

Several avenues are left open for future exploration. For example, one might want
to study other kinds of interpretability relations, eg where the formulaδτ

p defining a
predicatepmay contain additional parameters, or where the semantic mappingFτ may
relate models with different domains. Secondly, one might search for simple structural
properties on the models of two programs or theories that areequivalent to or sufficient
for synonymy. Thirdly, based on these or other properties ofthe theories concerned, it
would be useful to develop systems for checking synonymy, thereby extending current
methods for checking strong equivalence in the case of programs in the same language
[9, 35].
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