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Preface

This volume consists of the contributions presented at the Workshop Correspondence and Equivalence for Nonmono-
tonic Theories, CENT 2007, colocated with LPNMR 2007 in Tempe, Arizona, USA on May 14 2007.

The systematic study of intertheory relations such as strong and uniform equivalence has recently become an active
sub-area of research in the field of LPNMR. Various kinds of correspondence relations that may hold between logic
programs or between nonmonotonic theories have been analysed and shown to be of practical relevance for theory or
program transformation, optimisation and modularity. Several systems for verifying such relations have already been
implemented. The papers in this volume explore this topic further and take it in several new directions.

We would like to express our warm thanks to the LPNMR programme chairs, Gerhard Brewka and John Schlipf,
for agreeing to host this event in Tempe. A special thanks also to goes to Chitta Baral, the local organiser of LPNMR,
for his help in accommodating the workshop and printing these proceedings. Finally, we thank the contributors for
their efforts to improve our understanding of this developing area and the programme committee members for their
efforts to help improve the quality of our research.
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Stefan Woltran (Vienna University of Technology, Austria)

Program Committee

Wolfgang Faber (University of Calabria, Italy)
Katsumi Inoue (National Institute of Informatics, Japan)
Vladimir Lifschitz (University of Texas at Austin, USA)
Fangzhen Lin (Hong Kong University of Science and Technology, China)
Emilia Oikarinen (Helsinki University of Technology, Finland)
Riccardo Rosati (Universita di Roma “La Sapienza”, Italy)
Hans Tompits (Vienna University of Technology)

Additional Referees

Pedro Cabalar
Johannes Oetsch





Table of Contents

Yet Another Proof of the Strong Equivalence Between Propositional Theories and Logic Programs 1
Joohyung Lee, Ravi Palla

A Common View on Strong, Uniform, and Other Notions of Equivalence in Answer-Set Programming 13
Stefan Woltran

Alternative Characterizations for Program Equivalence under Answer-Set Semantics: Preliminary Report 25
Martin Gebser, Torsten Schaub, Hans Tompits, Stefan Woltran

Relativised Equivalence in Equilibrium Logic and its Applications to Prediction and Explanation: Preliminary 37
Report
David Pearce, Hans Tompits, Stefan Woltran

Interpretability and Equivalence in Quantified Equilibrium Logic 49
David Pearce, Agustı́n Valverde





Yet Another Proof of the Strong Equivalence Between
Propositional Theories and Logic Programs

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{joolee, Ravi.Palla}@asu.edu

Abstract. Recently, the stable model semantics was extended to the syntax of
arbitrary propositional formulas, which are beyond the traditional rule form. Ca-
balar and Ferraris, as well as Cabalar, Pearce, and Valverde, showed that any
propositional theory under the stable model semantics can be turned into a logic
program. In this note, we present yet another proof of this result. Unlike the other
approaches that are based on the logic of here-and-there, our proof uses familiar
properties of classical logic. Based on this idea, we present a prototype implemen-
tation for computing stable models of propositional theories using the answer set
solver DLV . We also note that every first-order formula under the stablemodel
semantics is strongly equivalent to a prenex normal form whose matrix has the
form of a logic program.

1 Introduction

Recently, the stable model semantics was extended to the syntax of arbitrary proposi-
tional formulas, which are beyond the traditional rule form[1, 2]. Ferraris [2] showed
that nonmonotone aggregates can be naturally expressed in the extended syntax. On the
other hand, Cabalar and Ferraris [3] showed that every propositional theory under the
stable model semantics is strongly equivalent [4] to a logicprogram. They provided
two proofs based on the logic of here-and-there, one by syntactic transformation, and
the other by constructing a logic program using countermodels of the theory. An ap-
proach similar to the first proof was taken in [5], where the authors presented a set of
rules for rewriting a propositional theory into a disjunctive logic program. These rules
are an extension of the rules for turning a program with nested expressions into a logic
program [6], which led to an implementationNLP [7]. The system is essentially a pre-
processor to the answer set solverDLV 1 for handling programs with nested expressions.

In this note, we present yet another proof of the theorem on strong equivalence be-
tween propositional theories and logic programs. Unlike the other approaches that are
based on the logic of here-and-there, our proof is based on anoperator that character-
izes strong equivalence in terms of classical logic, using an extended signature with two
groups of atoms, the original one corresponding to the “there” world, and a group of
newly introduced atoms referring to the “here” world. This not only shows that the re-
duction is possible, but also tells us how togeneratestrongly equivalent logic programs
based on equivalence in classical logic.

1 http://www.dbai.tuwien.ac.at/proj/dlv/ .
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The reduction idea has led us to develop a prototype implementation, which we call
F2LP,2 that computes the stable models of an arbitrary propositional theory. Similar to
NLP, the system turns a propositional theory into a disjunctivelogic program and calls
DLV .

We also apply the reduction idea to first-order formulas under the new definition
of stable model semantics, recently proposed in [8]. We showthat any first-order the-
ory under the stable model semantics is strongly equivalentto a prenex normal form
whose matrix has the form of a logic program. Thus the syntactic difference of arbitrar-
ily nested connectives and quantifiers is not essential between the language proposed
in [8] and logic programs. On the other hand, since the prenexnormal form may con-
tain existential quantifiers, it is different from a logic program, where all variables are
assumed to be universally quantified.

In the next section, we review the definition of stable modelsfor arbitrary propo-
sitional formulas as well as the definition of strong equivalence between propositional
formulas, and present how to find a logic program that is strongly equivalent to a given
formula. In Section 3, we present a simpler transformation,and in Section 4, we extend
the reduction idea to arbitrary first-order formulas and note that every first-order theory
is strongly equivalent to a prenex normal form. In Section 5,we present a prototype
implementation of computing the stable models of propositional theories.

2 Reducing propositional formulas to logic programs

We first review the definition of a stable model proposed in [8], by restricting atten-
tion to the propositional case. This definition is essentially the same as the encoding
of formulas of equilibrium logic by quantified Boolean formulas given in [9], and is
equivalent to the fixpoint definition of a stable model proposed in [2].

