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The systematic study of intertheory relations such as gtama uniform equivalence has recently become an active
sub-area of research in the field of LPNMR. Various kinds afespondence relations that may hold between logic
programs or between nonmonotonic theories have been adadysl shown to be of practical relevance for theory or
program transformation, optimisation and modularity.eal/systems for verifying such relations have already been
implemented. The papers in this volume explore this topith&r and take it in several new directions.
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Yet Another Proof of the Strong Equivalence Between
Propositional Theories and Logic Programs

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{j ool ee, Ravi.Palla}@su. edu

Abstract. Recently, the stable model semantics was extended to thaxsgh
arbitrary propositional formulas, which are beyond théitianal rule form. Ca-
balar and Ferraris, as well as Cabalar, Pearce, and Valvendeved that any
propositional theory under the stable model semantics ednrned into a logic
program. In this note, we present yet another proof of ttgalteUnlike the other
approaches that are based on the logic of here-and-therpraaf uses familiar
properties of classical logic. Based on this idea, we pitesprototype implemen-
tation for computing stable models of propositional thestising the answer set
solverbLv. We also note that every first-order formula under the steineel
semantics is strongly equivalent to a prenex normal formsghwoatrix has the
form of a logic program.

1 Introduction

Recently, the stable model semantics was extended to thaxsgharbitrary proposi-
tional formulas, which are beyond the traditional rule fdfim2]. Ferraris [2] showed
that nonmonotone aggregates can be naturally expresdesléxtended syntax. On the
other hand, Cabalar and Ferraris [3] showed that every gitipoal theory under the
stable model semantics is strongly equivalent [4] to a Iqggimgram. They provided
two proofs based on the logic of here-and-there, one by sgiatmansformation, and
the other by constructing a logic program using counterrsodethe theory. An ap-
proach similar to the first proof was taken in [5], where théhats presented a set of
rules for rewriting a propositional theory into a disjunetiogic program. These rules
are an extension of the rules for turning a program with riesig@ressions into a logic
program [6], which led to an implementationp [7]. The system is essentially a pre-
processor to the answer set solwev ! for handling programs with nested expressions.

In this note, we present yet another proof of the theoremmamgtequivalence be-
tween propositional theories and logic programs. Unlilkedther approaches that are
based on the logic of here-and-there, our proof is based aparator that character-
izes strong equivalence in terms of classical logic, usmegdended signature with two
groups of atoms, the original one corresponding to the &hetorld, and a group of
newly introduced atoms referring to the “here” world. Thi nnly shows that the re-
duction is possible, but also tells us howgeneratestrongly equivalent logic programs
based on equivalence in classical logic.

Yhttp://ww. dbai . tuwi en. ac. at/ proj/dl v/



2 Joohyung Lee and Ravi Palla

The reduction idea has led us to develop a prototype impléatien, which we call
F2LP,? that computes the stable models of an arbitrary proposititeory. Similar to
NLP, the system turns a propositional theory into a disjundtigéc program and calls
DLV.

We also apply the reduction idea to first-order formulas urtde new definition
of stable model semantics, recently proposed in [8]. We statvany first-order the-
ory under the stable model semantics is strongly equivateatprenex normal form
whose matrix has the form of a logic program. Thus the syittddference of arbitrar-
ily nested connectives and quantifiers is not essential dmtvthe language proposed
in [8] and logic programs. On the other hand, since the prewemal form may con-
tain existential quantifiers, it is different from a logicogiram, where all variables are
assumed to be universally quantified.

In the next section, we review the definition of stable modeisarbitrary propo-
sitional formulas as well as the definition of strong equikakebetween propositional
formulas, and present how to find a logic program that is gfigoequivalent to a given
formula. In Section 3, we present a simpler transformatol, in Section 4, we extend
the reduction idea to arbitrary first-order formulas anderibat every first-order theory
is strongly equivalent to a prenex normal form. In SectionvB,present a prototype
implementation of computing the stable models of proposél theories.

2 Reducing propositional formulas to logic programs

We first review the definition of a stable model proposed in 8] restricting atten-
tion to the propositional case. This definition is esselytidle same as the encoding
of formulas of equilibrium logic by quantified Boolean forfas given in [9], and is
equivalent to the fixpoint definition of a stable model progubin [2].

Let F’ be a propositional formula antda signature consisting of all atoms, . . ., p,,
occurring inF'. By SM[F'] we denote the second-order propositional sentence

F AYu((u < p) — —F*(u)),

wherep stands for the tuplgy, . . ., p,,, uis a tuple ofn distinct propositional variables
U, - . ., Uy, €quationu < p stands for

(ur = p1) Ao A (un — pn) A=((pr — ur) A A (P — un))
as in the definition of circumscription, arfd(u) is defined recursively, as follows:
- p; = ug;
- 1" =1,

- (FOG)* = F*©G*, whereo € {A,V};
- (F-G)=(F"—-G)N(F — Q).

We regard-F' as shorthand foF" — . Note that— corresponds tmot in the logic
program syntax. For instance, the rule

p < Notgq

2http://peace. eas. asu. edu/f2l p .



Strong Equivalence Between Propositional Theories andcliigpograms 3

is identified with the formula
g4 —Pp.

The operatof’ — F*(u) replaces each atom with the corresponding propositional
variable, and commutes with all propositional connectigrsept implication. If, in
the definition of this operator, we drop the second conjuedirm in the clause for
implication, thenF™(u) will turn into the formulaF'(u) referred to in the definition of
circumscription [10, 11]. A model of" is stableif it satisfies SMF].

According to [12, Section 2.6], a (propositional) formufais said to be strongly
equivalent to a formuld- if any formulaF’ that contains an occurrence Bfhas the
same stable models as the form@aobtained fromF” by replacing that occurrence
with G. This condition is more general than the original definitioom [4] not only
because it is applicable to arbitrary formulas, but alsabeeF' is allowed here to be
any subformula of”, not necessarily a “subconjunction.”

Ourreductionidea is based on the following propositionfi8], which generalizes
the main theorem from [13], stating that the strong equivedebetween two formulas
F and@G can be characterized in terms of equivalence (in classicat) between™*
andG*. Leto’ be a signature consisting of distinct atofp§, . . ., p/, } that are disjoint
from o, and letp’ stand for the tuple/,...,p,,. FormulaF*(p’) is obtained from
F*(u) by substituting the atomp’ for propositional variables.. Thus F*(p’) is a
transformation oft” in signaturer U ¢’. Equationp’ < p stands for

(PL = p1) A+ APy, — Pa)
as in the definition of circumscription.

Proposition 1 [8, Proposition 5] Formulas’ andG of signatures are strongly equiv-
alent iff

p' <p— (F(p) < G(p)) 1)
is a tautology.

As usual, a formuld’ is in negation normal fornf, for every subformulaG — H
of F', formulaG is an atom, and/ is 1. An occurrence of a formul& in a formulaF’
is positiveif the number of implications in¥’ containing the occurrence @f in the
antecedent is even, anégativeotherwise.

Definition 1. An implicationF — G of signatures U ¢’ is called acanonical impli-
cationif F' andG are formulas in negation normal form such that every ocauceeof
atoms fromy”’ is positive, and every occurrence of atoms fiens negative.

For example,
PAg—T
is not canonical, while
(' V(=g AT')) — (s A=) )
is canonical.

Given a formulaF of signatures U ¢/, by R(F') we denote the formula of signa-
ture o that is obtained fron¥ by dropping all occurrences 6in F. Note thatR(F),
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whereF is a canonical implication, can be identified with a logic gnam with nested
expressions [6], by identifying=" with not, ‘A’ with * ’, and v’ with * ;". For instance,
in logic programming notation, whefi is (2), R(F') can be written as

s, notp <« p; (notq, 7).

The following proposition tells us how to obtain a logic pram that is strongly
equivalent to a given formula.

Proposition 2 Given a formulaF', if G is a conjunction of canonical implications that
is equivalent taF™*, thenF’ and R(G) are strongly equivalent.

The proof of Proposition 2 uses the observation that
P <p— (F" < (R(G))) 3)

is a tautology. In view of Proposition 1, it follows thaAtand R(G) are strongly equiv-
alent. The fact that every propositional theory is strorggjuivalent to a logic program
follows from the fact that every formul&* can be equivalently rewritten as a conjunc-
tion of canonical implications. One way to do this is by forgniza conjunctive normal
form (CNF) of F*(p’), and then converting each of its clauses into a canonicdidexp
tion as follows. Given a clausg of signaturerUo’, by Tr(C') we denote an implication
whose antecedent is the conjunction of

— all p’ where—p’ € C, and
— all -p wherep € C,

and whose consequent is the disjunction of

— all p’ wherep’ € C, and
— all =p where—p € C.

Forinstance, iC is (p'V—q’' Vrv=s), thenTr(C) is (¢ A—r — p'V—s). We can take?

in the statement of Proposition 2 to be the conjunctiofirgt”) for all clauses”' in a
conjunctive normal form of™*. In view of Proposition 1, it follows that every formula
is strongly equivalent to a logic program whose rules haeddhm

a;...;ag;Notagyq;...;N0ta; «— aj+1,...,am, N0 A, 41, ..., N0ta,
(0 <k <1< m < n)where alla; are atoms.
Examplel F = (p —q) — 7.

(=) —=r)" =0 —=)NP—=q) =1 )A((p—q) —T)
S (@ VPVI )N VPV )AN@ Vg V) A(=g Vg Vi)
ANpVr)A(—qVr).

3 For convenience, we will often drogp’)” from F*(p’) when there is no confusion.
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Under the assumption thét’, ¢’, ') < (p, ¢, r), the formula can be simplified to
(pVIYAND' NV -gVT)YN(=g VI YA (g V).
Applying Tr to each clause yields the following formuta
(p =) A"V =gV ) A(d = 1") A (= = ). (4)
ThusR(G) is
(7p =) A(pV—=qVr)Alg—r)A(-r — —q). ®)
In logic programming notation, (5) can be written as follows
r «— notp
p; notg; r

T — ¢
notqg «— notr .

(6)

Proposition 2 tells us that logic program (6) is stronglyieglent to(p — ¢) — .
Example2 F=p — ((¢ —r) Vs).

p—=((g—=r)Vvs) =@ — (((d =r)AN(g=7) V) A(p—(g—1)Vs)
= (' V(=g V')A (=qVT) V) A(=pV (g V) Vs)
S (P Vg VI VS)A (P VgV rVSYA(mpV gV rVs).

Applying Tr to each clause yields the following formuta

P'ANg =" VSYANP AN-r—=qVs)A(=rA=s— —pV—q). (7)
ThusR(G) is
(pAg—=1rVs)A(PA-T——gVs)A(-rA-s— —pV-gq). (8)

In logic programming notation, (8) can be written as follows
rys =D g
notq; s <« p, notr 9)
notp; notq < notr, nots .

Proposition 2 tells us that logic program (9) is stronglyieglent to formulgp — ((¢ — ) V s).

3 Simpler Transformation

The following observation shows how to disregard some rdduanies with the transla-
tion introduced in the previous section.
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Proposition 3 Let F' be a propositional formula of signature Under the assumption
p’ < p,if F*is equivalenttdz A H whereG is a conjunction of canonical implications
and H is a formula of signature that is entailed byR(G), then F* is equivalent to
(R(G))".

Example I'. F = (p — ¢q) — r as in Example 1. Note that in (4), the last implication
(—r — —q) is entailed by

R((=p = 1) AN@' V=gV )A(d — 1))
Therefore, by Proposition 37* is equivalent to

(p=r)A(pVogVr)A(g—T))"

In other words, in view of Proposition F is strongly equivalent to the first three rules
of (6).

Example 2. F = p — ((¢ — r) V s) as in Example 2. Note that in (7), the last
implication is entailed by

R(pP’ANg =7 VYN N1 — —qVs)).
Therefore in view of Proposition 3 is equivalent to
(PAg—=rVs)A(pA-r——gVs)).

In other words, in view of Proposition F is strongly equivalent to the first two rules
of (9).

Based on Proposition 3, we consider the following definitidrich leads to a sim-
pler transformation than the one given in Proposition 2.

Definition 2. For any formulaF' of signatures, F°(u) is defined as follows:

—pfzui;

- 1°=1;

- (FVG)° =F*VvG*

- (FAG)=F°ANG®;

- (F - G) =(F*— G").

Note thatF is different fromF™* when we identifyF’ with a conjunctionF; A --- A F,, (n > 1),
Feis
FYN---NFS
where

‘ F* otherwise.

K2

FO:{G*—>H* if FyisG — H,

The following proposition tells us that, in Proposition2; can be considered in
place of F*.
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Proposition 4 Given a formulaF', if G is a conjunction of canonical implications that
is equivalent taF°, thenF and R(G) are strongly equivalent.

Example I F = (p — gq) — r as in Example 1. Under the assumption that
@, d,7") < (p.q,7),

P d )= (' = d)Np—q) =7
< (pVr)ANE V=gV ) A (=g Vi)
= (p—=1"YANP VagVI)YN( —71").
ThusF is strongly equivalent to
(7p =) APV —ogVr)Alg—rT),

which is the same as in Examplé 1

Example 2’ F = p — ((¢ — r) V s) as in Example 2. Under the assumption that
®.q 7' ") < (p.q,r5),
Fo. g s)=p" = (((¢ =) Alg—r)) Vs
= (p'V-g V' Vs)YA(=p'VagVrVvs)
=P AN =1 VSYNP N1 ——qVs).
ThusF is strongly equivalent to

(pANg—rVs)AN(pA-r——qVs),

which is the same as in Examplé 2

Due to lack of space, we do not provide a detailed comparistmwden our trans-
lation method and the others. However, we note that Propastinot only shows that
the reduction is possible, but also tells us how to genetaiagly equivalent logic pro-
grams of preferably smaller size, based on the notion ofvatgnce in classical logic.
This is in contrast with the other approaches that are baseagmtactic rewriting rules
under the logic of here-and-there. For instance, givenradita

(p—=q)—r)—r
our translation yields the following program:

q;7;notr«—p
notp <« notgq .

On the other hand, the following program is obtained accwyth Section 3 of [5].

notp; r < notq
T
q;r;notr«—p

notp; r; notr <« notgq .
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However, clearly, any translation according to Proposiio(or Proposition 2) in-
volves an exponential blowup in size in the worst case. lddiés shown in [5] that
there is no polynomial translation from propositional tfies to logic programs if we
do not introduce new atoms, and that there is one if we all@mth

4 Prenex Normal Form of First-Order Formulas

The translation from an arbitrary propositional theoryiatlogic program shows that
their syntactic difference is not essential, which allowistng answer set solvers to
compute the stable models of arbitrary propositional fdasuCan the result be ex-
tended to first-order formulas, of which the stable modela®ruos is presented in [8]?
We begin with a review of the stable model semantics preddntg8], which ex-
tends the definition of a stable model reviewed in Section firsb-order sentences.
Given a first-order sentende, by SM F'] we denote the second-order sentence

F AYu((u < p) — —F*(u)),

wherep stands for the tuple of all predicate constapts. . . , p,, occurring inF’, u is
a tuple ofn distinct predicate variables, . .., u,, equationu < p is defined as in
circumscription [11], and™ (u) is defined recursively, as follows:

- pi(tla cee 7tm)* = ui(tla e 7tm)1

= (ti=t2)" = (t1=t2);

- 1*=1;

- (FOG)* = F*© G*, where® € {A,V};
- (F->G)*=F*"—-G)N(F—-G);

— (QzF)* = QxF*, whereQ € {V,3}.

A model of F' is stableif it satisfies SMF']. For the definition of strong equivalence
extended to first-order formulas, we refer the reader toi@edtof [8].

Proposition 1 can be extended to the case whesedG are first-order formulas [8,
Proposition 5]. Using the proposition, one can prove thatr¥irst-order formula is
strongly equivalent to a prenex normal form. The followirrgosition is essentially
Theorem 6.4 of [14].

Proposition 5 Every first-order formula is strongly equivalentto a prenexmal form.

The proposition follows from the fact that usual prenex nalrfiorm conversion
rules for first-order logic (e.g., [15, Lemma 2.29]) pres=rgtrong equivalence. Alter-
native to the proofin [14], this fact can be proved using [®@®dsition 5]. For instance,
VezF(x) — G is strongly equivalent t&lz(F(z) — G), wherex is not free inG.
Consider

(VzF(x) — G)" = (VaF(z) —
& Je(F(x) —

and
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Note that (10) and (11) are not (classically) equivaleneneyal, but they are equivalent
under the assumptigy’ < p, wherep is the tuple of all predicate constants occurring
in F(x) andG, andp’ is the tuple of new, pairwise distinct predicate constahtbhe®
same length ap. Therefore, by [8, Proposition 5], we conclude that'(z) — G is
strongly equivalent tdz(F(z) — G).

Also, Proposition 2 can be straightforwardly extended tardifier-free first-order
formulas as follows. A first-order formul&’ is in negation normal fornif, for every
subformulaG — H of F,

— formulaG is an atomic formula, and
— formulaH is L.

For any clause” in a CNF of a quantifier-free first order formul@;(C) from
Section 2 can be extended in a straightforward way. The #égualn be placed either
in the consequent or the antecedent (properly negated).

Corollary 1 Any first-order formula is strongly equivalent to a prenexmal form
whose matrix is a conjunction of implicatiods— G whereF' andG are formulas in
negation normal form.

The matrix of a prenex normal form indicated in Corollary liristhe form of a
logic program. Thus, similar to the propositional case, $ietactic difference of ar-
bitrarily nested connectives and quantifiers is not esddndisveen the new language
proposed in [8] and logic programs. On the other hand, sineg@tenex normal form
may contain existential quantifiers, it is different fromogilc program, where all vari-
ables are assumed to be universally quantified. For instacerding to [8], the stable
models of formuladz p(x) represent thap is a singleton, as in circumscription. This
has no counterpartin logic programs, since their stableatsaate limited to Herbrand
interpretations. For a related discussion, see [16].

5 Implementation

Our implementation, which we caRLP, turns an arbitrary propositional theory into a
logic program and callsLv to compute its stable models. When the input is already in
the syntax obLv input language, its operation is just as wbhav does. The system is
available at

http://peace. eas. asu.edu/f2lp .

The ASCII representations of propositional connectivesiia the syntax of2Lp
are summarized in the following chart:

Symbol - A |V

v_|= L il
ASClIl representation [not [& ||

|
|-> [false Jtrue

Example 1 is written in the syntax 62LP as follows:
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(p->q)->r.

F2LP turns this formula into the followingLv input:

r :- not p.

pl r | gbar :-.
r:- g.

g_bar :- not q.
- g, g_bar.

Note that this program is slightly different from the logimgram shown in Exampl€ 1
(the first three rules of (6)). This is becausev, like most other answer set solvers,
does not allow negation as failure in the head of a rule. Hewedt/can be simulated
by introducing new atoms (Section 4 of [17]). The method aepb the occurrence of
notp in the head of a rule with a new atginand adds ruleg < notp and« p,p. The
stable models of the program correspond to the stable mofléte original program
by disregarding the presence of the new atoms. In the exaahplee,q_bar is a new
atom, and the last two rules are added. Aft@cp calls DLv to compute the stable
models, it removes all occurrences of the new atonisgt' ") from the stable models
returned bypLv.

Example 2 is written in our syntax as follows:

p->((g->r) | s).
This is turned into the followin@Lv input by F2LP:

rl s:-p @

g_bar | s :- p, not r.
g_bar :- not q.
‘- g, g_bar.

6 Conclusion

Our contributions in this note are as follows. First, we prasd a new proof of the the-
orem on strong equivalence between propositional theariddogic programs. Unlike
the other approaches that are based on the logic of heréhanel-our proof relies on
familiar properties of classical logic. Due to this factyquoof indicates how corre-
sponding logic programs can be generated using equivatargformations in classical
logic. Second, using the same reduction idea, we showedthgtary first-order for-
mulas under the stable model semantics, recently propad& ican be turned into a
prenex normal form whose matrix has the form of a logic prograhird, we presented
a prototype implementation for computing the stable mode&rbitrary propositional
formulas based on the reduction method.

For future work, we plan to investigate how the methods ofiihg minimally
equivalent theories in classical logic can be applied toifigdninimally equivalent
logic programs. Recently, Cabalat al.[18] proposed two notions of minimal logic
programs. It would be interesting to see how these appreaieaelated.
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A Appendix: Proof of Proposition 2

Due to lack of space, we present the proof of Proposition £, evtiich follows imme-
diately from Proposition 1 and the following proposition.

Proposition 6 Let F' be a formula of signature and G' a conjunction of canonical
implications that is equivalent t6*. Then

P <p— (F" < (RG))
is a tautology.

The proof of Proposition 6 uses the following lemmas, mostloith can be proven
by induction.

Lemma 1. For any formulaF’ of signaturer, the formula
p' <p— (F(p)—F)
is logically valid.
Lemma 2. Every formulaF' is equivalent taR(F™).
Lemma 3. For any two formulad” and G of signatures U ¢/,
(F « @) — (R(F) < R(G))
is a tautology.

Proof. Assume thaf’ — G holds for all interpretations af U ¢’, which includes the
interpretationd such thap! = (p’)! for all p € p. Itis clear thatF! = R(F)! and
G! = R(G)!, from whichR(F)! = R(G)! follows. Sincel range over all interpreta-
tions ofo, it follows thatR(F') — R(G). 1

Lemma 4. For any canonical implicatiorF of signatures U ¢’,

(p' <p) = (FAR(F)) < (R(F))")

is a tautology.

Proof of Proposition 6. Assumep’ < p andF* <~ G. By Lemma 1,F* — F
holds, so thaf™ is equivalent toa7 A F'. SinceF is equivalent taR(F*) according to
Lemma 2,G A F is equivalenttaz A R(F™*), which, in turn, is equivalent t& A R(G)
according to Lemma 3. By Lemma 4, it follows th@h R(G) is equivalent tq R(G))*.
|
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Abstract. Logic programming under the answer-set semantics nowadizgls
with numerous different notions of equivalence betweerggms. This is due
to the fact that equivalence for substitution (known asrgjrequivalence), which
holds between programB and @ iff P can faithfully be replaced bg within
any contextr, is a different concept than ordinary equivalence betwBeand
@, which holds if P and@ have the same answer sets. Notions inbetween strong
and ordinary equivalence have therefore been obtainedtbgreiestricting the
syntactic structure oR or bounding the set of atoms allowed to occuirr{rel-
ativized equivalence). For the former approach, howeveurned out that any
“reasonable” syntactic restriction # either coincides with strong equivalence
or collapses to uniform equivalence wheReranges over arbitrary sets of facts.
In this paper, we propose a parameterization for equival@oetions which takes
care of both such kinds of restrictions simultaneously byriating, on the one
hand, the atoms which are allowed to occur in the rule head? afd, on the
other hand, the atoms which are allowed to occur in the ruthdsoof R. We
introduce a semantical characterization including knowasoas SE-models or
UE-models as special cases. Moreover, we provide compléxitinds for the
problem in question.

1 Introduction

Starting with the seminal paper on strong equivalence beti@gic programs by Lif-
schitz, Pearce, and Valverde [7], a new research direatidogic programming under
the answer-set semantics has been established. This i® daet that strong equiva-
lence between prograni® and @, which holds iff P can faithfully be replaced bg)

in any program, is a different concept than deciding whefhemd @ have the same
answer sets, i.e., (ordinary) equivalence betwamd( holds. FormallyP and(@ are
strongly equivalent iff, for each further so-called corntgsogramR, P U R andQ U R
possess the same answer sets. That difference betweeg atrdordinary equivalence
motivated investigations of equivalence notions inbetwsee, e.g., [4]). Basically this
was done in two ways, viz. to bound the actually allowed cdrgeogramsR by (i) re-
stricting their syntax; or (ii) restricting their languadg®r Case (i), it turned out that any
“reasonable” (i.e., where the restriction is defined ruleeyfor instance only allowing

* Supported by the Austrian Science Fund (FWF) under proj&8068-INF.
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for Horn rules) attempt either coincides with strong eqlémae itself, or reduces to
uniform equivalence [2], which is to test whether, for eaeh/s of facts,P U F' and
Q@ U F possess the same answer sets. Case (ii), where the atomsdatio occur in
R are given by an alphabet yields in general different concepts for differedtand
thus is known as strong equivalence relative4$12]. Finally a combination of both
approaches leads to the concept of uniform equivalencevesta A [12].1

In this paper, we propose a fine-grained framework to defitiem®of equivalence
where the aforementioned restrictions are simultaneaagign into account. This is
accomplished by restricting, on the one hand, the atomshnduie allowed to occur
in the rule heads of the context programs and, on the othet, k@ atoms which are
allowed to occur in the rule bodies of the context programsréMformally, for given
programsP, @, and given set8{, 3 of atoms, we want to decide whether the answer
sets ofP U R and@ U R coincide for each prograiiR, where each rule i& has its head
atoms front{ and its body atoms fror. We will show that this new notion includes all
of the previously mentioned; for instance, settifig= (, i.e., disallowing any atom to
occur in bodies, will be shown to coincide with (relativizeahiform equivalence; while
the parameterizatiol = 3 amounts to (relativized) strong equivalence by definition.

The main contribution of the paper is to provide a generalas#ival character-
ization for the new equivalence notion. Moreover, we shoat thur characterization
includes as special cases known concepts as SE-models [WEmodels [2]. Finally,
we address the computational complexity of the introduecpdvalence problems and
propose a prototypical implementation.

2 Background

Throughout the paper we assume an arbitrary finite but fixedetsel/ of atoms.
Subsets oi/ are either called interpretations or alphabets: We useattter lterm to
restrict the syntax of programs, while the former is usedmtiagking about semantics.
For an interpretatio’” and an alphabet,, we writeY'| 4 instead oft” N A.

A propositional disjunctive logic program (or simply, a gram) is a finite set of
rules of form

a1V -V ap < Qi1 .- Gy, MO g1, - - -, NOL Ay, Q)

n > 0, n>m>1[, and where alk; are propositional atoms it¥ and not denotes
default negation; fon = [ = 1, we usually identify the rule (1) with the atom, and
call it afact A rule of the form (1) is called aonstraintif [ = 0, positiveif m = n and
unaryif it is either a fact or of the forna < 0. A program is positive (resp., unary) iff
all its rules are positive (resp., unary). If all atoms ocing in a programP are from
a given alphabetl C U/ of atoms, we say tha® is a progranover (alphabet)4. The
class of all logic programs over univei&ds denoted by;,.

For a ruler of form (1), we identify its head byl (r) = {a1,...,a;} and its body
via BT (r) = {ai+1,---,am} and B~ (r) = {am+1,- .-, a,}. We shall write rules of

L A further approach is to additionally restrict the alphategr which the answer sets 5fU R
and @ U R compared. This kind oprojectionwas investigated in [5, 8, 10], but we do not
consider it in this work.
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form (1) also as (r) < BT (r), not B~ (r). Moreover, we also usB(r) = BT (r) U
B~ (r). Finally, for a progran®, a(P) = {J,cp (r), fora € {H, B, B*, B~ }.

The relationY |= P between an interpretatiori and a progran® is defined as
usual, i.e.Y = P holdsif for eachr € P, Y |= r. The latter holds iffH (r) N Y # 0,
whenever jointlyB*(r) C Y andB~(r) NY = 0 hold. If Y = P holds,Y is
called a model ofP. Following Gelfond and Lifschitz [6], an interpretatidn, is an
answer sebf a programp iff it is a minimal (wrt set inclusion) model of theeduct
PY ={H(r) «— B*(r) | Y N B~ (r) = 0}. The set of all answer sets of a progr&m
is denoted byAS(P).

Finally, we briefly review some prominent notions of equivede [7, 2, 12, 4], which
have been studied under the answer-set semantics: Foreaipleabetd C U/, we call
programsP, Q@ € Cy, strongly equivalent relative tal, iff, for any programR over A,
it holds thatAS(P U R) = AS(Q U R). P, Q areuniformly equivalent relative to,
iff, for any setF' C A of facts, AS(P U F) = AS(Q U F). If, A = U, strong (resp.,
uniform) equivalence relative td collapses to (unrelativized) strong (resp., uniform)
equivalence [7, 2]; ifA = 0, we obtainordinary equivalencg.e., AS(P) = AS(Q).

In case of strong equivalence (also in the relativized ¢asejas shown that the
syntactic class afounterexamples.e., programd?, such thatdS(P U R) # AS(Q U
R), can always be restricted to the class of unary programscéjehe next result
comes by mere surprise, but provides insight with respettta@lphabets in the rules’
heads and bodies.

Lemma l. Let P, Q, R € Cy be programs, and” be an interpretation, such that
Y € AS(PUR) andY ¢ AS(QU R). Then there exists a prograf/, such thatR’ is
positive,H(R') C H(R), B(R') C B(R),Y € AS(PUR/), andY ¢ AS(QU R’).

The result can be checked by usiRg= RY .

As we will see later, Lemma 1 can even be strengthened to ypmagrams. How-
ever, already the present result shows that whenever ae@xampleR for an equiva-
lence problem exists, then we can find a simpler (positive) @amich is given over the
same alphabets in the heads, and respectively, bodies.

3 The General Framework

Lemma 1 suggests to study equivalence problems along a pteanation via two
alphabets. To this end, we first introduce classes of progemfollows.

Definition 1. For any alphabet${, B C U, the clas< 3, ) of programs is defined as
{PeCy| H(P)CH,B(P) CB}.

With this concept of program classes at hand, we now definvaguce notions
which are more fine-grained than the ones previously inttedu

Definition 2. LetH, B C U be alphabets, an® Q € C;, be programs. ThéH, B)-
equivalence problerhetween” and @, in symbolsP = 5y Q, is to decide whether,
for eachR € C(3 ), AS(PUR) = AS(QU R). If P =3 5y Q holds, we say thaP
andQ are (H, B)-equivalent
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The clas< (3, 5y is also called theontextof an(, B)-equivalence problem, and a
programR € C3 ), whereAS(P U R) # AS(Q U R) holds, is called &ounterex-
ampleto the (H, B)-equivalence problem betweéhand(.

Example 1.ConsiderP = {a Vb «; a « b} and@Q = {a < notb; b — nota; a —
b}. It is known that these programs are not strongly equivakinte adding any?
which closes the cycle betweenandb yields AS(P U R) # AS(Q U R). In par-
ticular, forR = {b — a}, we getAS(P U R) = {{a,b}}, while AS(Q U R) = 0.
However, P and @ are uniformly equivalent. In our setting, we are able to ‘fapp
imate” equivalence notions which hold betweBnand Q. It can be shown that, for
instance,P =((a,5},(5}) @ OF P =({4} 1a,p}) @ holds (basically sincé < a does not
occurinany programit;, sy, (3)» O'C({a},{a,b}))- BUtP =14} {45}y @ and likewise
P =({a,b},7a)) @ do not hold, sincgb « a} is contained in the context (1} (a,b})
resp.,C<{a,b}7{a}>. o

Observe that the concept ((, )-equivalence captures other equivalence notions
as follows: (A, A)-equivalence coincides with strong equivalence relativelt and,
in particular,(U, U)-equivalence amounts to strong equivalence. Later we eadlltat
(A, B)-equivalence coincides with uniform equivalence relative; and, in particular,
(U, B)-equivalence amounts to uniform equivalence. Note thatetegion to uniform
equivalence is not immediate sinéd, #)-equivalence deals with sets dfsjunctive
facts, i.e., rules of the forma, V - - - V a; <, rather than sets of (simple) facts—.

The following result shows some general properties féy3)-equivalence.

Proposition 1. LetH, B C U and P, Q € Cy, such thatP =3, 5y Q holds. Then, also
(PUR) =y (QU R) holds, for eachk € C(y 5y, H' € H, andB’ C B.

A central aspect in equivalence checking is the quest foastioal characteriza-
tions assigned to singleprogram. The following formal approach captures this aim.

Definition 3. A semantical characterizatidor an (H, B)-equivalence problem is a
functiono sy : Cu — 22“x2" "guch that, for any’, Q € Cy, P =5 Q holds
iff o(30,8) (P) = 03,8 (Q)-

We will review known characterizations for special cases far instance, SE-
models [11] and UE-models [2]) later. Finally, we also imtuge containment problems.

Definition 4. Let’H, B C U be alphabets, an®, Q € C;; be programs. ThéH, B)-
containment problerfor P in @, in symbolsP C 5, ) Q, is to decide whether, for each
R € Cip 3y, AS(PUR) C AS(Q U R). A counterexample t& C » 5y Q, is any
programR € C3 gy, such thatdS(P U R) € AS(Q U R).

Proposition 2. P = gy Q holds iff P C 4 5y Q andQ C (3¢ ) P jointly hold.

4 Characterizations for (H, B)-Equivalence

Towards the semantical characterization {&f, 5)-equivalence problems, we first in-
troduce the notion of a witness, which is assigned?f B)-containment problems
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taking both compared programs into account. Afterwardswillederive the desired
semantical characterization ¢f, 3)-models which are assigned to single programs
and satisfy the conditions in Definition 3.

To start with, we introduce the following partial order oerpretations and state a
technical lemma.

Definition 5. Given alphabetd{, B C U, we define the relatior’,C ¢ x U between
interpretations as followsV’ <5 Z iff V| C Z|» andZ|g C V3.

Observe that ifi 57‘?[ Z holds, then eitheV |yup = Z|nus, or one ofV|y C
Z|n, Z|s C V| holds. We writeV” <5 Z, in caseV <%, Z andV |yup # Z|nus.

Lemma 2. Let H,B C U be alphabetsP a positive program withH (P) C H,
B(P) C B,andZ,V C U interpretations. Theny = P andV <% Zimply Z = P.

Proof. Towards a contradiction, suppose= P, V| C Z|n, Z|s C Vs, as well
asZ [~ P hold. If Z [£ P, then there exists a rulee P, such thatB+(r) C Z and
ZNH(r) = 0. SinceH(r) C H, we get fromV|y C Z|y, thatV n H(r) = 0.
Moreover, sinceB™ (r) C B, we haveB™ (r) C Z|g C V|, and thusB*(r) C V.
HenceV £ r which yieldsV (£ P. Contradiction. O

4.1 W.itnesses for Containment Problems

Definition 6. A witnessfor (violating) a containment problerdt C 4, 5) @ is a pair of
interpretations(X,Y") with X C Y C I/, such that

() Y = Pandforeachy’ CY,Y’ = PY impliesY’|y C Yy
(i) if Y = QthenXCY, X E QY, and foreachX’ with X <5, X' c Y, X' |£ PY.

The aim of a witnes$X,Y") for (violating) P C 4, 5y Q is, roughly speaking, as
follows: SetX is used to characterize a counterexaniplsuch that set” behaves as a
witnessing answer set, i.&7, ¢ AS(PUR) andY ¢ AS(QU R). Property (i) ensures
thatY can become such an answer set of an exterfdetio this end, it is not only
necessary that |= P. It also has to be guaranteed that¥iocC Y, with Y’ |, = Y|y
satisfies”” = PY, otherwiseY” can never become an answerdf R, no matter which
R € Ciy ) is added taP. Property (ii) ensures that the progrdnis obtained fromX
in such a way, tha” does not become an answer setaf) R, butY still can become
an answer set oP U R. We can focus on a positive prograin(cf. Lemma 1), and?
can be constructed in such a way, that it rules out all passitidelsX’ c Y of PY,
as long as¥ £5 X’ holds. The latter is due to the fact that each positive Cin,B)
suitably applies here to Lemma 2.