LetF be a propositional formula andσ a signature consisting of all atomsp1, . . . , pn

occurring inF . By SM[F ] we denote the second-order propositional sentence

F ∧ ∀u((u < p)→ ¬F ∗(u)),

wherep stands for the tuplep1, . . . , pn, u is a tuple ofn distinct propositional variables
u1, . . . , un, equationu < p stands for

(u1 → p1) ∧ · · · ∧ (un → pn) ∧ ¬((p1 → u1) ∧ · · · ∧ (pn → un))

as in the definition of circumscription, andF ∗(u) is defined recursively, as follows:

– p∗
i

= ui;
– ⊥∗ = ⊥;
– (F ⊙G)∗ = F ∗ ⊙G∗, where⊙ ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

We regard¬F as shorthand forF → ⊥. Note that¬ corresponds tonot in the logic
program syntax. For instance, the rule

p← not q

2 http://peace.eas.asu.edu/f2lp .
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is identified with the formula
¬q → p .

The operatorF 7→ F ∗(u) replaces each atom with the corresponding propositional
variable, and commutes with all propositional connectivesexcept implication. If, in
the definition of this operator, we drop the second conjunctive term in the clause for
implication, thenF ∗(u) will turn into the formulaF (u) referred to in the definition of
circumscription [10, 11]. A model ofF is stableif it satisfies SM[F ].

According to [12, Section 2.6], a (propositional) formulaF is said to be strongly
equivalent to a formulaG if any formulaF ′ that contains an occurrence ofF has the
same stable models as the formulaG′ obtained fromF ′ by replacing that occurrence
with G. This condition is more general than the original definitionfrom [4] not only
because it is applicable to arbitrary formulas, but also becauseF is allowed here to be
any subformula ofF ′, not necessarily a “subconjunction.”

Our reduction idea is based on the following proposition from [8], which generalizes
the main theorem from [13], stating that the strong equivalence between two formulas
F andG can be characterized in terms of equivalence (in classical logic) betweenF ∗

andG∗. Letσ′ be a signature consisting of distinct atoms{p′1, . . . , p
′

n} that are disjoint
from σ, and letp′ stand for the tuplep′1, . . . , p

′

n
. FormulaF ∗(p′) is obtained from

F ∗(u) by substituting the atomsp′ for propositional variablesu. ThusF ∗(p′) is a
transformation ofF in signatureσ ∪ σ′. Equationp′ ≤ p stands for

(p′1 → p1) ∧ · · · ∧ (p′n → pn)

as in the definition of circumscription.

Proposition 1 [8, Proposition 5] FormulasF andG of signatureσ are strongly equiv-
alent iff

p
′ ≤ p→ (F ∗(p′)↔ G∗(p′)) (1)

is a tautology.

As usual, a formulaF is in negation normal formif, for every subformulaG→ H

of F , formulaG is an atom, andH is⊥. An occurrence of a formulaG in a formulaF

is positive if the number of implications inF containing the occurrence ofG in the
antecedent is even, andnegativeotherwise.

Definition 1. An implicationF → G of signatureσ ∪ σ′ is called acanonical impli-
cationif F andG are formulas in negation normal form such that every occurrence of
atoms fromσ′ is positive, and every occurrence of atoms fromσ is negative.

For example,
p′ ∧ q → r

is not canonical, while
(p′ ∨ (¬q ∧ r′))→ (s′ ∧ ¬p) (2)

is canonical.
Given a formulaF of signatureσ ∪ σ′, by R(F ) we denote the formula of signa-

tureσ that is obtained fromF by dropping all occurrences of′ in F . Note thatR(F ),
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whereF is a canonical implication, can be identified with a logic program with nested
expressions [6], by identifying ‘¬’ with not, ‘∧’ with ‘ ,’, and ‘∨’ with ‘ ;’. For instance,
in logic programming notation, whenF is (2),R(F ) can be written as

s, notp ← p ; (not q, r) .

The following proposition tells us how to obtain a logic program that is strongly
equivalent to a given formula.

Proposition 2 Given a formulaF , if G is a conjunction of canonical implications that
is equivalent toF ∗, thenF andR(G) are strongly equivalent.3

The proof of Proposition 2 uses the observation that

p
′ ≤ p→ (F ∗ ↔ (R(G))∗) (3)

is a tautology. In view of Proposition 1, it follows thatF andR(G) are strongly equiv-
alent. The fact that every propositional theory is stronglyequivalent to a logic program
follows from the fact that every formulaF ∗ can be equivalently rewritten as a conjunc-
tion of canonical implications. One way to do this is by forming a conjunctive normal
form (CNF) ofF ∗(p′), and then converting each of its clauses into a canonical implica-
tion as follows. Given a clauseC of signatureσ∪σ′, byTr(C) we denote an implication
whose antecedent is the conjunction of

– all p′ where¬p′ ∈ C, and
– all ¬p wherep ∈ C,

and whose consequent is the disjunction of

– all p′ wherep′ ∈ C, and
– all ¬p where¬p ∈ C.

For instance, ifC is (p′∨¬q′∨r∨¬s), thenTr(C) is (q′∧¬r → p′∨¬s). We can takeG
in the statement of Proposition 2 to be the conjunction ofTr(C) for all clausesC in a
conjunctive normal form ofF ∗. In view of Proposition 1, it follows that every formula
is strongly equivalent to a logic program whose rules have the form

a1; . . . ; ak; notak+1; . . . ; notal ← al+1, . . . , am, notam+1, . . . , notan

(0 ≤ k ≤ l ≤ m ≤ n) where allai are atoms.

Example 1 F = (p→ q)→ r.

((p→ q)→ r)∗ = (((p′ → q′) ∧ (p→ q))→ r′) ∧ ((p→ q)→ r)

↔ (p′ ∨ p ∨ r′) ∧ (¬q′ ∨ p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ ¬q ∨ r′)

∧ (p ∨ r) ∧ (¬q ∨ r) .

3 For convenience, we will often drop “(p′)” from F
∗(p′) when there is no confusion.
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Under the assumption that(p′, q′, r′) ≤ (p, q, r), the formula can be simplified to

(p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ r′) ∧ (¬q ∨ r) .