Example 2.We already have mentioned th8t= {a Vb «—; a < b} andQ = {a «—
notb; b — nota; a — b} are not(H, B)-equivalent forH = {v} andB = {a,b}. We
show that there exists a witness BrC 4, 5y Q. First, let us compute the programs’
models (over{a,b}) as well as the models of their reducts. Observe fhand Q
have the same model§ = {a,b} andY> = {a}. For the positive progran® we
are done, since all reducts coincide with and thus possess the same models.(For
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however, observe th&@* = {a « b} has model$), {a}, and{a, b}, while Q¥> =
{a; a < b} has modelda} and{a, b}. We show that forX = 0, (X, Y1) is a witness
for P Ciy,5 Q. Clearly, Condition (i) from Definition 6 holds, sindg§ = P and
Ya|2 C Yi]x. Concerning Condition (i), we hav, = Q, X C Y7, andX = QY.
The only X’ (over {a,b}) such thatX <%, X’ holds isX itself, sinceB = {a,b}
and thusX’ C X has to be satisfied. It thus remains to chécki~ PY!, which is
the case. Hencé(), {a, b}) is a witness for? C (4} 14,5}y @- By similar arguments (in
particular, since alsgb} [~ P¥), (0, {a,b}) is a witness also foP C (4 4} {a}) Q- ©

We now formally proof that the existence of withesses for at@mment problem
P C iy ) Q in fact shows tha’ C 4, 5y Q does not hold. As a by-product we obtain
that there are always counterexample#ta 5y @ of a simple syntactic form.

Lemma 3. The following propositions are equivalent for akyQ € Cy;, H, B C U:

(1) P <,y Q does not hold;
(2) there exists a unary progra € C 5y, such thatdS(P U R) £ AS(Q U R);
(3) there exists a witness fdt C 3, ) Q.

Proof. We show that (1) implies (3) and (3) implies (2). (2) impli&$ ¢bviously holds
by definition of(H, B)-containment problems.

(1) implies (3): If P C 3 5 @ does not hold, there exists a progrdiand an
interpretationt’”, such that” € AS(P U R) andY ¢ AS(Q U R). By Lemma 1, we
can wlog assume that is positive. Moreover, we knod (R) C H andB(R) C B.
Starting fromY” € AS(P U R), we first show that Property (i) from Definition 6 holds.
We haveY = P U R, and thusY = P as well asY = R holds. It remains to
show that for each” C Y, Y’ = PY impliesY’|y C Y|x. Towards a contradiction,
now suppose there exists af C Y such thaty” = PY andY’|y, ¢ Y. Since
Y’ C Y, we haveY’|y; = Y|y, and thusY |y C Y'|x. Moreover,Y'|z C Yg
holds, and we get’ <% Y’. By Y = R and Lemma 2 this yields” = R. But then
Y’ = (PY UR) = (PUR)Y, acontradictiontd € AS(P U R).

It remains to establish Property (ii) in Definition 6. Fram ¢ AS(Q U R), we
either gett” [~ Q U R or existence of aiX such thatX = (QUR)Y = (QY UR). We
already know thal” |= R. Hence, in the former case, i.&7,}- Q U R, we getY” }~ Q.
Then, foranyX C Y, (X,Y) is a witness forP C 4 5, @, and we are done. For the
remaining case, wher® = QY and X = R, we suppose towards a contradiction,
that there exists aiX’ C Y, such thatX’ = PY and X 5% X’ hold. The latter
together withX = R yields X’ = R, following Lemma 2. Together witlX’ = PY,
we thus getX’ |= (PY UR) = (P UR)Y. SinceX’ C Y this is in contradiction to
Y € AS(PUR). Thus(X,Y) is a witness for fotP C 3, 5y Q.

(3) implies (2): Let(X,Y) be a witness fol’ C (5 ) Q. We use the unary program
R=X[yU{a—blae ¥ \X)hbe (¥ \X)s)

and showt” € AS(PUR)\ AS(QUR). We first showt” € AS(PUR). Since(X,Y)
is a witness for? C 3, 5 Q, we knowY |= P.Y |= Ris easily checked and thds =
PUR. Itremains to show that ng C Y satisfiesZ = (PUR)Y = PY U R. Towards
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a contradiction suppose suchZaexists. HenceZ = PY andZ = R.By Z = R,
X|n € Z|y has to hold. SincéX,Y') is a witness fot? C 3 5y Q, Z|, C Y |3 holds,
otherwise Property (i) in Definition 6 is violated. Hendgl,, C Z|, C Y|« holds. We
haveX C Y and, moreover, gef|z € X|g from Property (i) in Definition 6, since
Z = PY andX|y C Z|y already hold. NowZ|s C Y|z by assumption, hence there
exists an atorm € (Y'\ X)|3 contained inZ. We already know thaX |, C Z|x C Y|x
has to hold. Hence, there exists at least ene (Y \ X)|, not contained inz. But
then, we derive thaf' (£~ {a < b}. Sincea «— b € R, this is a contradiction t& = R.

It remains to show” ¢ AS(Q U R). If Y [~ @, we are done. So l&f |= Q. Since
(X,Y)is awitness fol? C 3 5) Q, we getX = QY andX C Y. Itis easy to see that
X = Rholds. ThusX | (Q¥Y UR) = (QUR)Y; Y ¢ AS(Q U R) follows. O

As an immediate consequence of Lemma 3 and Proposition 2etwbat(H, )-
equivalence problems which do not hold always possess sitopleterexamples. As a
special case we obtain the already mentioned fact(ftHaf)-equivalence amounts to
uniform equivalence relative tH.

Corollary 1. ForanyH, B € U and programsP, Q € Cy, P =3 5y @ does not hold
iff there exists a unary programR € C gy, such thatdS(P U R) # AS(Q U R); if
B =0, thenP = 5, @ does not hold iff there exists a sEtC H of facts, such that
AS(PUF) # AS(QUF).

4.2 Introducing (H, B)-models

Next, we present the desired semantical characterizaiigftf, 5)-equivalence, which
we call(H, B)-models. First, we introduce two further properties.

Definition 7. Given’ C U, an interpretationt” is an+-total modeffor P iff Y |= P
andforallY’ Cc Y,Y' = PY impliesY'|3; C Y.

Definition 8. GivenH, B C U, a pair (X,Y) of interpretations is calledj%-maximal
for Piff X = PY and, for eachX’ with X <5 X’ C Y, X' }£ PY.

Observe thal” being artH-total model forP matches Property (i) from Definition 6
and follows the same intuition. Being? -maximal refers to being maximal (wrt subset
inclusion) in the atoms fror{ and simultaneously minimal in the atoms frd@m

Definition 9. Given'®, B C U, and interpretationsX C Y C U/, a pair (X,Y) is an
(H, B)-modelof a programP € C, iff Y is anH-total model forP and, if X C Y,
there exists anX’ C Y with X'|»ug = X, such that( X', Y) is <%, maximal forP.
The set of al#, B)-models of a progran® is denoted by 3 5y (P).

Moreover, we call a paifX,Y) total if X = Y, otherwise it is callechon-total Ob-
serve that each non-totéi, 5)-model(X,Y) satisfiesX C Y|nup andX |y C Y|x.

Example 3.In Example 1, we already mentioned tifat= {a Vb —; a « b} andQ =
{a — notb; b — nota; a — b} are({a,b}, {b})-equivalent. Hence, fi%{ = {a, b},
B = {b}, and let us compute thg{, B)-models ofP, and resp.(). In Example 2 we
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already have obtained the models of these programs as w#ieasreducts. There,
we have seen thaf; = {a, b} andY> = {a} are the models of botlr and@. Since
H = {a, b}, both areH-total models forP and@. So,(Y1, Y1) and(Y2, Y2) are the total
(H, B)-models of both programs. It remains to check whether thetotad (X, B)-
models ofP and@ coincide. First observe théYs, Y1) is (H, B)-model of bothP and
Q, as well. The interesting candidate(# Y7) sincef) is model of@"* but not of PY1.
Hence, (0, Y1) cannot be(H, B)-model of P. But (), Y7) is also not(, B)-model of
@, since there exists an interpretatii satisfyingd <% X’ C Y, which is model of
Q™ viz. X’ = {a}. Infact,0[ C X'|7, andd|z = X’|5 hold.

ForH = {a} andB = {a, b}, one can show thdl, Y2) is the only(H, B)-model
(over{a,b}) of P as well as of), sinceY; is noH-total model in this setting. o

Before stating our main theorem, we require one further lamm

Lemma4. Let P,Q € Cy, H,B C U, andY be an interpretation. Ther(Y,Y) €
0,8y (P) \ 0,5y (Q) iff there is a witnes$ X, Y') to P C 5 gy Q With X |3 = Y[3.

Proof. For the only-if direction, we directly obtain fror,Y) € o 5 (P), that
Property (i) in Definition 6 holds. To show the remaining Redy (ii), observe that
from (Y,Y') ¢ o.5)(Q), we either have” [~ Q or existence of somg’ C Y, such
thatY” = QY andY’|s; = Y|x. In the former case, we are already done, and get that
any (X,Y) with X C Y is a witness forP C 3, 5 Q, in particular forX |y = Y.
It remains to show that, in casé = @, and for som&™ C Y with Y'|; = Yy,
Y’ | QY, eachX’ with Y’ <5, X’ C Y satisfiesX’ = PY. By definition, this would
make(Y',Y") a witness forP C 4 5, Q. Towards a contradiction, suppose such&n
exists. But then, frony” <5 X’ c Y andY”|y = Y|x, we getY”’| = X'|3 = Y |n.
Thus,Y” cannot be art{-total model ofP; a contradiction tdY,Y") € oy gy (P).

For the if-direction, let X, Y") be a witness fo® C 4 5, Q. Property (i) in Def-
inition 6 yields (Y,Y') € o 5y (P). It remains to showY,Y’) ¢ o 5 (Q). Now,
(X,Y) being a witness implies that eith&r |~ Q or X = QY, whereX |y = Y|y
andX C Y hold. Both cases preveflt,Y') from being(H, 3)-model of Q. 0

Theorem 1. For any programsP, Q € Cy and alphabets?{,B C U, P = 5 Q
holds iff (s 5y (P) = o35 (Q).

Proof. If-direction: Suppose that eithét C 4 5y Q orQ C 3 5y P does nothold. Let
us wlog assumé’ C 3 5y @ does not hold (the other case is symmetric). By Lemma 3,
then a witnes$.X,Y’) to P C 3 5y Q exists. By Property (i) in Definition 6, we im-
mediately getY,Y) € o3 5 (P). Incase(Y,Y) ¢ o 5y (Q) we are already done.
So supposgY.,Y) € o35 (Q). Hence, we can assunié = @, and by Lemma 4,
Xy # Y|y Since(X,Y) is a witness fol? C 3, 5 Q, we get thatX = Q¥ holds,
and for eachX’ with X <5 X’ c Y, X’ £ PY. Consider now an arbitrary pair
(Z,Y) of interpretations withZ C Y which is <¥-maximal for@. ThenX <5 Z
has to hold and sinc@’,Y') € oy 5 (Q), Y is an’H-total model ofQ, and we obtain
(Z|nus,Y) € o,y (Q). On that other hand,Z |1us,Y) ¢ o g) (P) holds. This
is a consequence of the observation that for edtiwith X <5 X’ c v, X'}~ PY,
(since(X,Y) is awitness forP C 3, 5y Q), and by the fact thak’ =<5 Z.
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Only-if direction: Wlog assuméX,Y') € o3 5)(P) \ 03,5 (Q); again, the other
case is symmetric. FrofX,Y') € oy 5y (P), (Y,Y) € o35 (P) follows by Defini-
tion 9. Hence, if(Y,Y) ¢ o3 5 (Q), we are done, since we know from Lemma 4 that
then, there exists a witness fBrC 5, 5, @ and we get by Lemma 3, th#&t C 3, 5, Q
does not hold. Consequently, =3 5y @ cannot hold as well. Thus, Iéf C Y, and
(Y,Y) € o¢ ) (Q). We distinguish between two cases: First suppose thereseads
X' with X =8 X’ C Y, suchtha{X',Y) € 0(3,5,(Q). Since(X,Y) ¢ 03,5 (Q),
by definition of (1, B)-models, X <& X’ has to hold, and there existsZaC Y with
Z|nus = X', such thatZ |= QY. We show thatZ,Y') is a witness fotP C (3, 5, Q.
Since(Y,Y) € o3 5 (P), Property (i) in Definition 6 holds. We know = Q¥ and
since(X,Y’) € o 5 (P), we get by definition of , B)-models, that, for eacik’”
with X <5 X" C Y, X" £ PY. Now sinceX <5 Z, Property (ii) in Definition 6
holds forZ (instead ofX) as well. This shows thatZ, Y') is a witness fo” C 3, ) Q.
So suppose, for each’ with X <% X' C Y, (X',Y) ¢ o5 (Q) holds. We
have(X,Y) € o, (P), thus there exists & C Y, with Z|»us = X, such that
Z | PY. We show tha(Z,Y) is a witness for the reverse problef, C 3, 5, P.
From (YY) € o5 (Q), we get that Property (i) in Definition 6 is satisfied for
Q andY. Moreover, we haveZ = PY. It remains to show that, for eack” with
X <5, X" CY, X" £ QY. This holds by assumption, i.é.X",Y) ¢ 03,5 (Q), for
eachX’ with X <% X’ C Y. Hence, both cases yield a witness, eithetffof (3, 5, Q
or@Q C i, P.By Lemma 3 and Proposition Z, =4 5y 2 does not hold. a

5 Special Cases

In this section, we analyze hoi#, B)-models behave for special instantiationsHof
andB. We first consider the case where eitftér= U/ or B = Y. We call the former
scenaridody-relativizedand the lattehead-relativizedThen, we sketch more general
settings where the only restriction is that eitAeiIC B or B C H holds.

5.1 Body-Relativized and Head-Relativized Equivalence

First, we conside(!/, B)-equivalence problems, whetéis fixed by the universe, but
B can be arbitrarily chosen. Note th@f, B)-equivalence ranges from strong (setting
B = U) to uniform equivalence (settin = () and cf. Corollary 1) and thus provides
a common view on these two important problems, as well as obl@ms “inbetween”
them. Second, head-relativized equivalence problegmss 3,y @, have as special
cases once more strong equivalence (now by setting /) but also the case where
H = 0 is of interest, since it amounts to check whetlfieand Q possess the same
answer sets under any addition of constraints. It is quitéauls that this holds iffP
andQ are ordinarily equivalent, since constraints can onlyérolit” answer sets. That
observation is also reflected in Corollary 1, since the omigry program irC g ) is
the empty program.

The following result simplifies the definition ojﬁ within these settings.

Proposition 3. For interpretationsV, Z C U and an alphabed C U, it holds that
(V=4 ZiffVCZandVia=Z|aand (i) V <4 Ziff Z CVandV|a4 = Z|a.
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Thus, maximizing Wrtr_<§3{ becomes in case G = U/ a form of C-maximization;
and in case oB = U a form of C-minimization. Obviously, both neutralize themselves
for B="H = U, i.e., in the strong equivalence setting, wheres¥) Z iff V = Z.

For body-relativized equivalence, our characterizatiow simplifies as follows.

Corollary 2. Apair (X,Y) of interpretationsis afi/, B)-model ofP € C, iff X C Y,
Y|P, X EPY, andforall X’ with X ¢ X' C Y andX'|s = X|g, X' }£ PY.

Observe that for the notions inbetween strong and uniforaivatence the max-
imality test, which tests if eaclX’ with X ¢ X’ C Y andX'|zp = X|z yields
X' = PY, gets more localized the more atoms are containe8. il particular, for
B = U it disappears and we end up with a very simple condition(§6r/)-models
which exactly matches the definition of SE-models by Turddf:[a pair(X,Y") of
interpretations is an SE-model of a prograhiff X CY,Y | P, andX | PY.

ForB = (), on the other hand, we observe thdt s = X |5 always holds fol3 = ().
Thus, a pair( X, Y) is a (U, 0)-model of a progran®, if X CY,Y = P, X | PY,
and for all X’ with X ¢ X’ C Y, X’ |~ PY. These conditions are now exactly the
ones given for UE-models following [2]. Hence, Corollary ibpides a common view
on the characterizations of uniform and strong equivalence

For head-relativized equivalence notions, simplificatiare as follows.

Corollary 3. A pair (X,Y") of interpretations is ai’H, U/)-model of P € Cy iff X C
Y, Y is an’H-total model forP, X |= PY, and for eachX’ ¢ X with X'|; = X|g,
X' £ PY.

In the case o = U, (H,U)-models again reduce to SE-models. The other special
case isH = (). Recall that), i/)-equivalence amounts to ordinary equivaler(@el/)-
models thus characterize answer sets as follows: Rirss, anf)-total model forP, iff
no X C Y satisfiesX = PY. Moreover, this requires that alp, /)-models are total.
So, the condition in Corollary 3 foX C Y is immaterial and we have a one-to-one
correspondence betweéh I/)-models and answer sets of a program.

52 B C H-andH C B - Equivalence

Due to lack of space, we just highlight a few results here riteoto establish a con-
nection betweeiiH, B)-models and relativized SE- and UE-models, as defined in [12]

Proposition 4. For interpretationsV, Z C U and alphabets{,B C U with B C H
(resp.,H C B),V <5 Ziff V|3 C Z|» andV|g = Z|5 (resp., iff Z|z C V|z and
V| = Z|3). Moreover, ifA =H = B,V <5 Ziff V|4 = Z| .

Observe thatjj{—maximality (in the sense of Definition 8) of a pdiK,Y") for P
reduces to teskK = PY. Thus, to makg X|4,Y) an (A, A)-model of P, we just
additionally need4-totality of Y. In other words, we obtain the following criteria.

Corollary 4. GivenA C U, a pair (X,Y) of interpretations is af{.A, .A)-model of a
programP € Cy, iff (1) X =Y or X C Y|4, (2)Y P and for eachY’ C Y,
Y’ | PY impliesY’|4 C Y|4; and (3) if X C Y then there exists aX’ C Y with
X'|4 = X, such thatX’ = PY.
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This exactly matches the definition gf-SE-models according to [12]. Finally, if
we switch from(A, A)-equivalence td.A, §)-equivalence (i.e., from relativized strong
to relativized uniform equivalence) we obtain the follogiresult for (A, #)-models
which coincides with an explicit definition od-UE-models according to [12].

Corollary 5. GivenA C U, a pair (X, Y) of interpretations is aj.A, #)-model ofP €
Cy, iff (1) and (2) from Corollary 4 hold, and ik C Y then there existX’ C Y such
that X'| 4 = X, X’ = PY, and for eachX” C Y with X'| 4 C X"|4, X" [ PY.

6 Computational Issues

Former results on uniform [2] or relativized [12] equivatershow that these problems
are, in general[l¥’-hard for disjunctive logic programs. Hend@{, B)-equivalence is
ITF-hard as well. HoweverZZ -membership still holds in the view of Corollary 1. In
particular, it is sufficient to guess an interpretatiorand a unary programt € C ),
and then to check whethéf is contained in eithe’dS(P U R) or AS(Q U R), but
not in both. Answer-set checking is in coNP, and since onesed@ly restricty” and
R to contain only atoms which also occur i or @, this algorithm for disproving
(H, B)-equivalence runs in nondeterministic polynomial time watitess to an NP-
oracle. Thus, that problem is i6f’, and consequentl#, B)-equivalence is i1
Concerning implementation, we briefly discuss an approagiclwmakes use of
Corollary 1 in a similar manner and compilé4, 3)-equivalence into ordinary equiv-
alence for which a dedicated system exists [9]; a similathoetwvas also discussed
in [12, 10]. The idea hereby is to incorporate the guess ofittary context programs
over the specified alphabets in both programs accordingiythis end, let, for an
(H, By-equivalence problem between prografsand @, f as well asc,;, andé,
for eacha € H, b € B U {f}, be new distinct atoms, not occurring A U Q.
Then,P =3 py Q holds iff P@B> anszrH,B> are ordinarily equivalent, where, for
R e {P Q},

R, by :Ru{ca,b\/éa,b<—; a<—b7ca7b|aeH,beBu{f}}u{f —}.

In fact, the role of atoms, ; is to guess a set of facts C H, while atomsc, ; with
b # f guess a subset of unary rules— b with a € H andb € B.

7 Conclusion

The aim of this work is to provide a general and uniform chemazation for different
equivalence problems, which have been handled by inhgrdifférent concepts, so far.
We have introduced an equivalence notion parameterizegidoglphabets to restrict the
atoms allowed to occur in the heads, and respectively, baifithe context programs.
We showed that our approach captures the most importantagoce notions studied,
including strong and uniform equivalence as well as reilzgig notions thereof.
Figure 1 gives an overview dfH, 3)-equivalence and its special cases, i.e., rela-

tivized uniform equivalence (RUE), relativized strong eqlence (RSE), body-relativ-
ized equivalence (BRE), and head-relativized equival¢ri¢tE). On the bottom line
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U, 0)=UE BRE SE=U,U)
A ‘ﬂ
BCH
=) i
x ?\56 I
HCB
(0,0) ordinary equivalence C(0,U)

Fig. 1. The landscape ofH, B)-equivalence with eithet{ C B or B C H.

we have ordinary equivalence, while the top-left corneramgto uniform equivalence
(UE) and the top-right corner to strong equivalence (SE).

Future work includes the study of further propertiesHf 3)-equivalence, as well
as potential applications, which include relations to ofmgyic programs [1] and new
concepts for program simplification [3]. Also an extensiortie sense of [5], where a
further alphabet is used to specify the atoms which have ittcimte in comparing the
answer sets is considered. While [5] provides a charaettioiz for relativizedstrong
equivalence with projection, recent work [8] addressetioblem of relativizedini-
formequivalence with projection. Our results may be a basisdeige a common view
on these two recent characterizations, as well.
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Abstract. Logic programs under answer-set semantics constitute partamt
tool for declarative problem solving. In recent years, tesaarch issues received
growing attention. On the one hand, concepts like loops Erdentary sets have
been proposed in order to extend Clark’s completion for asting answer sets
of logic programs by means of propositional logic. On theesotiiand, different
concepts of program equivalence, like strong or uniformedence, have been
studied in the context of program optimization and modulagpamming. In
this paper, we bring these two lines of research togethepamdde alternative
characterizations for different conceptions of equivateim terms of unfounded
sets, along with the related concepts of loops and elemesgts. Our results
yield new insights into the model theory of equivalence &mag: We further ex-
ploit these characterizations to develop novel encodifiggagram equivalence
in terms of propositional logic.

1 Introduction

The increasing success of answer-set programming [1] ad fotadeclarative problem
solving has produced the need to optimize logic programsiious ways, while leav-
ing their semantics unaffected. Different scenarios hesléd different criteria of when
a program’s semantics is preserved. Formally, this is reftbloy different definitions of
program equivalence (see below). For instance, in soldng,is usually interested in
program modifications preserving all answer sets, whilggm optimization requires
a stronger definition, guaranteeing that replacing onesgspm by another preserves
answer sets, no matter how the encompassing program loeks lik

In what follows, we elaborate upon the model theory undegyrogram equiva-
lence, dealing primarily with the well-known concepts of-3ad UE-models [2, 3].
In particular, we provide a new perspective on these sematrtictures by usingn-
founded set§d] and related constructs likdementary setf5] andloops[6, 7]. Recall
that SE- and UE-models are defined as pa¥sY’), whereY is a model of a given
logic programP andX is a model of the redud®Y . The major difference between this

* Partially supported by the Austrian Science Fund (FWF) updaject P15068-INF.
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characterization and our approach is that we ref¢k'tq X ) rather than toX itself. As

it turns out, an explicit reference to the reduct and its n®idenot required, rather, the
respective unfoundedness property possesséti byX ) allows us to characterize and
distinguish SE- and UE-models.

2 Background
A propositionaldisjunctive logic progranis a finite set of rules of the form
a1V N A Qs - - oy Gy MO Ayt 1,y - -« 5 NOE G, Q)

wherel < k < m < n and everya; (1 < ¢ < n) is a propositional atom from
some universé(; not denotes default negation. A rule as in (1) is callethet if

k =n = 1;itis said to bepositiveif m = n. For aruler, H(r) = {a1,...,a;} is the
headof r, B(r) = {ags1,---,m, n0t my1,-..,notay,} is thebodyof r, BT (r) =
{ak+1,.-.,an} isthepositive bodyfr, andB~(r) = {am+1, - - ., an } is thenegative

bodyof r. We sometimes denote a ruldy H(r) «— B(r).

The (positive dependency grapbf a programP is (4, {(a,b) | 7 € P,a € H(r),
b e BT(r)}). Anonempty set/ C U is aloop of P if the subgraph of the dependency
graph of P induced byU is strongly connected. Similar to Lee [7], we consider every
singleton as a loop. A prograi s tight [8, 9] if every loop of P is a singleton.

As usual, an interpretatio¥i is a set of atoms (i.e., a subset6y. For a ruler, we
writeY = riff H(r)NY #0,B*(r) Y, or B~ (r) NY # (). An interpretatiort”
is amodelof a programP, denoted byt = P, iff Y |= r for everyr € P. Thereduct
of P with respect toY is PY = {H(r) « B¥(r) | r € PB~(r)NY = 0}. An
interpretatior” is ananswer sebf P iff Y is a minimal model of?Y .

Two programs,P andQ, areordinarily equivalentiff their answer sets coincide.
FurthermoreP and(Q arestrongly equivalenfl0] (resp.uniformly equivalenf3]) iff,
for every program (resp., set of fac®) P U R andQ U R are ordinarily equivalent.

For interpretations(, Y, the pair(X,Y’) is anSE-interpretationff X C Y. Given
an SE-interpretatiofiX, Y') and a progran®, (X,Y") is anSE-mode]2] of Piff Y |=
PandX = PY.An SE-model X, Y) is aUE-model3] of P iff there is no SE-model
(Z,Y) of P such thatX C Z C Y. The set of all SE-models (resp., UE-models)
of P is denoted bySE(P) (resp.,UE(P)). Two programsP and( are strongly (resp.,
uniformly) equivalentiffSE(P) = SE(Q) (resp.,UE(P) = UE(Q)) [2, 3].

Example 1.ConsiderP = {a Vb <} and@ = {a < notb; b «— nota}. Clearly,
both programs are ordinarily equivalent{ag and{b} are their respective answer sets.
However, they are not strongly equivalent. Indeed, sificis positive, we have that
SE(P) = {(a,a), (b,b), (ab, ab), (a, ab), (b, ab)}.> For Q, we have to take the reduct
into account. In particular, we havgt{®*} = (), and so any interpretation is a model of
Q1+t Hence, each paitX, ab) with X C {a,b} is an SE-model of). We thus have
SE(Q) = {(a,a), (b,b), (ab,ab), (a, ab), (b,ab), (0,ab)}. That is,SE(P) # SE(Q),

! Whenever convenient, we use strings likeas a shorthand fofa, b}. As a convention, we let
universel{ be the set of atoms occurring in the programs under congidera
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so P and(@ are not strongly equivalent. A witness for thiss= {a < b; b — a}, as

P U R has{a, b} as its (single) answer set, whilf¢ U R has no answer set.
Concerning uniform equivalence, observe first thdt(P) = SE(P). This is not

the case forQ, where the SE-mod€l), ab) drops out since there exist further SE-

models(Z, ab) of Q with § ¢ Z C {a,b}, viz. (a,ab) and (b,ab). One can check

that (0, ab) is in fact the only pair inSE(Q) that is no UE-model of). So, UE(Q) =

SE(Q)\ {(B,ab)} = SE(P) = UE(P). Thus,P and@ are uniformly equivalent. ¢

We conclude this section with the following known propesti€irst, for any pro-
gram P and any interpretatiol’, the following statements are equivalent:Xi)E= P;
(i) Y &= PY; (i) (Y,Y) € SE(P); and (iv)(Y,Y) € UE(P). Second, ifY = P,
Y is an answer set a? iff, for each SE-model (resp., UE-mod¢lY,Y) of P, X =Y.

3 Model-Theoretic Characterizations by Unfounded Sets

In this section, we exploit the notion of an unfounded setdnfl provide alterna-
tive characterizations of models for logic programs andypam equivalence. Roughly
speaking, the aim of unfounded sets is to collect atoms #ratat be derived from a
program with respect to a fixed interpretation. Given theetbworld reasoning flavor
of answer sets, such atoms are considered to be false. Howmeyehall relate here
unfounded sets also to SE- and UE-models, and thus to conteptdo not fall un-
der the closed-world assumption (since they implicitlyldeiéh program extensions).
For the case of uniform equivalence, we shall also employé¢hent concept of ele-
mentarily unfounded sets [5], which via elementary set®dple the idea of (minimal)
unfounded sets from fixed interpretations. Finally, we link results to loops.

Given a progranP and an interpretatiol, a setU C U is unfounded4] for P
with respect tdv” if, for eachr € P, at least one of the following conditions holds:

1. Hir)nU =0,

2. H(r)yn(Y\U) #0,
3.BY(r)ZYorB (r)nY #0,or
4. Bt (r)nU # 0.

Note that the empty set is unfounded for any progfamvith respect to any interpreta-
tion, since the first conditior#{ (r) N § = 0, holds for allr € P.

Example 2.Consider the following program:

p_lmn: aVb+— rg: c—a rs: c<b,d
T lre: bVe+— r4: d<+« notb re: d«c,not al’

LetU = {c,d}. We haveH(r1) N U = {a,b} N {c,d} = 0, that is,r; satisfies
Condition 1. Forrs andrg, BT (r5) NU = {b,d} N {c,d} # 0 andB*(rg) NU =
{c} N {c,d} # 0. Hence, both rules satisfy Condition 4. Furthermore, abersthe
interpretationy” = {b,c,d}. We haveH (r2) N (Y \ U) = {b,c¢} N {b} # 0, thus
ro satisfies Condition 2. Finally, for; andry, BT (r3) = {a} € {b,c,d} = Y and
B~ (ry)NY = {b} N{b, c,d} # 0, that is, both rules satisfy Condition 3. From the fact
that each rule inP satisfies at least one of the unfoundedness conditions, neumte
thatU = {c, d} is unfounded forP with respect tdv” = {b, ¢, d}. O



28 Martin Gebser, Torsten Schaub, Hans Tompits, and Stetdiman

The basic relation between unfounded sets and answer set$alows.

Proposition 1 ([11]). Let P be a program and” an interpretation. ThenY is an
answer set of? iff Y = P and no nonempty subset Bf is unfounded forP with
respect toy'.

Example 3.ProgramP in Example 2 has two answer sefs, ¢, d} and{b}. For the
latter, we just have to check th&b} is not unfounded fot® with respect to{b} it-
self, which holds in view of either rule; or r». To verify via unfounded sets that
Y = {a,¢,d} is an answer set adP, we have to check all nonempty subset&ofFor
instance, také&’ = {c, d}. We have already seen that r5, andrg satisfy Condition 1
or 4, respectively; but the remaining rules r3, andr, violate all four unfoundedness
conditions forU with respect tdr". O

We next detail the relation between unfounded sets and madébgic programs
as well as of their reducts. First, we have the following tietasships between models
and unfounded sets.

Lemma 1. Let P be a program and” an interpretation. Then, the following state-
ments are equivalenfa) Y = P; (b) every selV C U \ Y is unfounded forP with
respect taY’; and (c) every singleto/ C U/ \ Y is unfounded foP with respect tdv".

Proof. (a) = (b): Assume that some s&t C I/ \ Y is not unfounded foP with respect
toY. Then, for some rule € P, we have

() H(r)NU # 0,

B) H(r)n(Y\U) =9,

(v) Bf(r) CY andB~(r)NnY = (), and
(6) BT (r)nU = 0.

SinceU NY = () by the assumption, we conclude frof) that # (r) N Y = (. Since
(7) holds in addition, we hav¥ £ r and thusY” |~ P.

(b) = (c) is trivial.

() = (a): AssumeY = P. Then, there is a rule € P such thatY” }= r, that
is, H(r) N'Y = 0 and(v) hold. By the definition of rulesH (r) # (. So, consider
anya € H(r) and the singletod/ = {a}. Clearly, @) holds forr, and (3) holds by
H(r)NY = 0. Finally, sinceB*(r) C Y anda ¢ Y, (§) holds as well. That is, there
is a singletorl/ C I/ \ Y that is not unfounded faP with respect td". a0

We further describe the models of a program’s reduct by unded sets.

Lemma 2. Let P be a programY” an interpretation such that” = P, andU C U.
Then,(Y \ U) = PY iff U is unfounded fo® with respect tar".

Proof. (=) Assume that/ is not unfounded foP with respect toY". Then, for some
ruler € P, (a)—(d) from the proof of Lemma 1 hold. Clearlg— (r) N Y = §) implies
(H(r) « B*(r)) € PY.FromB™(r) CY and ¢), we concludeB™(r) C (Y \ U).
Together with 8), we obtain(Y \ U) £ (H(r) «+ B*(r)) and thugY \ U) £ PY.
(<) AssumegY' \U) £ PY.Then, thereisarule € P suchtha(Y \U) |~ {r}Y.
We conclude that satisfies ), Bt (r) C (Y\U),andB~ (r)NY = (). SinceB™ (r) C
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(Y '\ U) immediately impliesB* () C Y, (v) holds. MoreoverB™*(r) C (Y \U) also
implies (). It remains to show(). From ¢y) andY” |= r (which holds by the assumption
Y & P), we concludeff (r) N'Y # (). Together with @), this implies ¢). Since ),
(6), (), and ¢) jointly hold for some ruler € P, we have thal is not unfounded
for P with respect tar". a

Example 4.For illustration, reconsideP from Example 2 and” = {b, ¢, d}. For sin-
gleton{a} andry, we haveH (r;) N (Y \ {a}) = {a,b} N {b,c,d} # 0. Furthermore,
a ¢ H(r)forallr € {ra,...,76}. Thatis,{a} is unfounded forP with respect tay".
From this, we can conclude by Lemma 1 thais a model ofP, i.e.,Y = P.

As we have already seen in Examplel2, = {c,d} is unfounded forP with
respect toY. Lemma 2 now tells us thaty” \ U) = {b} is a model of PY =
{ri,r2,r3,75, (H(r¢) — BT (rg)) }. Moreover, one can check thft, c, d} is as well
unfounded forP with respect tay". O

The last observation in Example 4 stems from a more genelaledfect of Lemma 2:
For any progran®, any interpretatioly” such that” = P, andU C U/, U is unfounded
for P with respect td” iff (UNY") is unfounded forP with respecttd”. For models”,
this allows us to restrict our attention to unfounded gétS Y.

We are now in a position to state the following alternativaracterizations of SE-
and UE-models.

Theorem 1. Let P be a programyY” an interpretation such that” = P, andU C U.
Then,(Y'\U,Y) is an SE-model oP iff (U NY") is unfounded foiP with respect td".

Theorem 2. Let P be a programY” an interpretation such that” = P, andU C U.
Then, (Y \ U,Y) is a UE-model ofP iff (U NY") is unfounded foP with respect td"
and no nonempty proper subset(6f N Y") is unfounded fo with respect td".

Note that the inherent maximality criterion of UE-modelsnisw reflected by a
minimality conditioron (nonempty) unfounded sets. Theorem 1 and 2 allow us te char
acterize strong and uniform equivalence in terms of unfedrsets, avoiding an explicit
use of programs’ reducts. Details will be discussed in $acti

Example 5.Recall programs® = {a Vb <} and@Q = {a < notb; b — nota}
from Example 1. We have seen that the only difference in tBEBimodels is the pair
(@, ab), which is an SE-model of), but not of P. Clearly,Y = {a,b} is a classical
model of P and of@, and, in view of Theorem 1, we expect thatis unfounded foQ
with respect td, but not for P with respect td’. The latter is easily checked since the
ruler = (aVb«—)yields A)H(r)NY #0; () H(r)N(Y\Y)=0;3) BT (r) CY
andB~(r) NY = 0; and (4)B*(r) N Y = (. Thus, none of the four unfoundedness
conditions is met. However, for;, = a <« notb andry = b «— nota, we have
B~ (r;)NY # 0, fori € {1,2}, and thus” is unfounded for with respect td".