Applying Tr to each clause yields the following formulaG:

(¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′) ∧ (¬r → ¬q). (4)

ThusR(G) is

(¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r) ∧ (¬r → ¬q) . (5)

In logic programming notation, (5) can be written as follows:

r ← notp
p ; not q ; r

r ← q

not q ← not r .

(6)

Proposition 2 tells us that logic program (6) is strongly equivalent to(p→ q)→ r.

Example 2 F = p→ ((q → r) ∨ s).

(p→ ((q → r) ∨ s))∗ = (p′ → (((q′ → r′) ∧ (q → r)) ∨ s′)) ∧ (p→ (q → r) ∨ s)

↔ (¬p′ ∨ (((¬q′ ∨ r′) ∧ (¬q ∨ r)) ∨ s′)) ∧ (¬p ∨ (¬q ∨ r) ∨ s)

↔ (¬p′ ∨ ¬q′ ∨ r′ ∨ s′) ∧ (¬p′ ∨ ¬q ∨ r ∨ s′) ∧ (¬p ∨ ¬q ∨ r ∨ s) .

Applying Tr to each clause yields the following formulaG:

(p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′) ∧ (¬r ∧ ¬s→ ¬p ∨ ¬q) . (7)

ThusR(G) is

(p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s) ∧ (¬r ∧ ¬s→ ¬p ∨ ¬q) . (8)

In logic programming notation, (8) can be written as follows:

r ; s ← p, q

not q ; s ← p, not r
notp ; not q ← not r, nots .

(9)

Proposition 2 tells us that logic program (9) is strongly equivalent to formulap→ ((q → r) ∨ s).

3 Simpler Transformation

The following observation shows how to disregard some redundancies with the transla-
tion introduced in the previous section.



6 Joohyung Lee and Ravi Palla

Proposition 3 LetF be a propositional formula of signatureσ. Under the assumption
p
′ ≤ p, if F ∗ is equivalent toG∧H whereG is a conjunction of canonical implications

andH is a formula of signatureσ that is entailed byR(G), thenF ∗ is equivalent to
(R(G))∗.

Example 1′. F = (p → q) → r as in Example 1. Note that in (4), the last implication
(¬r → ¬q) is entailed by

R((¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′)).

Therefore, by Proposition 3,F ∗ is equivalent to

((¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r))∗.

In other words, in view of Proposition 1,F is strongly equivalent to the first three rules
of (6).

Example 2′. F = p → ((q → r) ∨ s) as in Example 2. Note that in (7), the last
implication is entailed by

R((p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′)) .

Therefore in view of Proposition 3,F ∗ is equivalent to

((p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s))∗.

In other words, in view of Proposition 1,F is strongly equivalent to the first two rules
of (9).

Based on Proposition 3, we consider the following definitionwhich leads to a sim-
pler transformation than the one given in Proposition 2.

Definition 2. For any formulaF of signatureσ, F ⋄(u) is defined as follows:

– p⋄
i

= ui;
– ⊥⋄ = ⊥;
– (F ∨G)⋄ = F ∗ ∨G∗;
– (F ∧G)⋄ = F ⋄ ∧G⋄;
– (F → G)⋄ = (F ∗ → G∗).

Note thatF ⋄ is different fromF ∗ when we identifyF with a conjunctionF1 ∧ · · · ∧ Fn (n ≥ 1),
F ⋄ is

F ⋄

1 ∧ · · · ∧ F ⋄

n

where

F ⋄

i
=

{

G∗ → H∗ if Fi is G→ H,

F ∗

i
otherwise.

The following proposition tells us that, in Proposition 2,F ⋄ can be considered in
place ofF ∗.
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Proposition 4 Given a formulaF , if G is a conjunction of canonical implications that
is equivalent toF ⋄, thenF andR(G) are strongly equivalent.

Example 1′′ F = (p → q) → r as in Example 1. Under the assumption that
(p′, q′, r′) ≤ (p, q, r),

F ⋄(p′, q′, r′) = ((p′ → q′) ∧ (p→ q))→ r′

↔ (p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ r′)

↔ (¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′) .

ThusF is strongly equivalent to

(¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r) ,

which is the same as in Example 1′.

Example 2′′ F = p → ((q → r) ∨ s) as in Example 2. Under the assumption that
(p′, q′, r′, s′) ≤ (p, q, r, s),

F ⋄(p′, q′, r′, s) = p′ → (((q′ → r′) ∧ (q → r)) ∨ s′)

↔ (¬p′ ∨ ¬q′ ∨ r′ ∨ s′) ∧ (¬p′ ∨ ¬q ∨ r ∨ s′)

↔ (p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′) .

ThusF is strongly equivalent to

(p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s) ,

which is the same as in Example 2′.

Due to lack of space, we do not provide a detailed comparison between our trans-
lation method and the others. However, we note that Proposition 2 not only shows that
the reduction is possible, but also tells us how to generate strongly equivalent logic pro-
grams of preferably smaller size, based on the notion of equivalence in classical logic.
This is in contrast with the other approaches that are based on syntactic rewriting rules
under the logic of here-and-there. For instance, given a formula

((p→ q)→ r)→ r

our translation yields the following program:

q ; r ; not r ← p

not p← not q .

On the other hand, the following program is obtained according to Section 3 of [5].

not p ; r ← not q
r ← r

q ; r ; not r ← p

notp ; r ; not r ← not q .
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However, clearly, any translation according to Proposition 4 (or Proposition 2) in-
volves an exponential blowup in size in the worst case. Indeed, it is shown in [5] that
there is no polynomial translation from propositional theories to logic programs if we
do not introduce new atoms, and that there is one if we allow them.

4 Prenex Normal Form of First-Order Formulas

The translation from an arbitrary propositional theory into a logic program shows that
their syntactic difference is not essential, which allows existing answer set solvers to
compute the stable models of arbitrary propositional formulas. Can the result be ex-
tended to first-order formulas, of which the stable model semantics is presented in [8]?