Recall that((), ab) is not a UE-model of). In view of Thearem 2, we thus expect
thatY = {a,b} is not a minimal nonempty unfounded set. As one can check, bot
nonempty proper subsefa} and{b} are in fact unfounded fa@ with respect tar". ¢
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In the remainder of this section, we provide a further chiarézation of UE-models
that makes use of elementary sets [5]. This not only givesms intrinsic charac-
terization of the differenc& = (Y \ X) for a UE-model(X,Y") than that stated in
Theorem 2, but also yields a further direct relation to lodfe make use of this fact
and provide a new result for the UE-models of tight programs.

We define a nonempty s&t C U/ aselementaryor a programP if, for eachV such
that() ¢ V c U, there is some € P jointly satisfying

1. Hir)nV #40,

2. Hr)n({U\V) =0,
3. Bt (r)nV =10, and
4. BH(r)yn(U\ V) #0.

Due to Conditions 1 and 4, every elementary set is also a l6dp, dut the converse
does not hold in general [5].

To link elementary sets and unfounded sets together, foogramP, an interpre-
tationY’, andU C U, we define:

Pyy={reP|H(r)Nn(Y\U)=0,B*(r)CY, B~ (r)nY =0}.

Provided thatH (r) N U # 0, a ruler € Py,y supportsU with respect toY’, while
no rule in (P \ Py ) supportsU. Analogously to Gebser, Lee, and Lierler [5], we
say thatU is elementarily unfoundetbr P with respect taY iff (i) U is unfounded
for P with respect td” and (i) U is elementary foPy. ;. Any elementarily unfounded
set of P with respect toY is also elementary foP, but an elementary séf that is
unfounded forP with respect tat” is not necessarily elementarily unfounded because
U might not be elementary fdpy ;7 [5].

Elementarily unfounded sets coincide with minimal nonemytiounded sets.

Proposition 2 ([5]). Let P be a program,Y” an interpretation, and/ C U{. Then,
U is a minimal nonempty unfounded setfwith respect taY” iff U is elementarily
unfounded forP with respect tdr".

The fact that every nonempty unfounded set contains someeel@rily unfounded
set, which by definition is an elementary set, allows us tivdesome properties of the
differencelU = (Y'\ X) for SE-interpretation&X, Y"). For instance, we can exploit the
fact that every elementary set is also a loop in the chatiaateyn of minimal nonempty
unfounded sets, where the latter are only defined with réspéuaterpretations.

Formally, we derive the following properties for UE-mod@issp., SE-models):

Corollary 1. Let P be a program and X, Y’) a UE-modelresp., SE-modgbf P. If
X #Y,then(Y \ X) is (resp., contains(a) an elementarily unfounded set Bfwith
respect tay’; (b) an elementary set d?; and (c) a loop of P.

For tight programs, i.e., programs such that every loop iagleton, we obtain the
following property:

Corollary 2. Let P be a tight program andX,Y’) an SE-model oP. Then,(X,Y)
is a UE-model of? iff X = Y or (Y \ X) is a singleton that is unfounded fét with
respect toy'.
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Example 6.Recall the SE-mod€l), ab) of Q = {a « notb; b — nota}. The loops
of @ are{a} and{b}; thus,Q is tight. This allows us to immediately conclude that
(B, ab) is not a UE-model o), without looking for any further SE-model to rebutt.

The above result shows that, for tight programs, the stractitUE-models is par-
ticularly simple, viz. they are always of the for(¥,Y") or (Y \ {a},Y), for some
a € Y. As we will see in the next section, this also allows for siifigdl encodings.

4 Characterizations for Program Equivalence

In this section, we further exploit unfounded sets to chiaréze different notions of
program equivalence. We start by comparing two progratand @, regarding their
unfounded sets for deriving conditions under whigland @ are ordinarily, strongly,
and uniformly equivalent, respectively. Based on thesalitimms, we then provide
novel encodings in propositional logic.

4.1 Characterizations based on Unfounded Sets

Two programs are ordinarily equivalent if they possess émessanswer sets. As Propo-
sition 1 shows, answer sets are precisely the models of agrothat do not contain
any nonempty unfounded set. Hence, ordinary equivalentbedescribed as follows:

Theorem 3. Let P and Q be programs. Then?” and @ are ordinarily equivalent iff,
for every interpretatiorY’, the following two conditions are equivalent

1. Y | P and no nonempty subset¥fis unfounded fo with respect td’’;
2. Y E @Q and no nonempty subset%fis unfounded for) with respect td".

Note that ordinarily equivalent programs are not necelyselassically equivalent,
as is for instance witnessed by prografms- {a Vb —} and@ = {a Vb «—; a «— ¢}
possessing the same answer sgig:and{b}. However,{b, c} is a model ofP but not
of Q. In turn, for strong and uniform equivalence, classicalieglence is a necessary
(but, in general, not a sufficient) condition. This followsrh the fact that every model
of a program participates in at least one SE-model (respiyidHel) and is thus relevant
for testing strong (resp., uniform) equivalence. Indebkd,following characterization
of strong equivalence considers all classical models.

Theorem 4. Let P and Q be programs. ThenP and @ are strongly equivalent iff,
for every interpretatiort” such thatY” = P orY E @, P andQ possess the same
unfounded sets with respectto

Proof. (=) Assume thatP and @ are strongly equivalent. Fix any interpretatidh
suchthaly” = P (orY | Q). Then,(Y,Y) is an SE-model of’ (or @), and sinceP

and(@ are strongly equivalentY,Y") is also an SE-model af (or P). That is, both
Y E PandY [ @ hold. Fix any set/ C /. By Lemma 2 and the fact th& and@

are strongly equivalent/ is unfounded forP with respect toY” iff (Y \ U,Y) is an
SE-model ofP. But the latter holds iff Y \ U,Y") is an SE-model of2, which in turn
holds iff U is unfounded foi with respect tay".
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(«) Assume that? and(@ are not strongly equivalent. Then, without loss of gen-
erality, there is an SE-modéK, Y') of P that is not an SE-model @ (the other case
is symmetric). By the definition of SE-models, we h&fe= P, and by Lemma 2,
(Y \ X) is unfounded forP with respect taY’, but eitherY” j# Q or (Y \ X) is not
unfounded foi with respect taY". If (Y \ X) is not unfounded fo€) with respect to
Y, thenP and@ do not possess the same unfounded sets with resp&ct@therwise,
if Y i~ @, by Lemma 1, there is a sét C ¢/ \ Y that is not unfounded fof) with
respect td’, butU is unfounded forP with respect tay'. a0

Theorem 4 shows that strong equivalence focuses primarithe unfounded sets
admitted by the compared programs. In the setting of unifequivalence, the consid-
eration of unfounded sets is further restricted to minima(cf. Theorem 2), and by
Proposition 2, these are exactly the elementarily unfodrse¢s.

Theorem 5. Let P and @ be programs. Then? and@ are uniformly equivalent iff,
for every interpretatiort” such thatY” = P orY E @, P andQ possess the same
elementarily unfounded sets with respectto

Proof. (=) Assume thatP and(@ are uniformly equivalent. Fix any interpretatidh
such thaty = P (orY = Q). Then,(Y,Y) a UE-model ofP (or Q), and sinceP
and@ are uniformly equivalent,Y,Y") is also a UE-model of) (or P). That is, both
Y & P andY [ @ hold. Fix any elementarily unfounded gétfor P (or Q) with
respecttaY. If U C U \ Y, by Lemma 1 and Proposition 2 is a singleton that is
unfounded for bothP and @ with respect toY’, which implies that’ is elementarily
unfounded forQ (or P) with respect toY". Otherwise, ifU NY # (), then Lemma 1
and Proposition 2 imply/ C Y. By Proposition 2 and Theorem 2y \ U,Y)) is a
UE-model of P (or @), and since” and(@ are uniformly equivalen{,Y \ U,Y") is also
a UE-madel of@ (or P). Since) # U C Y, by Theorem 2 and Proposition 2, we
conclude that/ is elementarily unfounded fap (or P) with respect tar".

(<) Assume thatP and @ are not uniformly equivalent. Then, without loss of
generality, there is a UE-modgX, Y') of P thatis not a UE-model af) (the other case
is symmetric). SincéX,Y) is also an SE-model d?, we haveY” = P. If Y [£ Q, by
Lemma 1, there is a singletdn C ¢/ \ Y that is not unfounded fa) with respect to
Y, butU is unfounded forP with respect toY'. That is,U is elementarily unfounded
for P with respect td", but not for@ with respect tdv". Otherwise, ifY” = Q, (Y,Y)
is a UE-model both o’ and of@. We conclude thak' C Y, and by Theorem 2 and
Proposition 2(Y '\ X) is elementarily unfounded fd? with respect td”. Furthermore,
the fact that X, Y") is not a UE-model of), by Theorem 2 and Proposition 2, implies
that(Y \ X) is not elementarily unfounded f@p with respect tdr". O

In contrast to arbitrary unfounded sets, elementarily unéted sets exhibit a certain
structure as they are in fact loops or, even more accur&ieyentary sets (cf. Corol-
lary 1). By Theorem 5, such structures alone are materiatifoum equivalence.

4.2 Characterizations in Propositional Logic

We now exploit the above results about unfounded sets todenmmgram equivalence
in propositional logic. For ordinary equivalence, we usekell-known concept of loop
formulas, while for strong and uniform equivalence we disexefer to unfounded sets.
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In what follows, we write for a set of default literals, likg(r), and a set of atoms,
like H(r), B(r) — H(r) as a shorthand for
(Naen+ @A Nacp- ™) = Ve

where, as usual, empty conjunctions (resp., disjunctians)understood as (resp.,
1). For instance, for a rule of the form (1),B(r) — H(r) yields the implication

A1 N Ny N 2Cme1 AN ANy — a1 V- Vag.

Furthermore, within the subsequent encodings, an ocatereia progranP is under-
stood as\,.c p(B(r) — H(r)).

As a basis for the encodings, we use the following conceplowimg Lee [7], for
a programP andU C U, theexternal support formulaf U for P is

ESp(U) = V,ep umnvs0,8+mynv—o" (Br) — (H(r) \U)). (@)
The relation between unfounded sets and external suppantfas is as follows:

Lemma 3. Let P be a program,Y an interpretation, and/ C /. Then,U is un-
founded forP with respect tdv iff Y £ ESp(U).

Proof. (=-) Assume thal” |= ESp(U). Then, there is a rule € P such that

(@) Hir)nU £ 0,

(B) BT (r)nU =0,

() BY(r) CYandB~(r)NY =0, and
@) (HMH\NU)NY =H(r)n(Y\U)=10.

That is,U is not unfounded foP with respect td".
(<) Assume thatU is not unfounded fotP with respect toY'. Then, there is a
ruler € P for which (o), (3), (v), and ¢) hold. From ¢) and ¢), we conclude

Y = ~(B(r) = (H(r) \U)),
which together with¢) and (3) impliesY = ESp(U). O

For a programP andU C U, the (conjunctivejoop formula[7] of U for P is

LFp(U) = (/\peUp) — ESp(U).

With respect to an interpretatidn, the loop formula o is violated if Y containsU/
as an unfounded set, otherwise, the loop formul& @ satisfied.

Proposition 3 ([7,5]).Let P be a program and” an interpretation such that” = P.
Then, the following statements are equivalent:

(a) Y is an answer set aP;

(b) Y = LF p(U) for every nonempty subsitof i/;
() Y E LFp(U) for every loopU of P;

(d) Y = LFp(U) for every elementary séf of P.
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For ordinary equivalence, the following encodings (as waslidifferent combina-
tions thereof) can thus be obtained.

Theorem 6. Let P and(@ be programs. Lef and& denote the set of all loops and ele-
mentary sets, respectively, Bfand@. Then, the following statements are equivalent:

(a) P andQ are ordinarily equivalent;

(0) (PANgrocy LEPU)) < (Q A Ngrycy LFo(U)) is a tautology;
© (PAApes LEP(U)) < (Q A Nper LFo(U)) is a tautology;

(d) (PAApes LEFp(U)) < (Q A Npee LFq(U)) is atautology.

Recall that, for tight programs, each loop (and thus, eaemehtary set) is a sin-
gleton. In this case, the encodings @) &nd () are thus polynomial in the size of the
compared programs. Moreover, one can verify that they amtouchecking whether
the completions [12] of the compared programs are equivalarassical logic.

For strong and uniform equivalence betwerand @, the models ofP and @
along with the corresponding unfounded sets are compaseth@rem 4 and 5 show.
We thus directly consider external support formulas, natitien loop formulas.

Theorem 4 and Lemma 3 yield the following encoding for streggivalence:

Theorem 7. Let P and @ be programs. ThenP and @ are strongly equivalent iff
(PVQ) = (Aucy (ESp(U) — ESq(U))) is a tautology.

In order to also encode uniform equivalence, we have to singt elementarily
unfounded sets. To this end, we modify the definition of thiemal support formula,
ESp(U), and further encode the case tiais (not) a minimal nonempty unfounded
set. For a progran® andU C U, we define theninimality external suppofformula as

ESH(U) = ESp(U)V ~(Agev v ESp(V)).

Similar to external support formulas and unfounded setajmality external support
formulas correspond to elementarily unfounded sets agvisl

Lemma 4. Let P be a program,Y” an interpretation, and) ¢ U C U. Then,U is
elementarily unfounded faP with respect td iff Y = ESpH(U).

Proof. (=) Assume that” = ES}(U). Then, one of the following two cases holds:

1. Y = ESp(U): By Lemma 3,U is not unfounded foP with respect tdY”, which
implies thatU is not elementarily unfounded fdt with respect tay'.

2.Y ¥ (NgcveyESp(V)): For someV such that) ¢ V C U, we haveY [~
ESp(V). By Lemma 3,V is unfounded forP with respect toY". We conclude
that U is not a minimal nonempty unfounded set®fwith respect toY’, and by
Proposition 21/ is not elementarily unfounded fd@? with respect ta".

(<) Assume that” £ ESH(U). Then,Y £ ESp(U), and by Lemma 3U is un-
founded forP with respect ta". FurthermoreY = (Aycy oy ESp(V)), and thus no
setV such that) ¢ V C U is unfounded foiP with respect tdr” (again by Lemma 3).
We conclude thal/ is a minimal nonempty unfounded set Bfwith respect td", and
by Proposition 2{J is elementarily unfounded fa? with respect tdy". a
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Theorem 5 and Lemma 4 allow us to encode uniform equivalentallaws.

Theorem 8. Let P and(@ be programs. Let and& denote the set of all loops and ele-
mentary sets, respectively, Bfand@. Then, the following statements are equivalent:

(a) P andQ are uniformly equivalent;

(b) (PVQ)— (Aycy (ESH(U) « ES5(U))) is atautology;
© (PVQ)— (Ayer (BESE(U) « ESH(U))) is a tautology;
d) (PVQ)— (Apee (BESH(U) < ESH(U))) is a tautology.

Proof. By Theorem 5P and@ are uniformly equivalent iff, for every interpretatiah
such that” = P orY | @, P andQ possess the same elementarily unfounded sets
with respect taY'. Clearly, any elementarily unfounded set®for Q belongs to the
set& of all elementary sets aP and @, which is a subset of the sét of all loops

of P and@, and every element of is a subset of{. Furthermore, by Lemma 4, a
set) ¢ U C U is elementarily unfounded faP (resp.,Q) with respect toY” iff

Y [£ ESp(U) (resp..Y = ESG(U)). Finally, we haveES () = ES5(0) = L, so
thaty = (ESH(0) < ESH(0)) for any interpretatiory’. From this, the statement of
Theorem 8 follows. a

Again, we exploit the fact that, for tight programs, all I@oand elementary sets
are singletons. It is thus sufficient to consider only theemdl support formulas of
singletons. To the best of our knowledge, this provides a&hechnique to decide uni-
form equivalence between tight programs. Indeed, thewiatig result is an immediate
consequence of (c), or likewise (d), in Theorem 8.

Corollary 3. Let P andQ be tight programs. Ther? and@ are uniformly equivalent
iff (PVQ)— (A (BESp({a}) < ESq({a}))) is a tautology.

Indeed, for singletonga}, =( Agcyc (o) ESp(V)) (resp..=( Apcvciay ESa(V)))
can be dropped fromS% ({a}) (resp.,ESG ({a})) because it is equivalent to.

Except for ordinary and uniform equivalence between tigiigpams, all of the
above encodings are of exponential size. As with the knowndings for answer sets,
reproduced in Proposition 3, we do not sugges fariori reduce the problem of de-
ciding program equivalence to propositional logic. Ratleer encodings provide an
alternative view on the conditions underlying program egigince; similar characteri-
zations have already been successfully exploited in arsatesolving [6, 13].

For strong equivalence, however, we can resolve the expahenmber of con-
juncts in Theorem 7 as follows. We use a cégly= {p’ | p € U} of the universé/,
where allp’ are mutually distinct new atoms, and introduce a moduleesgting
ESp(U), as given in (2), but without explicitly referring to cemasetsU; rather, a
particularU is determined by the true atoms from the cégyof &/. We define:

ESp=V,cp (VPGH(T)P/ ANperiry@ VD) ANyt (@A D)ANpe - —p).

Given a progran®, for an interpretatioy” (over/) andU C U, U is unfounded fot?
with respecttd’ iff (Y U{p’ |p € U}) £ ESp. This yields the following result:

Theorem 9. Let P and @Q be programs. Thenl and @ are strongly equivalent iff
(PVQ)— (ESp < ESg) is atautology.
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Discussion

We provided novel characterizations for program equivedein terms of unfounded
sets, along with the related notions of loops and elemersety. This allowed us to
identify close relationships between these important eptec While answer sets, and
thus ordinary equivalence, rely on the absence of (nonémpfipunded sets, we have
shown that potential extensions of programs, captured bya8& UE-models, can also
be characterized directly by appeal to unfounded setsellyeaivoiding any reference
to reducts of programs. We have seen that uniform equivalentocated in between
ordinary and strong equivalence, in the sense that it cersidll models, similar to
strong equivalence, but only minimal (nonempty) unfounsiets, which are sufficient
to decide whether a model is an answer set. This allowed uswvelab particularly
simple characterizations for uniform equivalence betwtegt programs.
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Abstract. For a given semantics, two nonmonotonic theofiesandI7» can be
said to be equivalent if they have the same intended modelstaongly (resp.,
uniformly) equivalent if for any?’, IT; UX andII.UX are equivalent, wherg is

a set of sentences (resp., literals). In the general casestrictions are placed on
the language (signature) &f. Relativised notions of strong and uniform equiv-
alence are obtained by requiring théitbelongs to a specified sublanguagef
the theoried1; andIl-. For normal and disjunctive logic programs under stable-
model semantics, relativised strong and uniform equivadmave been defined
and characterised in previous work by Woltran. Here, werektbese concepts
to nonmonotonic theories in equilibrium logic and discuppli@ations in the
context of prediction and explanation.

1 Introduction

Equilibrium logic [12] is a general purpose formalism fommeonotonic reasoning ex-
tending the stable-model and answer-set semantics fohalusual classes of logic
programs, adhering to the geneeadswer-set programminfASP) paradigm. It is a
form of minimal-model reasoning in the non-classical logichere-and-therewhich

is basically intuitionistic logic restricted to two worldthere” and “there”, and sub-
sumes all important syntactic extensions considered in, A8Riding the addition of
strong negation, rules with negation-by-default in theiatts, and nested programs, as
well as those constructs like cardinality and weight carists and aggregates that have
equivalent representations in the more general syntaxwfilegum logic [4, 5].

Recent research in ASP focuses on advanced notions of pnaggaivalence rele-
vant for program optimisation and modular programming [114]. A traditional con-
cept of equivalence, where two nonmonotonic theories, uadgven semantics, are
viewed as being equivalent if they have the same intendedisod not adequate for

* This work was partially supported by the Spanish MinistryEdiucation and Science (MEC)
under projects TIC-2003-9001-C02 and TIN2006-15455-C&] by the Austrian Science
Fund (FWF) under grant P18019.
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these purposes because such a notion does not satisfy aem@plat property like in
classical logic. Better candidates, however, are stroniguaiform equivalence. While
the former meets a replacement principle by definition, &tiet is suitable for hierar-
chically ordered modules. In formal terms, two nhonmonatoinéories]I; andil,, are
strongly (resp., uniformly) equivalent if for any, 11, U X andIl, U X are equiva-
lent, whereX' is a set of sentences (resp., literals). In the general casesstrictions
are placed on the language (signaturefoRelativised notionsf strong and uniform
equivalence are obtained by requiring thalbelongs to a specified sublanguabef the
theorieslI; andIl,. For normal and disjunctive logic programs under stablelehse-
mantics, relativised strong and uniform equivalence haenluefined and characterised
in previous work by Woltran [19], together with a discussaiyout complexity issues
and implementation strategies. Furthermore, relatividehg and uniform equivalence
are special cases apdate equivalendatroduced by Inoue and Sakama [7].

In this paper, we extend the work of Woltran [19] and Pearas \éadverde [14]
by characterising relative notions of equivalence for taaloy (propositional) theories
in equilibrium logic. Furthermore, we discuss how relaad equivalences can be ap-
plied to certain problems from the areas of diagnosis andetimh, with respect to the
problem of deciding whether two logical descriptions hdgeedame explanatory power,
and provide a semantical characterisation of this probléme.formal model of an ab-
ductive explanation our discussion is based is an extemdiarcorresponding concept
used by Inoue and Sakama [8] for disjunctive logic progrartls default negation in
their heads. Finally, we address the computational conitglekrelative equivalence in
equilibrium logic, showing that it remains on the same lesefor logic programs.

2 Equilibrium Logic

We work in the nonclassical logic of here-and-there witlosty negatioriN; and its
nonmonotonic extension, equilibrium logic [12], which gealises the answer-set se-
mantics for logic programs to arbitrary propositional thes[11]. For more details, the
reader is referred to [12, 13] and the logic texts cited below

Formulas ofN5 are built-up in the usual way using the logical constants, —,

-, ~, standing respectively for conjunction, disjunction, lroation, weak (or intuition-
istic) negation, and strong negation. The axioms and rdlegerence forN; include
those of intuitionistic logic (see, e.g., [16]) and the sggmegation axioms from the
calculus of Vorob’ev [17, 18]; for details, see [13].

The model theory olN5 is based on the usual Kripke semantics for Nelson’s con-
structive logicN (see, e.g., [6, 16]), bu¥ 5 is complete for Kripke frame& = (W, <)
(where as usuall is the set ofpointsor worlds and < is a partial-ordering oi/)
having exactly two worlds, say (“here”) andt (“there”) with A < ¢. As usual, anodel
is a frame together with an assignmérthat associates to each elementiéfa set
of literals! such that ifw < w’ theni(w) C i(w’). An assignment is then extended
inductively to all formulas via the usual rules for conjunat, disjunction, implication
and (weak) negation in intuitionistic logic together wittetfollowing rules governing

1 We use the term “literal” to denote an atom, or an atom prefixesitrong negation.
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strongly negated formulas:

~(p AY) €i(w) iff ~p ei(w) or ~p € i(w);
~(p V) €i(w) iff ~pci(w) and ~y € i(w);
~(p — ) €i(w) iff pei(w); and ~y € i(w);
~=p € f(w) iff ~rp € d(w) iff @ € i(w).

It is convenient to represent &i;-model as an ordered pdifl, T') of sets of literals,
whereH = i(h) andT = i(t) under a suitable assignmentBy h < t it follows
thatH C T'. Again, by extending inductively we know what it means for an arbitrary
formulagp to be true in a modeM = (H, T'). We write M, w |= ¢ to express thap is
true at worldw in model M.

A formulay is true in a here-and-there modet = (H,T'), in symbolsM = ¢,
if it is true at each world inM. A formulay is said to bevalid in N5, in symbols= ¢,
if it is true in all here-and-there models. Logical consateeforN5 is understood as
follows: ¢ is said to be ailN;-consequencef a setl] of formulas, writtenlT |= ¢, iff
for all modelsM and any worldv € M, M, w = IT impliesM, w = ¢. Equivalently,
this can be expressed by saying thas true in all models of . Further properties of
N5 are studied in [10].

Equilibrium models are special kinds of mininfl Kripke models. We first define
a partial orderingd on N5 models that will be used both to characterise the equilibriu
property as well as the property of uniform equivalence.

Definition 1. Given any two modeld?, T), (H',T"), we se{ H, T) < (H',T') if T =
T andH C H'.

Definition 2. Let [T be a set olN; formulas and H, T") a model offI.

1. (H,T) is said to betotal if H = T (otherwise, ifH C T, it is non-total)
2. (H,T) is said to be arequilibriummodel if it is total and minimal undeg among
models of/].

In other words, a modélH, T') of IT is in equilibrium if it is total and there is no model
(H',T) of IT with H' C H. Equilibrium logic is the logic determined by the equi-
librium models of a theory. It generalises answer-set séicgim the following sense:
For all the usual classes of logic programs, including nérendended, disjunctive and
nested programs, equilibrium models correspond to ansste{52, 11]. The “transla-
tion” from the syntax of programs @5 propositional formulas is the trivial one, viz.,
a ground rule of an (extended) disjunctive program of thenfor

KiVvV...VKiy<—Liy,...Ly,notLyy1,...,n0tL,,
where thelL; andK; are literals, corresponds to ttN sentence
Lin...ANLpy AN=Lpii Ao . ALy — K1 V.. VK.

A set of N5 sentences is calledtaeory. Two theories arequivalentf they have the
same equilibrium models.
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3 Relativised Equivalence Concepts

We consider theorieH, I1,, etc., and languaged £’, etc. It will be convenient nota-
tionally viewing a language as a set of literals. A theoryaglgo bein the language
if all its atomic formulas belong td.

Definition 3. Let II; and I, be theories.

(i) II, andIl; arestrongly equivalent relative t6 iff for any (empty or non-empjget
X of £ formulas,/1; UX andIl, U X are equivalent, i.e., have the same equilibrium
models.

(ii) II, andIl, areuniformly equivalent relative ta iff for any (empty or non-empjy
setX of £ literals, IT; U X andI1, U X are equivalent, i.e., have the same equi-
librium models.

Note that if the theories are logic programs, this meansiagg the same answer sets.

We explain some terminology and notation. A mod#l, T') of a theoryIT is said
to be maximally non-totalor just maxima) if it is non-total and is maximal among
models ofIT under the orderingd. In other words, a mod€lH,T') of IT is maximal
if for any model(H’,T) of II, if H C H' thenH’ = T. Itis clear that if a theory
11 is finite and has a non-total mod@ll, T'), then it has a maximally non-total model
(H',T) such thatd C H’. However, maximal models need not exist in case fhas
an infinite theory. In what follows, we shall assume that aldties are finite.

Let £ be a sublanguage &'. If M = (H,T) is anL’ model, its£-1-reductis
defined by

(HNL,T)

and denoted byM| L. The term “1-reduct” stems from the fact that it refers to fihst
component of the model.

4 Characterising Relative Equivalence

For logic programs, the above relativised notions of edaivee are characterised by
Woltran [19] in terms of what are calledlativised strongresp.,uniform) equivalence
models or RSE(resp.,RUE) modelsfor short. We start by re-expressing these concepts
in terms of ordinary models in the log¥5.

Definition 4. LetII be atheoryin’ andL a sublanguage of’. AmodelM = (H,T)
is anRSE;-modelof [T if it meets the following criteria:

4.1 M is atotal model of f or
4.2 M is the£-1-reduct of a non-total modéH’, T') of I, and
4.3 for any non-total modéel/, T') of IT, T\ J N L # 0.

In other words, 4.3 holds together with one of 4.1 or 4.2.&asy to see that for disjunc-
tive logic programs, the above concept coincides with thandRSE-model as defined
by Woltran [19]. Indeed, we must check a preliminary comditand Conditions (i)-(iii)
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of Definition 6 by Woltran [19]. Clearly, both 4.1 and 4.2 alamply that?" is a clas-
sical model ofT as required by (i). Condition 4.3 above re-expresses Claisehile
Condition 4.2 re-expresses Clause (iii). Finally, we chibekpreliminary condition of
Woltran [19]. By 4.2, ifH # T then(H,T) is the reduct of a non-total modéll’, T
of IT,soH’ C T. Therefore H' N L C TN L.Butby4.3,H NL # TN L. Since
H = H' N L, itfollows thatH C T N L as required by the original definition of an
RSE-model.

Now the following lemma is straightforward but useful. lysahat two models with
the sameC-1-reduct satisfy the sam@& sentences.

Lemma 1. Let M and M’ be N5 models andy a formula all of whose atoms belong
to the language’. If M|L = M'|L, thenM |= ¢ iff M’ |= .

4.1 Relativised Strong Equivalence

Relativised strong equivalence (RSE) is defined as Woltt8hdoes but for arbitrary
theories. We can now show that sameness of RSE-models ificgentfcondition to
ensure RSE.

Theorem 1. Let IT; and T, be theories having the same RSmodels. Thenl/; and
11, are strongly equivalent relative t6.

Proof. Assume the hypothesis of the theorem and consider the tHéarnyy’ whereX
is any set of sentences ih Consider any equilibrium modé\t = (T',T') of I, U X.
We shall show that is also an equilibrium model dff; U X. By the symmetry of the
situation, the same argument will show that any equilibriandel of 17, U X' must be
an equilibrium model of7; U Y.

We first show thatM is an RSE:-model of I7;. Evidently, it is a total model of
11, so Condition 4.1 holds. Suppose that Condition 4.3 fadghsit there is a model
(J,T) of II; with J C T suchthatl' N £ = J N L. Since(T,T) = X, by Lemma 1,
(J,T) & X, but this contradicts the assumption th#& T') is an equilibrium model
of II; U X. So Condition 4.3 applies anti is an RSE-model of I7; and hence by
assumption ofI5. Therefore

(T,T) =1, U X.

We need to show that it is in equilibrium. Note that siq@eT") is an RSE-model of
115, by Condition 4.3 there is no modél, T') of II, with J C T such thatl' N L =
J N L. Suppose that is not an equilibrium model ofl; U Y. Thenil; U X' has a
model(H,T) with H C T, so in particulatH,T') = II, and by 4.3T\H N L # .
So,HNL CcTnL CT.ltfollows that(H N £,T) is the £-1-reduct of a model
(H,T) = IIy, with H C T'. By Condition 4.2{H N L, T) is therefore an RSEmodel
of II,, hence ofll;. So, again by 4.2, it is th&€-1-reduct of some modélH’, T") of
II, with H' € T suchthatd’ N £ = H N L. By Lemma 1, sincéH,T) = X also
(H',T) E ¥ and hencéH’,T) = II; U X. But this contradicts the assumption that
(T, T) is an equilibrium model of7; U X. Therefore (T, T') is an equilibrium model
of I, U X, O
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We now tackle the converse of Theorem 1.

Theorem 2. Let IT; and I1, be theories such tha; and I7, are strongly equivalent
relative toL. Then, they have the same RSodels.

Proof. Suppose thail; andIl; have different RSE-models. We shall define a set of
L-sentenced’ such thatll, UX' andil,U X have different equilibrium models. Without
loss of generalisation, assume there is\drwhich is an RSE-model of I7; but not of
II,. We consider several cases and subcases.

Casel. M = (T,T) is atotal RSE-model of/1; that is not an RSE-model ofI15.
SetY = T'NL. Then clearlyM |= I1; U X. Moreover, M is an equilibrium model
of I1; U X. For, if not, there is a mod€lH, T") of I1; U X with H C T. Since
Y =TnNnL,wemusthavd'NL C H.ButthenI'n L = HNL, which contradicts
Condition 4.3 forM being an RSE-model of I7;. There are two reasons whiyt
is not an RSE-model of I75.

SuBCASE 1.1. M [~ II,. Inthis case, sinca1 [~ 1, it cannot be an equilibrium
model of 1, U X.

SuBCcASE1.2. M E II,, but Condition 4.3 fails forll,. So, there is a model
(J,T) of I, with J C T such thatl' n £ = J N L. Applying Lemma 1, we
conclude thatJ, T') = X' since(T, T) = X. Therefore{J,T) = II, U X, so
M is not an equilibrium model ofi; U X.

CAase2. M = (H,T) is a non-total RSE-model of IT; that is not an RSE-model
of IT,. Observe thatT, T') is a total RSE-model of IT,. Hence, in caséT’, T') is
not an RSEz-model of I7,, we can apply the same argument of Case 1 to conclude
that(T, T') is an equilibrium model of7; U X’ and, again, cannot be an equilibrium
model of [T, U X.

So suppos€T, T) is an RSE-model of IT, and Condition 4.2 fails foM =

(H,T), i.e., there is no non-total model éf, whose£-1-reduct equals\. Let

I'={A — B | A, B € (T\H) N L}. By Condition 4.3,I" is non-empty. Set

Y = H UT. Now, evidently(T, T) is a model of bothH, sinceH C T, and

of I', so (T, T) | II, U X. We claim it is an equilibrium model of7, U X,

For, if not, there is a model/, T') of II, U X with J c T'. Clearly, H C J, but

H # Jn L, otherwise(J N £L,T) = M would be an RSE-model of IT,. So,

H c Jn L. Thus,(J N £)\H is non-empty, and by Condition 4.87\J) N £

is also non-empty. Choose ahfrom (J N £)\H and B from (T\J) N L. Then,

A— BeTl but{JT)E= A — B,since(J,T),h = Abut(J,T),h £ B. It

follows that(J,T) = X and so(T,T) is an equilibrium model of7; U X'. On

the other hand, it is not an equilibrium model &@§ U X. In particular, we know
that (H',T) = II; U H, since there is a non-total mod@l’, T") of II; whose

L-1-reduct equals\t. Moreover,(H',T) = I since(H',T),h [~ A for each

A— Beland(H',T),t}= BforeachA — Be. O

4.2 Relativised Uniform Equivalence

We now turn to the characterisation of relativised unifoguigalence via the concept
of a relativised uniform equivalence model. First, we mamthe following lemma that
will be useful later.
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Lemma 2. Supposdl; and ], are theories which are uniformly equivalent relative to
L. Then, they have same total RSEodels.

Proof. Assume the hypothesis. Suppdge has a total RSE-model(T, T') that is not

a total RSEz-model of IT5. Evidently,(T, T') = 1T, U (T N £). Moreover, by Condi-
tion 4.3,(T, T') must be an equilibrium model df; U (7' N £) since there is no model
(J,T) of IT; with J € T suchthal’' N £ C JN L. Clearly, if (T, T') | II5, it cannot
be an equilibrium model ofl; U (T' N £). On the other hand, if7,T) = II, and

it is not an RSE-model of I15, then Condition 4.3 fails fofl,. So, there is a model
(J,T) of II, with J € T such thatl’ n £ = J N L, whence clearlyT, T is not in
equilibrium for 11> U (T' N £). This contradicts the assumption of relativised uniform
equivalence. a

From now on we assume that all theories are finite. As merdigneviously, this
means that, under th€-ordering among their models, maximal elements are guaran-
teed to exist. So, the following notion is well-defined.

Definition 5. Let IT be a theory inf’ and £ a sublanguage of’. An RSE-model of

11 is anRUE,-modelof I7 if it is either total or maximal undex among all non-total
RSE:-models ofi].

Theorem 3. Let I7; and I1; be theories which are uniformly equivalent relativeo
Then, they have the same RkJEodels.