We begin with a review of the stable model semantics presented in [8], which ex-
tends the definition of a stable model reviewed in Section 2 tofirst-order sentences.
Given a first-order sentenceF , by SM[F ] we denote the second-order sentence

F ∧ ∀u((u < p)→ ¬F ∗(u)),

wherep stands for the tuple of all predicate constantsp1, . . . , pn occurring inF , u is
a tuple ofn distinct predicate variablesu1, . . . , un, equationu < p is defined as in
circumscription [11], andF ∗(u) is defined recursively, as follows:

– pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);
– (t1 = t2)

∗ = (t1 = t2);
– ⊥∗ = ⊥;
– (F ⊙G)∗ = F ∗ ⊙G∗, where⊙ ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF )∗ = QxF ∗, whereQ ∈ {∀, ∃}.

A model of F is stableif it satisfies SM[F ]. For the definition of strong equivalence
extended to first-order formulas, we refer the reader to Section 4 of [8].

Proposition 1 can be extended to the case whereF andG are first-order formulas [8,
Proposition 5]. Using the proposition, one can prove that every first-order formula is
strongly equivalent to a prenex normal form. The following proposition is essentially
Theorem 6.4 of [14].

Proposition 5 Every first-order formula is strongly equivalent to a prenexnormal form.

The proposition follows from the fact that usual prenex normal form conversion
rules for first-order logic (e.g., [15, Lemma 2.29]) preserves strong equivalence. Alter-
native to the proof in [14], this fact can be proved using [8, Proposition 5]. For instance,
∀xF (x) → G is strongly equivalent to∃x(F (x) → G), wherex is not free inG.
Consider

(∀xF (x)→ G)∗ = (∀xF (x)→ G) ∧ (∀xF ∗(x)→ G∗)

⇔ ∃x(F (x)→ G) ∧ ∃x(F ∗(x)→ G∗) (10)

and
(∃x(F (x)→ G))∗ = ∃x((F (x)→ G) ∧ (F ∗(x)→ G∗)) . (11)
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Note that (10) and (11) are not (classically) equivalent in general, but they are equivalent
under the assumptionp′ ≤ p, wherep is the tuple of all predicate constants occurring
in F (x) andG, andp

′ is the tuple of new, pairwise distinct predicate constants of the
same length asp. Therefore, by [8, Proposition 5], we conclude that∀xF (x) → G is
strongly equivalent to∃x(F (x)→ G).

Also, Proposition 2 can be straightforwardly extended to quantifier-free first-order
formulas as follows. A first-order formulaF is in negation normal formif, for every
subformulaG→ H of F ,

– formulaG is an atomic formula, and
– formulaH is⊥.

For any clauseC in a CNF of a quantifier-free first order formula,Tr(C) from
Section 2 can be extended in a straightforward way. The equality can be placed either
in the consequent or the antecedent (properly negated).

Corollary 1 Any first-order formula is strongly equivalent to a prenex normal form
whose matrix is a conjunction of implicationsF → G whereF andG are formulas in
negation normal form.

The matrix of a prenex normal form indicated in Corollary 1 isin the form of a
logic program. Thus, similar to the propositional case, thesyntactic difference of ar-
bitrarily nested connectives and quantifiers is not essential between the new language
proposed in [8] and logic programs. On the other hand, since the prenex normal form
may contain existential quantifiers, it is different from a logic program, where all vari-
ables are assumed to be universally quantified. For instance, according to [8], the stable
models of formula∃x p(x) represent thatp is a singleton, as in circumscription. This
has no counterpart in logic programs, since their stable models are limited to Herbrand
interpretations. For a related discussion, see [16].

5 Implementation

Our implementation, which we callF2LP, turns an arbitrary propositional theory into a
logic program and callsDLV to compute its stable models. When the input is already in
the syntax ofDLV input language, its operation is just as whatDLV does. The system is
available at

http://peace.eas.asu.edu/f2lp .

The ASCII representations of propositional connectives used in the syntax ofF2LP

are summarized in the following chart:

Symbol ¬ ∧ ∨ → ⊥ ⊤
ASCII representation not & | -> false true

Example 1 is written in the syntax ofF2LP as follows:
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(p->q)->r.

F2LP turns this formula into the followingDLV input:

r :- not p.
p | r | q_bar :-.
r :- q.
q_bar :- not q.
:- q, q_bar.

Note that this program is slightly different from the logic program shown in Example 1′

(the first three rules of (6)). This is becauseDLV , like most other answer set solvers,
does not allow negation as failure in the head of a rule. However, it can be simulated
by introducing new atoms (Section 4 of [17]). The method replaces the occurrence of
notp in the head of a rule with a new atomp, and adds rulesp← notp and← p, p. The
stable models of the program correspond to the stable modelsof the original program
by disregarding the presence of the new atoms. In the exampleabove,q bar is a new
atom, and the last two rules are added. AfterF2LP calls DLV to compute the stable
models, it removes all occurrences of the new atoms (“bar”) from the stable models
returned byDLV .

Example 2 is written in our syntax as follows:

p -> ((q->r) | s).

This is turned into the followingDLV input byF2LP:

r | s :- p, q.
q_bar | s :- p, not r.
q_bar :- not q.
:- q, q_bar.

6 Conclusion

Our contributions in this note are as follows. First, we presented a new proof of the the-
orem on strong equivalence between propositional theoriesand logic programs. Unlike
the other approaches that are based on the logic of here-and-there, our proof relies on
familiar properties of classical logic. Due to this fact, our proof indicates how corre-
sponding logic programs can be generated using equivalent transformations in classical
logic. Second, using the same reduction idea, we showed thatarbitrary first-order for-
mulas under the stable model semantics, recently proposed in [8], can be turned into a
prenex normal form whose matrix has the form of a logic program. Third, we presented
a prototype implementation for computing the stable modelsof arbitrary propositional
formulas based on the reduction method.

For future work, we plan to investigate how the methods of obtaining minimally
equivalent theories in classical logic can be applied to finding minimally equivalent
logic programs. Recently, Cabalaret al. [18] proposed two notions of minimal logic
programs. It would be interesting to see how these approaches are related.
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A Appendix: Proof of Proposition 2

Due to lack of space, we present the proof of Proposition 2 only, which follows imme-
diately from Proposition 1 and the following proposition.

Proposition 6 Let F be a formula of signatureσ and G a conjunction of canonical
implications that is equivalent toF ∗. Then

p
′ ≤ p→ (F ∗ ↔ (R(G))∗)

is a tautology.

The proof of Proposition 6 uses the following lemmas, most ofwhich can be proven
by induction.

Lemma 1. For any formulaF of signatureσ, the formula

p
′ ≤ p→ (F ∗(p′)→ F )

is logically valid.

Lemma 2. Every formulaF is equivalent toR(F ∗).

Lemma 3. For any two formulasF andG of signatureσ ∪ σ′,

(F ↔ G)→ (R(F )↔ R(G))

is a tautology.

Proof. Assume thatF ↔ G holds for all interpretations ofσ ∪ σ′, which includes the
interpretationsI such thatpI = (p′)I for all p ∈ p. It is clear thatF I = R(F )I and
GI = R(G)I , from whichR(F )I = R(G)I follows. SinceI range over all interpreta-
tions ofσ, it follows thatR(F )↔ R(G).

Lemma 4. For any canonical implicationF of signatureσ ∪ σ′,

(p′ ≤ p)→ ((F ∧R(F ))↔ (R(F ))∗)

is a tautology.

Proof of Proposition 6. Assumep′ ≤ p andF ∗ ↔ G. By Lemma 1,F ∗ → F

holds, so thatF ∗ is equivalent toG ∧ F . SinceF is equivalent toR(F ∗) according to
Lemma 2,G∧F is equivalent toG∧R(F ∗), which, in turn, is equivalent toG∧R(G)
according to Lemma 3. By Lemma 4, it follows thatG∧R(G) is equivalent to(R(G))∗.
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Abstract. Logic programming under the answer-set semantics nowadaysdeals
with numerous different notions of equivalence between programs. This is due
to the fact that equivalence for substitution (known as strong equivalence), which
holds between programsP andQ iff P can faithfully be replaced byQ within
any contextR, is a different concept than ordinary equivalence betweenP and
Q, which holds ifP andQ have the same answer sets. Notions inbetween strong
and ordinary equivalence have therefore been obtained by either restricting the
syntactic structure ofR or bounding the set of atoms allowed to occur inR (rel-
ativized equivalence). For the former approach, however, it turned out that any
“reasonable” syntactic restriction toR either coincides with strong equivalence
or collapses to uniform equivalence whereR ranges over arbitrary sets of facts.
In this paper, we propose a parameterization for equivalence notions which takes
care of both such kinds of restrictions simultaneously by bounding, on the one
hand, the atoms which are allowed to occur in the rule heads ofR and, on the
other hand, the atoms which are allowed to occur in the rule bodies ofR. We
introduce a semantical characterization including known ones as SE-models or
UE-models as special cases. Moreover, we provide complexity bounds for the
problem in question.

1 Introduction

Starting with the seminal paper on strong equivalence between logic programs by Lif-
schitz, Pearce, and Valverde [7], a new research direction in logic programming under
the answer-set semantics has been established. This is due to fact that strong equiva-
lence between programsP andQ, which holds iffP can faithfully be replaced byQ
in any program, is a different concept than deciding whetherP andQ have the same
answer sets, i.e., (ordinary) equivalence betweenP andQ holds. Formally,P andQ are
strongly equivalent iff, for each further so-called context programR, P ∪R andQ∪R
possess the same answer sets. That difference between strong and ordinary equivalence
motivated investigations of equivalence notions inbetween (see, e.g., [4]). Basically this
was done in two ways, viz. to bound the actually allowed context programsR by (i) re-
stricting their syntax; or (ii) restricting their language. For Case (i), it turned out that any
“reasonable” (i.e., where the restriction is defined rule-wise, for instance only allowing

⋆ Supported by the Austrian Science Fund (FWF) under project P15068-INF.
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for Horn rules) attempt either coincides with strong equivalence itself, or reduces to
uniform equivalence [2], which is to test whether, for each set F of facts,P ∪ F and
Q ∪ F possess the same answer sets. Case (ii), where the atoms allowed to occur in
R are given by an alphabetA yields in general different concepts for differentA and
thus is known as strong equivalence relative toA [12]. Finally a combination of both
approaches leads to the concept of uniform equivalence relative toA [12].1

In this paper, we propose a fine-grained framework to define notions of equivalence
where the aforementioned restrictions are simultaneouslytaken into account. This is
accomplished by restricting, on the one hand, the atoms which are allowed to occur
in the rule heads of the context programs and, on the other hand, the atoms which are
allowed to occur in the rule bodies of the context programs. More formally, for given
programsP , Q, and given setsH, B of atoms, we want to decide whether the answer
sets ofP ∪R andQ∪R coincide for each programR, where each rule inR has its head
atoms fromH and its body atoms fromB. We will show that this new notion includes all
of the previously mentioned; for instance, settingB = ∅, i.e., disallowing any atom to
occur in bodies, will be shown to coincide with (relativized) uniform equivalence; while
the parameterizationH = B amounts to (relativized) strong equivalence by definition.

The main contribution of the paper is to provide a general semantical character-
ization for the new equivalence notion. Moreover, we show that our characterization
includes as special cases known concepts as SE-models [11] or UE-models [2]. Finally,
we address the computational complexity of the introduced equivalence problems and
propose a prototypical implementation.

2 Background

Throughout the paper we assume an arbitrary finite but fixed universeU of atoms.
Subsets ofU are either called interpretations or alphabets: We use the latter term to
restrict the syntax of programs, while the former is used when talking about semantics.
For an interpretationY and an alphabetA, we writeY |A instead ofY ∩ A.

A propositional disjunctive logic program (or simply, a program) is a finite set of
rules of form

a1 ∨ · · · ∨ al ← al+1, . . . , am,not am+1, . . . ,not an, (1)

n > 0, n≥m≥ l, and where allai are propositional atoms inU andnot denotes
default negation; forn = l = 1, we usually identify the rule (1) with the atoma1, and
call it a fact. A rule of the form (1) is called aconstraintif l = 0, positiveif m = n and
unary if it is either a fact or of the forma ← b. A program is positive (resp., unary) iff
all its rules are positive (resp., unary). If all atoms occurring in a programP are from
a given alphabetA ⊆ U of atoms, we say thatP is a programover (alphabet)A. The
class of all logic programs over universeU is denoted byCU .