Proof. Assume the hypothesis. By Lemma 2, the two theories have ahe gotal
RSE;-models, hence total RUEmodels. Suppose that they differ on non-total RUE
models, say thall; has a non-total RUEmodel(H, T') that is not an RUE-model of
IIs.

Case 1. Suppose there is a non-total RSEodel(.J, T') of II; with H C J. So,Il,
has a non-total mod€¢H’, T') with H' N £ = J. Choose an elemeunt from J\ H
and setX = H U {A}. Clearly,(T,T) = II; U X and by maximality(T, T is
an equilibrium model off7; U X. On the other hand, by inspectiofff’, T') is a
non-total model of 7> U X, so (T, T') is not an equilibrium model ofl; U X .

CASE 2. Suppose there is no non-total RSEodel(J, T') of II, with H C J. Since
(H,T) is not an RUEz-model of IT5, it cannot be an RSEmodel of IT, as well.
Consider the modé€ll’, T'). Since Condition 4.3 holds fdif;, clearly (T, T') is an
RSE;-model of IT;, and hence by Lemma 2 an Rg#nodel of I1>. So,(T, T) |=
IT, U H. Since there is ndl> 2 H such thatds C T and(H, T) | I, (T, T)
is an equilibrium model ofl, U H. On the other hand’, T') is not an equilibrium
model ofII, U H since(H',T) = II; U H, forsomeH’' N L = H. O

Theorem 4. Suppose thatl; and 1, are theories with the same RYEnodels. Then,
they are uniformly equivalent relative 1o

Proof. Assume the hypothesis and suppose that for som¥ &t atoms,/7; U X has
an equilibrium mode{T’, T') that is not an equilibrium model df,U X . Clearly,(T, T
is a total RUEz-model of I7; and so, by assumption, also B%,. Therefore(T,T) =
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I1,. Since itis not an equilibrium model @1, U X, there is a modelH, T') = I[IoUX
with H C T and clearlyX C H.Then,(H N L, T) is an RSEk-model ofI1,. Keeping
T fixed, we extend this to a maximal non-total RSEodel (H,, T) of II5, where
H C Hs. Then, there is a modeH’, T') of IT, such that

HNL=H,D>DHNL.

Evidently, (H>, T is an RUE:-model of I1. However, it is not even an RgEmodel
of IT;. If it were, there would be a modéH,T') of IT; with H; N L = Hs. Since
X C HNL C Hy, {Hy,T)would be a non-total model df; U X, which is impossible
by the initial assumption thaf", T') is an equilibrium model of7; U X. O

As we have seen in Lemma 2, total RHenodels and total RSEmodels coincide.
For non-total RUE-models, we obtain an alternative characterisation asvisi

Lemma 3. LetIT be atheory in.’ and £ a sublanguage of’. A pair (H,T') is a non-
total RUE;-model ofIT iff (T',T) = IT and it is theL-projection of an(unrelativiseq
UE-model(H', T) of T withH' N L C TN L.

5 An Application to Prediction and Explanation

In this section, we illustrate how the concept of relatidismiform equivalence can be
applied in contexts such as prediction and abductive infexand explanation. Differ-
ent types of scenarios are possible. For instance, in gneglithe behaviour of physical
systems we might have a general thefirgomprising strict laws as well as nonmono-
tonic rules, e.g., describing inertia axioms, default ¢dbods etc., together with initial
conditions represented by atomic formulas in a suitableetulif the language. Another
type of scenario is represented by &nductive logic program(II, A), wherell is a
logic program (of any general type, e.g., disjunctive, @egsetc.) andd is a set of lit-
erals calledabduciblesn a suitable sublanguage &f. In each case, we are interested
in the question: When are two such “theories” equivalenemmts of predictive power,
explanatory capacity, and so on? The structure of inferensimilar in the two cases
mentioned. In each case, the thedrfyconjoined with a se{ 4, ..., 4, } of literals
representing initial conditions, abducibles, etc., dataisentence, say, representing,
e.g., the prediction of a physical state, the effects of gioacor an explanandum in an
abductive system. In the context of equilibrium logic andPA8ntailment is of course
nonmonotonic

To fix notation and terminology, let us consider the geneaakoofabductive the-
ories which are given as pairs of forfil, A), wherelI is a theory and4 is a set of
literals, and the matter of equivalence with respect to atideiexplanations. This leads
to the following definition.

2 The main difference between a prediction in the former samskan abductive explanation
in the latter sense imethodologicalin the first case, the literalg4,, ..., A, } are specified
in advance as part of the initial conditions of the systemilevim the second case, it ig
that is supplied in advance as an explanandum, and the &beli€id,, ..., A,,} are to be
discovered.
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Definition 6. An abductive explanationf a sentence» by an abductive theorfp =
(IT, Ay is aset{4,, ..., A, } satisfying

HU{AL, ..., A} o 1)
as well as the following two conditions:

6.1 {Ay,...,4,} C Aand
6.2 TU{A,...,A,} is consistent,

wherep is nonmonotonic entailment.

Note that Condition 6.2 merely ensures that the explanaifop is non-trivial. For
present purposes we do not, however, insist th&f, ..., A, } be a minimal set of
abducibles explaining, nor even that it is non-empty. We note further that Defini-
tion 6 is equivalent to the definition of an abductive exptamaas given by Inoue and
Sakama [8] for the case of disjunctive logic programs witfadk negations in their
heads.

If {A4,...,A,} is an abductive explanation gf from P, then we also say that
{A1,..., A, } explainsp in P. P is said to havexplanatory poweif there exist some
pand{A,...,A,} satisfying (1) as well as Conditions 6.1 and 6.2. Evideritl
abductive theories can have the same explanatory powerakexn®r stronger senses.
They may capture the same explananda by means of possifayimtif explanans (ab-
ducibles), and therefore differing explanations, or theymsupport essentially the same
explanations. In this latter sense, we can say therefotawlmeabductive theories?;
andP,, based on the same abducible ggthave thesame explanatory power in the
strong senséf, for any p and any{A4;,...,4,} C A, {A;,...,A,} explainsy in
Py iff {A41,..., A} explainsy in Py. We consider here only abductive theories with
(non-vacuous) explanatory power.

We can easily relate this notion of explanatory equivaldéncelativised uniform
equivalence. The following is straightforward.

Proposition 1. Let P, = (IT,, A) andP, = (II5, A) be abductive theories based on
the same abducibles. If; and I, are uniformly equivalent relative td, thenP; and
P> have the same explanatory powar the strong senge

If IT; andIl, are uniformly equivalent relative td, then for any{A,,..., A,} C A,

I U{A,...,A,} andll; U{A, ..., A, } have the same equilibrium models, so the
explanatory power oP; andP; is the same whether we interpret entailmgnin the
cautious or brave sense.

To establish a converse of Proposition 1, we need to pin dbetype of inference
defined by|~. Evidently, brave reasoning has a greater chance of suiccgesince
prima facieit seems possible that theories might have the same consesgia the
cautious sense, even under the addition of new atoms, yetdiffierent equilibrium
models and therefore not be relativised uniformly equivale

So let us suppose that is entailment with respect to to some equilibrium model;
in other words/I | ¢ iff o is true in some equilibrium model df. Then we have:

% We leave open for the moment whether entailment is to be sttt in the cautious or brave
sense.
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Proposition 2. If P; and P, have the saménon-vacuoupexplanatory powe(in the
strong sensggthenil; andIl; are uniformly equivalent relative td.

Proof. Assume the hypothesis of the proposition and suppose thgtate not uni-
formly equivalent relative tod. Then, there exists a subsed;,..., A,} C A such
thatIl; U {A;,..., A,} andIl; U {A,,..., A, } have different equilibrium models.
Say,IT; U{A4,..., A,} has an equilibrium modeW1 that is not an equilibrium model
of IT, U {A,,..., A, }. We can establish th&®; and P, have different explanatory
powers if we can find a sentengehat is true inM, so that

H1U{A1,...,An}}‘\/§0 (2)

but
HQU{Al,,An} *\/(p (3)

This means thap has to be chosen so there is no other equilibrium modélpfJ
{A4,..., A} in which is true. Moreover, Conditions 6.1 and 6.2 above should also
hold for (2). By assumption, no equilibrium model@tU{ A4, . .., A, } can be equiva-
lentto M in that it satisfies exactly the same sentences; otherwismiid make exactly
the same literals true and false and so be exaktlySo, for each equilibrium model
M, of IT;U{A4,, ..., A,}, there must be some sentergerue in M thatis not true in
M. Since we are assuming that the theories are finite, therat anest finitely many
equilibrium modelsM; of II, U {44, ..., A,,} and therefore finitely many such;.
Evidently, the sentencg,; «; is true in M but not true in any equilibrium model of
I, U{A,,...,A,}. So, we have

HlU{Al,...,An} }v/\aiand (4)

HQU{Al,...,An}*\J/\Oéi. (5)

Furthermore, we have that 6.1 is satisfied and 6.2 holds $iee{A;,..., A, } hasa
model. This contradicts the initial assumption tRatandP, have the same explanatory
power. O

Combining Propositions 1 and 2 with Theorems 3 and 4 yieldsfallowing se-
mantic characterisation of explanatory equivalence.

Corollary 1. Two abductive theorieB;, = (II;,.A) and’Py = (II,, A) have the same
explanatory powe(in the strong sengéff 17, and I, have the same RUEmModels.

We note that Inoue and Sakama [8, 9] provided for the casedfalve logic pro-
grams with default negations in the heads a charactensatmilar to our Proposi-
tions 1 and 2. However, they derived that two abductive @og I1;, .A) and(I7;, A)
have the same explanatory power iff and I1; are strongly equivalent relative td.

In view of our results, it seems that relativised strong eajence should in their char-
acterisation be replaced by relative uniform equivaleBezause otherwise we would
obtain that, for any4, strong equivalence relative td would coincide with uniform



Relativised Equivalence in Equilibrium Logic 47

equivalence relative tod, which is obviously violated (consider, e.g., the programs
{a Vb <} and{a < notb; b — nota} which are uniformly equivalent relative to
{a, b} but not strongly equivalent relative fa, b}). Let us also note that they do not
apply any semantic characterisations of equivalence goakto Corollary 1 above. On
the other hand, they also consider equivalence in the cooten extended abduction
concept [9].

6 Complexity

The complexity of relativised equivalence between disjwedogic programs has been
established by Woltran [19] and has been further studiedtey,Eink, and Woltran [2].
Both notions, i.e., RSE and RUE, yield{’-complete decision problems. Thug} -
hardness for these problems is immediate for equilibriugicloTo show that RSE and
RUE remain in clasd7{ for the general setting studied here, first observe that the
central subtask of checking whether a given pgdirT) is an equilibrium model of
some theorylT is in coNP. Moreover, to decide the complementary probleRWE
betweenlI; andIl,, one can guess s€I5 F of literals and check whethét”, T') is an
equilibrium model of exactly one dff; U F' andIl, U F'. This algorithm runs in non-
deterministic time with access to an NP-oracle, and thusin 777-membership for
RUE follows immediately. The same argumentation holds f8ERn view of the proof
of Theorem 2, where it is shown that only very simple theofidsich are polynomial
in the size to the compared programs) are sufficient to ddR®le.

7 Conclusions and Future Work

In this paper, we extended results for relativised notidresjaivalence from logic pro-
grams under the answer-set semantics to arbitrary (primuei) theories in equilib-
rium logic. To this end, we introduced the concept of &i-reduct which restricts
the language of one world in the two-world Kripke-model fquéibrium logic. These
partially bound models can be shown to characterise rédativstrong and uniform
equivalence between theories in the same manner as redatidE- and UE-models
are used for logic programs [19]. Furthermore, we discusspdssible application of
relativised equivalences in the area of abduction and vedlpistudied the complexity
of the introduced equivalence notions.

An interesting topic for further work is to extend our notsao include the removal
of auxiliary letters—important for considering submodubé theories having dedicated
output atoms—tantamount to consideripgjected equilibrium modelsvhere only
a subset of the atoms are of interest. This would be an extertsithe framework
introduced by Eiter, Fink, and Woltran [3] for disjunctivegio programs.
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Abstract. The study of synonymy among propositional theories in éoyiuim
logic, begun in [36], is extended to the first-order case.

1 Introduction

Quantified equilibrium logic (QEL) has been developed ir439] as a logical founda-
tion for answer set programs with variables. In particutes,version of QEL presented
in [39] and [23] can be considered adequate for the genensttdider version of stable
model semantics as given in [16]. This version of QEL is basethe logicQHTY? ,
called quantified here-and-there logic with static domams decidable equality. Logic
programs or general theories are strongly equivalent vagipect to QEL (or stable
model semantics) if and only if they are logically equivdlenQHT?Z, [23].

In answer set programming (ASP) strong equivalence (aner dthms of equiv-
alence between programs) has been recognised as provitingpartant conceptual
and practical tool for program simplification, transforinatand optimisation. Follow-
ing its initial study in [22], the concept of strong equivade for logic programs in ASP
has given rise to a substantial body of further work lookindifierent characterisations
[15,43], new variations and applications of the idea [8428, as well as developing
systems to test for strong equivalence [35, 9]. Recentipesof this work on program
transformation [10, 45] has been extended to the first-ardse.

In basic areas of mathematics, like algebra and geometeyisofamiliar with the
idea that theories may be presented in different ways wffbréint primitive concepts.
Similarly, if one consideres taxonomies, classificatiomesoes, ontologies and in gen-
eral any knowledge-based system, there are often manyadtiffevays to represent ap-
parently the same information. This motivates the search fmoncept of equivalence
or synonymy that applies to logic programs or nonmonotorgoties that are formu-
lated in different vocabularies. This idea was pursued &} y&hich proposed a formal
concept of synonymy applying to logic programs and propaséti theories in equi-
librium logic and answer set semantics. The aim of the pitgsaper is to extend this

* Partially supported by CICyT projects TIC-2003-9001-C@@ &IN2006-15455-CO3.

** Partially supported by CICyT project TIC-2003-9001-C0INZ006-15455-CO1 and Junta
de Andalucia project TIC-115
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work to theories formulated in first-order logic by using gtified equilibrium logic.
We start following [36] by considering formal and informadgiderata that a concept
of synonymy should fulfil. We then introduce QEL as a logiaaliridation for ASP
and extensions, and present the main characterisatioroofgstquivalence from [23].
In §4 we propose a strong concept of equivalence or synonymyéartes in quanti-
fied equilibrium logic, give different characterisatiorfdtpand show that it fulfils the
adequacy conditions discussed in 2. The main charactsristithis concept are as fol-
lows. TheoriedI; and Il in distinct languages are said to be synonymous if each is
bijectively interpretable in the other. In particular, thigans that there is faithful inter-
pretation of each theory in the other and a one-one correfspme between the models
of the two theories. This correspondence preserves theepyopf being an equilib-
rium model or answer set. In additioff; has a definitional extensions that is strongly
equivalent to a definitional extension ff,. Moreover, in a suitable sensd; andI/,
remain equivalent or synonymous when extended by the addifinew formulas.

2 Synonymous Theories

What does it mean to say that two programs or theofigsand 7, in different lan-
guagesL; andL,, are synonymous? We consider six desiderata D1-D6 that hevbe
should be satisfied by any basic concept of synonymy. D1-0DI3#3D6 are quite gen-
eral and seem to be applicable to any theories describingdeling some knowledge
domain; D4 takes account of the special nature of a nonmaitwtw logic program-
ming system.

D1. Translatability. The languag@, of I7; should be translatable, via a mapping, say
7, into the languagé€, of I1,. The translatiornr should be uniform, so we require
it to be recursive.

D2. Semantic correspondence. There should be a correspondlirejation between
the structures of2; and L., in particular a mappind’ from L,-structures toZ; -
structures that respects the translatian the sense that for anf,-structureZ and
L, -formulag,

FI)EeeIlET(p)

D3. Equivalence. Under translatiofi; and/, should be in an obvious sense equiva-
lent.

D4. Intended models. The semantic correlation should reshedhtended models of
the two theories. In the present case this means preseharoperty of being an
equilibrium model or answer set is an answer sefil; iff F(M) is an answer
set ofIT;.

D5. Idempotence. Ifl7; is synonymous with/7; under the previous mappings, then
under corresponding mappings, sdyand F”, IT, should be synonymous with; .

D6. Robustnessil; and 1, should remain synonymous under the addition of new
formulas, ie. for any, I7; U X' should be synonymous withs U 7(X'), similarly
11, U IT with IT; U T/(H).

The first two conditions provide the cornerstone of any fdrapgroach to interthe-
ory relations. Different kinds of relations between thesrare obtained by specifying
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additional conditions that the mappings should satisfg ég[30, 34, 41]). In this case
we require (D3, D5) that theories are in an obvious sensealgmit once the translation
maps are made available. Since we are dealing here with poggrams and their gen-
eralisations in the ASP framework, we can understand thiieein the weaker sense
of having the same answer sets, or in the sense of strongatejpie explained earlier.
The problem is that if we choose the weaker variant then we kiatually no hope to
fulfil condition D6 which requires that the theories remajuizvalent when embedded
in any richer context. On the other hand, if we interpret D&an that under suitable
translation manuald/; andIl, are strongly equivalent, then we may expect that
and ], remain synonymous when extended with new rules.

Perhaps somewhat surprisingly we shall approach the probisynonymy via the
classical theory of interpretations. Briefly we shall sagtttheories are synonymous
if each is faithfully interpreted in the other in such a wagttthe interpretations are
idempotent (see below); this is basically the standard agmtr followed in classical
predicate logic, see eg. [4, 40]. We adapt it here to the chaenonmonotonic system
based on a non-classical logic.

3 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic grams was presented in [31]
as a foundation for answer set semantics and extended togherfiler case in [37, 38]
and in slightly more general, modified form in [39]. For a styof the main properties
of equilibrium logic, see [32]. Usually in quantified eqbifium logic we consider a
full first-order language allowing function symbols and weelude a second, strong
negation operator as occurs in several ASP dialects. Fprésent purpose we consider
the function-free language with a single negation symb¢l,So, in particular, we shall
work with a quantified version of the logic HT bere-and-thereln other respects we
follow the treatment of [39].