For a ruler of form (1), we identify its head byH(r) = {a1, . . . , al} and its body
via B+(r) = {al+1, . . . , am} andB−(r) = {am+1, . . . , an}. We shall write rules of

1 A further approach is to additionally restrict the alphabetover which the answer sets ofP ∪R

andQ ∪ R compared. This kind ofprojectionwas investigated in [5, 8, 10], but we do not
consider it in this work.
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form (1) also asH(r)← B+(r),not B−(r). Moreover, we also useB(r) = B+(r) ∪
B−(r). Finally, for a programP , α(P ) =

⋃

r∈P α(r), for α ∈ {H, B, B+, B−}.
The relationY |= P between an interpretationY and a programP is defined as

usual, i.e.,Y |= P holds if for eachr ∈ P , Y |= r. The latter holds iffH(r) ∩ Y 6= ∅,
whenever jointlyB+(r) ⊆ Y and B−(r) ∩ Y = ∅ hold. If Y |= P holds,Y is
called a model ofP . Following Gelfond and Lifschitz [6], an interpretationY , is an
answer setof a programP iff it is a minimal (wrt set inclusion) model of thereduct
PY = {H(r)← B+(r) | Y ∩B−(r) = ∅}. The set of all answer sets of a programP
is denoted byAS(P ).

Finally, we briefly review some prominent notions of equivalence [7, 2, 12, 4], which
have been studied under the answer-set semantics: For a given alphabetA ⊆ U , we call
programsP, Q ∈ CU , strongly equivalent relative toA, iff, for any programR overA,
it holds thatAS(P ∪ R) = AS(Q ∪ R). P, Q areuniformly equivalent relative toA,
iff, for any setF ⊆ A of facts,AS(P ∪ F ) = AS(Q ∪ F ). If, A = U , strong (resp.,
uniform) equivalence relative toA collapses to (unrelativized) strong (resp., uniform)
equivalence [7, 2]; ifA = ∅, we obtainordinary equivalence, i.e.,AS(P ) = AS(Q).

In case of strong equivalence (also in the relativized case), it was shown that the
syntactic class ofcounterexamples, i.e., programsR, such thatAS(P ∪R) 6= AS(Q∪
R), can always be restricted to the class of unary programs. Hence, the next result
comes by mere surprise, but provides insight with respect tothe alphabets in the rules’
heads and bodies.

Lemma 1. Let P , Q, R ∈ CU be programs, andY be an interpretation, such that
Y ∈ AS(P ∪R) andY /∈ AS(Q∪R). Then there exists a programR′, such thatR′ is
positive,H(R′) ⊆ H(R), B(R′) ⊆ B(R), Y ∈ AS(P ∪R′), andY /∈ AS(Q ∪R′).

The result can be checked by usingR′ = RY .
As we will see later, Lemma 1 can even be strengthened to unaryprograms. How-

ever, already the present result shows that whenever a counterexampleR for an equiva-
lence problem exists, then we can find a simpler (positive) one, which is given over the
same alphabets in the heads, and respectively, bodies.

3 The General Framework

Lemma 1 suggests to study equivalence problems along a parameterization via two
alphabets. To this end, we first introduce classes of programs as follows.

Definition 1. For any alphabetsH,B ⊆ U , the classC〈H,B〉 of programs is defined as
{P ∈ CU | H(P ) ⊆ H, B(P ) ⊆ B}.

With this concept of program classes at hand, we now define equivalence notions
which are more fine-grained than the ones previously introduced.

Definition 2. LetH,B ⊆ U be alphabets, andP, Q ∈ CU be programs. The〈H,B〉-
equivalence problembetweenP andQ, in symbolsP ≡〈H,B〉 Q, is to decide whether,
for eachR ∈ C〈H,B〉,AS(P ∪R) = AS(Q ∪R). If P ≡〈H,B〉 Q holds, we say thatP
andQ are 〈H,B〉-equivalent.
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The classC〈H,B〉 is also called thecontextof an〈H,B〉-equivalence problem, and a
programR ∈ C〈H,B〉, whereAS(P ∪ R) 6= AS(Q ∪ R) holds, is called acounterex-
ampleto the〈H,B〉-equivalence problem betweenP andQ.

Example 1.ConsiderP = {a ∨ b←; a← b} andQ = {a← not b; b← not a; a←
b}. It is known that these programs are not strongly equivalent, since adding anyR
which closes the cycle betweena andb yieldsAS(P ∪ R) 6= AS(Q ∪ R). In par-
ticular, for R = {b ← a}, we getAS(P ∪ R) = {{a, b}}, whileAS(Q ∪ R) = ∅.
However,P andQ are uniformly equivalent. In our setting, we are able to “approx-
imate” equivalence notions which hold betweenP andQ. It can be shown that, for
instance,P ≡〈{a,b},{b}〉 Q or P ≡〈{a},{a,b}〉 Q holds (basically sinceb ← a does not
occur in any program inC〈{a,b},{b}〉, orC〈{a},{a,b}〉). ButP ≡〈{b},{a,b}〉 Q and likewise
P ≡〈{a,b},{a}〉 Q do not hold, since{b ← a} is contained in the contextC〈{b},{a,b}〉,
resp.,C〈{a,b},{a}〉. ⋄

Observe that the concept of〈H,B〉-equivalence captures other equivalence notions
as follows:〈A,A〉-equivalence coincides with strong equivalence relative to A; and,
in particular,〈U ,U〉-equivalence amounts to strong equivalence. Later we will see that
〈A, ∅〉-equivalence coincides with uniform equivalence relativetoA; and, in particular,
〈U , ∅〉-equivalence amounts to uniform equivalence. Note that therelation to uniform
equivalence is not immediate since〈A, ∅〉-equivalence deals with sets ofdisjunctive
facts, i.e., rules of the forma1 ∨ · · · ∨ al ←, rather than sets of (simple) factsa←.

The following result shows some general properties for〈H,B〉-equivalence.