3.1 General Structures for Quantified Here-and-There Logic

A function-free first-order languagé = (C, P) consists of a sets of constarffsand
predicate symbol#’; each predicate symbel € P has an assigned arity. Moreover,
we assume a fixed countably infinite set of variables, the sysnb—’, * V', * A, * =,
‘F, 'V and auxiliary parenthese$¢’," )'. Variables and constant are generically called
terms Atomsandformulasare constructed as usualpsedformulas, orsentencesare
those where each variable is bound by some quantifidreAry!T is a set of sentences.
If D is a non-empty set, we denote By (C, P) the set of atomic sentences of
L = (C, P) with additional constant symbols for each elemenbofA here-and-there

L-structure with static domains is a tugle= ((D, I), I", I'*) where

— D is a non-empty set, called tld®mainof Z.
— I: CUD — Dis called theassignmenand verified (d) = d for all d € D.
— I"CI' C Atp(C, P).
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We can think off as a structure similar to a first-order classical structoué having
two parts or components and¢ that correspond to two different points or “worlds”,
‘here’ and ‘there’ in the sense of Kripke semantics for itiiistic logic [7], where the
worlds are ordered by < ¢. At each worldw € {h,t} one verifies a set of atond’

in the expanded language for the dom&inwWe call the model static, since, in contrast
to say intuitionistic logic, the same domain serves eactefworlds! Sinceh < t,
whatever is verified ak remains true at. The satisfaction relation fdf is defined so
as to reflect the two different components, so we wiifey |= ¢ to denote thap is
true inZ with respect to thev component. Evidently we should require that an atomic
sentence is true at just in case it belongs t6*. Formally, ifp(¢4, ..., t,) € Atp then

va':p(tlavtn) iff p(I(tl)aaI(tn))EIw
Thenf= is extended recursively as follots

- Z,wEeAYiff ZTw E pandZ,w E 1.

—Z,wkEeVYiff LwEyporZ,wE 1.

- IitEe—yiff It porZ,t E .

- I,hiEe—yiff It Ep —YandZ,h = porZ, h = .

- Z,wE —piff Z,t .

— I,t = Vap(z) iff Z,t = ¢(d) forall d € D.

— I,h = Vap(z) iff Z,t |= Vap(z) andZ, h = ¢(d) foralld € D.
- Z,w = 3zp(z) iff Z,w = ¢(d) for somed € D.

Truth of a sentence in a structure is defined as folldWws: ¢ iff Z, w | ¢ for each
w € {h,t}; in this case[ is said to be anodelof . An structureZ is a model of a
theory I if it is a model of everyp € II, denoted byZ = II. A sentencey is valid if
it is true in all structures, denoted Iy . A sentencey is aconsequencef a theory
IT if every model ofII is a model ofy, in symbolsiI = . The resulting logic is
calledQuantified Here-and-There Logic with static domadiesnioted byQHT*(L). In
terms of satisfiability and validity this logic is equivaten the logic introduced before
in [38].

The logicQHT? (L) can be axiomatised as follows. We start with the usual axioms
and rules of intuitionistic propositional logic and add tiéom of Hosoi

aV(=pV(a—pg)

which determines 2-element, here-and-there models. Ysiem is extended to first-
order logic (see [38, 39]) by adding the following axiom tdah the usual non-static
version of first-order here-and-there logic:

Ve——a(z) — Jz(a(z) — Vaea(x))

! Alternatively it is quite common to speak of a logic witbnstantdomains. However this is
ambiguous since it might suggest that the domain is composkgcbf constants, which is not
intended here.

2 The reader may easily check that the following correspomaiixto the usual Kripke seman-
tics for intuitionistic logic given our assumptions abol two worldsh andt and the single
domainD, see eg [6]
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Finally, we add the following axiom for static domains, td@b QHT?®(L):
——Jza(x) — Jr——a(x)

Ono proved in [28] that the system obtained by extending tlo@gsitional calculus
with the axiomVz(a(z) V 8) — (Vza(z) V §) is complete forQHT?(L). In [23],
another complete calculus is obtained by extending thegsitipnal calculus with the
axiom

Jz(a(x) — Vea(z))

In this paper we also consider the equality predicate,P, interpreted by the following
condition for everyw € {h,t}

— M,w [ a = biff I(a) = I(b) for all constants:, b.

To obtain a complete axiomatisation, we then need to adddibesof “decidible equal-
ity”
VaVy(z =y Va #vy).
We denote the resulting logic @HT? (L) (see [23] for details).
As usual in first order logic, satisfiability and validity airdependent from the
language. Iff = ((D,I),I", I') is anL’-structure and’’ O L, we denote byZ |, the
restriction ofZ to the sublanguagé:

I|£ = <(D7]|£)7Ih|£7]t|£>

Proposition 1. Suppose that’ > £, IT is a theory in£ and M is an £'-model ofII.
ThenM| is aL’-model ofII.

Proposition 2. Suppose that’ > £ andy € L. Theny is valid (resp. satisfiable) in
QHT: (£) if and only if is valid (resp. satisfiable) @HTZ (L').

This proposition allows us to omit reference to the languagkee logic so it can be
denoted simply byQHT?..

3.2 Equilibrium Models

As in the propositional case, quantified equilibrium logibased on a suitable notion
of minimal model.

Definition 1. Among quantified here-and-there structures we define ther etds fol-
lows: (D, I),I", Ity < (D", J),J", JYif D=D'.1=J,I' = J andI" C J". If
the subset relation holds strictly, we writer”.

Definition 2. Let I be a theory and = ((D, I), I", I*) a model oflI.

1. 7 is said to beotalif 1" = I*.
2. T is said to be arequilibriummodel ofiI (or short, we say: 7 is in equilibrium”) if
it is minimal under<d among models aff, and it is total. It is denoted by =, IT.
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Notice that a total here-and-there model of a thefdris equivalent to a classical first
order model off1.

The logic defined by the equilibrium models is call@dantified Equilibrium Logic
and it is also independent of the language, as seen by tlosvfol) result.

Proposition 3. LetI7 be a theory inC and M an equilibrium model of7 in QHT? (L)
with £ > L. ThenM | is an equilibrium model off in QHTZ (L).

3.3 Strong equivalence for theories

We say that two set§', A of first-order sentences astrongly equivalenif for every
setX of first-order sentences, possibly of a larger signatueeséts"U X, AU X have
the same equilibrium models.

Theorem 1 (Strong Equivalence of theories, [23])For any setsl”, A of first-order
sentences, the following conditions are equivalent:

(i) the setsl" and A are satisfied by the same here-and-there structures;
(ii) for every sety of first-order sentences, possibly of a larger signature gbts"U Y,
and A U X have the same equilibrium models Jieand A are strongly equivalent.

Note that the above notion of equilibrium model coincideshwiite concept of stable
model for logic programs with variables presented in [1&le Toncept of strong equiv-
alence and its characterisation can be found in [23]. Byngtmompleteness, condition
(i) of Theorem 1 means thdt and A are logically equivalent iQHT?..

4 Interpretability and Synonymy

We use the following notation and terminology. Boldfacstands for a tuple of vari-
ablesx = (x1,...,2,), Whilep(x) = ¢(z1, ..., z,) is aformulawhose free variables
arexy,...,x,, andvx = Vz; ...Va,. If ¢t; are terms, thew = (¢4,...,¢,) denotes a
vectorof terms. LetC = (C, P) be a first-order languagg,¢Z P a new predicate sym-
bolandl’ = (C, P U {p}). Let IT be a theory inC’. Explicit and implicit definability
are understood as follows

(i) pis said to beexplicitly definablen 17, if there is anC-formulad; (x) such that
IT = ¥x(p(x) < 67 ().

47 is called thedefinitionof p.

(i) pis said to bamplicitly definablein I7 if for any modelsM; and M- of IT such
that M, |, = Ma|, we haveM; = M.
By the strong completeness theorem @HT?. proved in [23], this definition is
equivalent to the following one.

(i) pisimplicitly definablen I7 if

ITU I[p/q] = Yx(p(x) < q(x))

whereq ¢ P is a new predicate symbol with the same aritypadI[p/q] is the
theory obtained by replacing every occurrence by q.
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In other words,p is implicitly definable if whenever the interpretation ofetif
predicates in models dT is fixed, the interpretation gf becomes fixed also. The above
definitions are readily extended to the case where sevenapredicates are definable
in a theory.

4.1 Interpolation and Beth properties in superintuitionistic logics

When the conditions (i) and (ii’) of explicit and implicit éeability are always equiv-
alent, the logic in question is said to have Beth property [18]. Closely related to
Beth is the property oihterpolation A logic is said to have the interpolation property
if whenever

Fe—9

there exists a senten¢dtheinterpolan) such that
Fe—¢ and FE— o

where all predicate and constant symbolg afe contained in botlk and.

It can be shown that the interpolation property implies teé&Bproperty in all super-
intuionistic predicate logics [18]. Moreover, Ono [28] sked that interpolation holds
in the logicQHT*® of quantified here-and-there with constant domdiGansequently,
QHT? also has the Beth property. Lastly, Maksimova showed inZ8#that adding
pure equality axioms, eg decidible equality axiom, to argesintuitionistic logic pre-
serves the interpolation and Beth properties (see alsd.\M& conclude therefore

Proposition 4. The logicQHT?. possesses the Beth property.

Let£; = (Cy, Py) andL, = (Co, P») be disjoint languagebBy aninterpretation
of £ in L2 we mean

1. For each predicate € P, anL»-formulad,;, explicitly definingp by the formula
Vx(p(x) < 67 (x)); we denote by the set of all definitions.
2. Aninduced mapping, also denotedyfrom £, -formulas (respL;-terms) toL,-
formulas (respL.-terms) such that
(@) 7(z) = x and for everyu € C1, 7(a) € Cy;if t = (t1,...,t,) is a vector of
terms,r(t) denoteg7(¢1),...,7(tn));
(b) if tis a vector of terms, then(p(t)) = &, (7(t)); 7(t1 = t2) = 7(t1) = 7(t2);
(c) T is extended recursively by(p A ¢) = 7(p) A T(¢), T(0 V ) = T(p) V
(), T(p = ¥) = 7(¢) = 7(¢), 7(=p) = ~7(p), T(Vap) = VaT(p) and
7(3xp) = JzT(P).

Any interpretationr of £, in Lo induces a mappind’- from Ls-structures tol;-
structures: iff = (D, I), 1", I*),thenF,(Z) = (D, J), J", J*) is defined as follows:

% Ono’s axiomatisation 0QHT* uses the constant domains axigma(z)V () — (Vra(z)V
3), as well as alternative axioms for propositional here-dretd, viz.p V (p — (¢ V —q))
and(p — q) V (¢ — p) V (p < —q). However, the axioms given here are equivalent to Ono’s.
4 Any languages can be made disjoint by renaming. Alternigtive can allow thatC; and L
have a common sublanguage which any translations simple leatouched, ie the sublan-
guage is always translated by the identity map.
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— Foreverya € C1, J(a) = I(7(a))
—plt)yeJv iff Z,wk d5(r(t))

It is easy to check that for an§; -sentence» and anyw € {h,t}:

FDwkEe < ILwkET(p) (1)

and therefore
FDEe & IET() (2)

Let IT; andIl, be theories inC; and L, respectively and let be an interpretation of
L1 in £5. Thent is said to be amterpretation ofll; in I1, if for all £,-sentencep,

Iy = ILET(p). 3)
In this case it is evident that
IEI, = F/(I)EIL. (4)

Generally speaking the mdf) associated with an interpretatierof £, in £, does not
preserve the ordering betweenl,-structures. However the following properties are
easy to check and will be useful later:

Lemma 1. Let 7 be an interpretation ofZ; in L5, and letZ be a total Lo-structure.
Then (i) F-(Z) is a total £, -structure; and (i) ifZ’ < Z, thenF.(Z') < F,(T).

An interpretation ofl1; in Il is said to befaithful if the converse of (3) also holds,
ie we havell; = ¢ iff Il = 7(p). As in classical interpretability theory, further
special cases of interpretation can be obtained by imp@sldgional conditions on the
syntactic and semantic translations.

Proposition 5. Letr be an interpretation of/; in I15. Then the following are equiva-
lent.

(i) ForeveryL,-formulasy(x) there is an’, -formulap(x) such thatll, = Vx (1 (x)«—
T(¢(x))); ie T is surjective.

(i) There is an interpretatior of L5 in £; such that for everys-formulay, 11, =
Yx(ih(x) o 7(0($(x))).

(i) The mappingF; from models of I, into models of7; is an injection.

An interpretation satisfying any of (i)-(iii) of Propositib is said to besurjective
Such interpretation preserve the property of being an qiuiin model, in the follow-
ing sense.

Proposition 6. Let T be a surjective interpretation dff; in I15. For any modelM of
II,, if F-(M) is an equilibrium model of7; then M is an equilibrium model ofT5.

If 7 is a surjective and a faithful interpretation, then it isdst be abijective in-
terpretationof I1; in I15. It is easy to verify that if- is a bijective interpretation aff,
in I, then the interpretation of 115 in II,, defined by condition (ii) in Prop. 5, is
also bijective. The interpretatian is called theinverseof  and we say that the two
programs or theories asynonymouwith respect ta- ando.
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Proposition 7. If 7 is a bijective interpretation ofi; in I1, then the mappind’ is a
one-one correspondence between model$,0dnd models of/5.

Given an inverse interpretation, we can map(,-structuresZ to L,-structures
F,(Z) in the same way as before. It is readily seen thatF.(M)) = M if M is
a model ofI1,; however the equality need not hold for other structuregrfem the
classical case).

4.2 \Verifying the adequacy conditions

Let us now consider synonymy in light of the adequacy cond#iB®1-D6. First we
consider the sense in which two synonymous theories canrsdmred equivalent.

Proposition 8. Let I1; and I1, be synonymous wrt ando. Thenll, U 7T is strongly
equivalent with/7; Uz. Thusi; and 1> have a common definitional extension, ie there
is atheoryll in Lo U Ly, suchthatll, U7 =11, U = I1.

In fact Proposition 8 can be strengthened to an equivalénaetheories are bi-
jectively interpretable if and only if they have a common digfbnal extension. This
expresses one way in which the two theories are in an obviensesequivalent once
enriched with suitable translation manuals. Notice tod¢ there is a close relationship
between/l; and the translation(11;) of II; (similarly betweenI; and the translation
o(Il) of II,). ltis already clear thafl, = 7(II1). Although it is not generally true,
even in the classical case, tH@t = 7(11;), we do however have:

Corollary 1. LetIl; andIl; be synonymous wrtando. For anyLs-formulayp, 1T, =
p—T10(p), andlls E ¢ = 7(I11) | 10(p).

Next we turn to condition D4.

Proposition 9. Let I1; and ], be theories inC; and £, respectively, synonymous wrt
7 ando. Then the bijective mapping. from models ofl; to models ofl7; preserves
the equilibrium property, ieM . I1; iff F.(M) =, II;.

Clearly, condition D5 is satisfied and the presence of anrgevterpretation pro-
vides the sense in which the correspondence betiigeand 1, is idempotent. Lastly
we consider D6.

Proposition 10. Let /7; andII, be theories inC; and £, respectively synonymous wrt
7 ando. LetIT a set ofL;-formulas. TherdI; U IT is synonymous withl, U 7(IT) wrt
Tando.

5 Literature and Related Work

In classical logic there is a large and well-developed bddyark on interpretability
dating from the 1950s. The first systematic treatments obisymous theories in this
context can be found in [3, 4], a more algebraic approach eafobnd in [20]. The
classical version of Proposition 6 is essentially contding3], though a more detailed
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statement and proof can be found in [40]. Outside the field ath@matics, the classi-
cal theory of interpretability and definitional equivaleneas extended and applied to
empirical forms of knowledge in [29, 34, 30]; see also [41] fomore recent account
of translatability issues in such contexts. The theory tdrpretations and equivalence
in nonclassical logics is less developed, however espgdratthe case of superintu-
itionistic logics much is known about key properties, suslméerpolation and Beth, on
which interpretability theory depends, see eg. [24—26fhincontext of nonmonotonic
logic programming the study of different kinds of equivalefetween programs is rel-
atively new (see references in section 1). Until now the ecdgwograms in different
languages has only been considered in [36]. There has beendiscussion of the role
and properties of definitions in ASP in [17,12]..

6 Concluding Remarks

We have argued that formal approaches to intertheory oalsitileveloped for mathe-
matical and scientific knowledge can be applied to systenisgi¢ programming and
nonmonotonic reasoning used for practical problem solaing knowledge represen-
tation in Al. In particular, we have described how the theofyinterpretability and
definitional equivalence can be applied in the context of-6rder logic programs un-
der answer set semantics and nonmonotonic theoreis in #tensyof quantified equi-
librium logic. In this setting we regard theories as synooumif each is bijectively
interpretable in the other, and we have characteriseddlason in different ways. We
also showed that this reconstruction satisfies a numbetwatiire, informal adequacy
conditions. The applicability of what is essentially a siaal logical approach in a non-
classical context relies on two essential features: fitatumderlying logic has several
properties such a@eththat help to relate the syntax to the semantics of definitams
translations; secondly, in ASP and equilibrium logic thesy concept of equivalence
between theories is fully captured in the underlying monmtdogic (quantified here-
and-ther@. This allows us to define a robust or modular concept of exeince across
different languages.

Several avenues are left open for future exploration. Fampte, one might want
to study other kinds of interpretability relations, eg wéne formulas] defining a
predicatep may contain additional parameters, or where the semanppimgZ;. may
relate models with different domains. Secondly, one mightesh for simple structural
properties on the models of two programs or theories that@uévalent to or sufficient
for synonymy. Thirdly, based on these or other propertigb@theories concerned, it
would be useful to develop systems for checking synonyneygttly extending current
methods for checking strong equivalence in the case of progin the same language
[9, 35].
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