Proposition 1. LetH,B ⊆ U andP, Q ∈ CU , such thatP ≡〈H,B〉 Q holds. Then, also
(P ∪R) ≡〈H′,B′〉 (Q ∪R) holds, for eachR ∈ C〈H,B〉,H′ ⊆ H, andB′ ⊆ B.

A central aspect in equivalence checking is the quest for semantical characteriza-
tions assigned to asingleprogram. The following formal approach captures this aim.

Definition 3. A semantical characterizationfor an 〈H,B〉-equivalence problem is a
functionσ〈H,B〉 : CU → 22

U×2
U

, such that, for anyP, Q ∈ CU , P ≡〈H,B〉 Q holds
iff σ〈H,B〉(P ) = σ〈H,B〉(Q).

We will review known characterizations for special cases (as, for instance, SE-
models [11] and UE-models [2]) later. Finally, we also introduce containment problems.

Definition 4. LetH,B ⊆ U be alphabets, andP, Q ∈ CU be programs. The〈H,B〉-
containment problemfor P in Q, in symbolsP ⊆〈H,B〉Q, is to decide whether, for each
R ∈ C〈H,B〉, AS(P ∪ R) ⊆ AS(Q ∪ R). A counterexample toP ⊆〈H,B〉 Q, is any
programR ∈ C〈H,B〉, such thatAS(P ∪R) 6⊆ AS(Q ∪R).

Proposition 2. P ≡〈H,B〉 Q holds iffP ⊆〈H,B〉Q andQ⊆〈H,B〉P jointly hold.

4 Characterizations for 〈H, B〉-Equivalence

Towards the semantical characterization for〈H,B〉-equivalence problems, we first in-
troduce the notion of a witness, which is assigned to〈H,B〉-containment problems



A Common View on Strong, Uniform, and Other Notions of Equivalence 17

taking both compared programs into account. Afterwards, wewill derive the desired
semantical characterization of〈H,B〉-models which are assigned to single programs
and satisfy the conditions in Definition 3.

To start with, we introduce the following partial order on interpretations and state a
technical lemma.

Definition 5. Given alphabetsH,B ⊆ U , we define the relation�B
H⊆ U × U between

interpretations as follows:V �B
H Z iff V |H ⊆ Z|H andZ|B ⊆ V |B.

Observe that ifV �B
H Z holds, then eitherV |H∪B = Z|H∪B, or one ofV |H ⊂

Z|H, Z|B ⊂ V |B holds. We writeV ≺B
H Z, in caseV �B

H Z andV |H∪B 6= Z|H∪B.

Lemma 2. Let H,B ⊆ U be alphabets,P a positive program withH(P ) ⊆ H,
B(P ) ⊆ B, andZ, V ⊆ U interpretations. Then,V |= P andV �B

H Z implyZ |= P .

Proof. Towards a contradiction, supposeV |= P , V |H ⊆ Z|H, Z|B ⊆ V |B, as well
asZ 6|= P hold. If Z 6|= P , then there exists a ruler ∈ P , such thatB+(r) ⊆ Z and
Z ∩ H(r) = ∅. SinceH(r) ⊆ H, we get fromV |H ⊆ Z|H, thatV ∩ H(r) = ∅.
Moreover, sinceB+(r) ⊆ B, we haveB+(r) ⊆ Z|B ⊆ V |B, and thusB+(r) ⊆ V .
HenceV 6|= r which yieldsV 6|= P . Contradiction. ⊓⊔

4.1 Witnesses for Containment Problems

Definition 6. A witnessfor (violating) a containment problemP ⊆〈H,B〉 Q is a pair of
interpretations(X, Y ) with X ⊆ Y ⊆ U , such that

(i) Y |= P and for eachY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H;
(ii) if Y |= Q thenX⊂Y , X |= QY , and for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY .

The aim of a witness(X, Y ) for (violating) P ⊆〈H,B〉 Q is, roughly speaking, as
follows: SetX is used to characterize a counterexampleR, such that setY behaves as a
witnessing answer set, i.e.,Y ∈ AS(P ∪R) andY /∈ AS(Q∪R). Property (i) ensures
that Y can become such an answer set of an extendedP . To this end, it is not only
necessary thatY |= P . It also has to be guaranteed that noY ′ ⊂ Y , with Y ′|H = Y |H
satisfiesY ′ |= PY , otherwiseY can never become an answer ofP ∪R, no matter which
R ∈ C〈H,B〉 is added toP . Property (ii) ensures that the programR is obtained fromX
in such a way, thatY does not become an answer set ofQ ∪ R, butY still can become
an answer set ofP ∪ R. We can focus on a positive programR (cf. Lemma 1), andR
can be constructed in such a way, that it rules out all possible modelsX ′ ⊂ Y of PY ,
as long asX 6�B

H X ′ holds. The latter is due to the fact that each positiveR ∈ C〈H,B〉

suitably applies here to Lemma 2.

Example 2.We already have mentioned thatP = {a ∨ b ←; a ← b} andQ = {a ←
not b; b← not a; a← b} are not〈H,B〉-equivalent forH = {b} andB = {a, b}. We
show that there exists a witness forP ⊆〈H,B〉 Q. First, let us compute the programs’
models (over{a, b}) as well as the models of their reducts. Observe thatP and Q
have the same modelsY1 = {a, b} andY2 = {a}. For the positive programP we
are done, since all reducts coincide withP , and thus possess the same models. ForQ,
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however, observe thatQY1 = {a ← b} has models∅, {a}, and{a, b}, while QY2 =
{a; a ← b} has models{a} and{a, b}. We show that forX = ∅, (X, Y1) is a witness
for P ⊆〈H,B〉 Q. Clearly, Condition (i) from Definition 6 holds, sinceY1 |= P and
Y2|H ⊂ Y1|H. Concerning Condition (ii), we haveY1 |= Q, X ⊂ Y1, andX |= QY1 .
The onlyX ′ (over {a, b}) such thatX �B

H X ′ holds isX itself, sinceB = {a, b}
and thusX ′ ⊆ X has to be satisfied. It thus remains to checkX 6|= P Y1 , which is
the case. Hence,(∅, {a, b}) is a witness forP ⊆〈{b},{a,b}〉 Q. By similar arguments (in
particular, since also{b} 6|= P Y1), (∅, {a, b}) is a witness also forP ⊆〈{a,b},{a}〉 Q. ⋄

We now formally proof that the existence of witnesses for a containment problem
P ⊆〈H,B〉 Q in fact shows thatP ⊆〈H,B〉 Q does not hold. As a by-product we obtain
that there are always counterexamples toP ⊆〈H,B〉Q of a simple syntactic form.

Lemma 3. The following propositions are equivalent for anyP, Q ∈ CU ,H,B ⊆ U :

(1) P ⊆〈H,B〉Q does not hold;
(2) there exists a unary programR ∈ C〈H,B〉, such thatAS(P ∪R) 6⊆ AS(Q ∪R);
(3) there exists a witness forP ⊆〈H,B〉Q.

Proof. We show that (1) implies (3) and (3) implies (2). (2) implies (1) obviously holds
by definition of〈H,B〉-containment problems.

(1) implies (3): If P ⊆〈H,B〉 Q does not hold, there exists a programR, and an
interpretationY , such thatY ∈ AS(P ∪ R) andY /∈ AS(Q ∪ R). By Lemma 1, we
can wlog assume thatR is positive. Moreover, we knowH(R) ⊆ H andB(R) ⊆ B.
Starting fromY ∈ AS(P ∪R), we first show that Property (i) from Definition 6 holds.
We haveY |= P ∪ R, and thus,Y |= P as well asY |= R holds. It remains to
show that for eachY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H. Towards a contradiction,
now suppose there exists anY ′ ⊂ Y such thatY ′ |= PY andY ′|H 6⊂ Y |H. Since
Y ′ ⊂ Y , we haveY ′|H = Y |H, and thus,Y |H ⊆ Y ′|H. Moreover,Y ′|B ⊆ Y |B
holds, and we getY �B

H Y ′. By Y |= R and Lemma 2 this yieldsY ′ |= R. But then
Y ′ |= (PY ∪R) = (P ∪R)Y , a contradiction toY ∈ AS(P ∪R).

It remains to establish Property (ii) in Definition 6. FromY /∈ AS(Q ∪ R), we
either getY 6|= Q∪R or existence of anX such thatX |= (Q∪R)Y = (QY ∪R). We
already know thatY |= R. Hence, in the former case, i.e.,Y 6|= Q∪R, we getY 6|= Q.
Then, for anyX ⊆ Y , (X, Y ) is a witness forP ⊆〈H,B〉 Q, and we are done. For the
remaining case, whereX |= QY andX |= R, we suppose towards a contradiction,
that there exists anX ′ ⊂ Y , such thatX ′ |= PY andX �B

H X ′ hold. The latter
together withX |= R yieldsX ′ |= R, following Lemma 2. Together withX ′ |= PY ,
we thus getX ′ |= (PY ∪ R) = (P ∪ R)Y . SinceX ′ ⊂ Y this is in contradiction to
Y ∈ AS(P ∪R). Thus(X, Y ) is a witness for forP ⊆〈H,B〉Q.

(3) implies (2): Let(X, Y ) be a witness forP ⊆〈H,B〉Q. We use the unary program

R = X |H ∪ {a← b | a ∈ (Y \X)|H, b ∈ (Y \X)|B}

and showY ∈ AS(P ∪R)\AS(Q∪R). We first showY ∈ AS(P ∪R). Since(X, Y )
is a witness forP ⊆〈H,B〉Q, we knowY |= P . Y |= R is easily checked and thusY |=
P ∪R. It remains to show that noZ ⊂ Y satisfiesZ |= (P ∪R)Y = PY ∪R. Towards
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a contradiction suppose such aZ exists. Hence,Z |= P Y andZ |= R. By Z |= R,
X |H ⊆ Z|H has to hold. Since(X, Y ) is a witness forP ⊆〈H,B〉Q, Z|H ⊂ Y |H holds,
otherwise Property (i) in Definition 6 is violated. Hence,X |H ⊆ Z|H ⊂ Y |H holds. We
haveX ⊂ Y and, moreover, getZ|B 6⊆ X |B from Property (ii) in Definition 6, since
Z |= PY andX |H ⊆ Z|H already hold. Now,Z|B ⊆ Y |B by assumption, hence there
exists an atomb ∈ (Y \X)|B contained inZ. We already know thatX |H ⊆ Z|H ⊂ Y |H
has to hold. Hence, there exists at least onea ∈ (Y \ X)|H, not contained inZ. But
then, we derive thatZ 6|= {a← b}. Sincea← b ∈ R, this is a contradiction toZ |= R.

It remains to showY /∈ AS(Q ∪R). If Y 6|= Q, we are done. So letY |= Q. Since
(X, Y ) is a witness forP ⊆〈H,B〉 Q, we getX |= QY andX ⊂ Y . It is easy to see that
X |= R holds. ThusX |= (QY ∪R) = (Q ∪R)Y ; Y /∈ AS(Q ∪R) follows. ⊓⊔

As an immediate consequence of Lemma 3 and Proposition 2, we get that〈H,B〉-
equivalence problems which do not hold always possess simplecounterexamples. As a
special case we obtain the already mentioned fact that〈H, ∅〉-equivalence amounts to
uniform equivalence relative toH.

Corollary 1. For anyH,B ∈ U and programsP, Q ∈ CU , P ≡〈H,B〉 Q does not hold
iff there exists a unary programR ∈ C〈H,B〉, such thatAS(P ∪ R) 6= AS(Q ∪ R); if
B = ∅, thenP ≡〈H,B〉 Q does not hold iff there exists a setF ⊆ H of facts, such that
AS(P ∪ F ) 6= AS(Q ∪ F ).

4.2 Introducing 〈H, B〉-models

Next, we present the desired semantical characterization for 〈H,B〉-equivalence, which
we call〈H,B〉-models. First, we introduce two further properties.

Definition 7. GivenH ⊆ U , an interpretationY is anH-total modelfor P iff Y |= P
and for allY ′ ⊂ Y , Y ′ |= PY impliesY ′|H ⊂ Y |H.

Definition 8. GivenH,B ⊆ U , a pair (X, Y ) of interpretations is called�B
H-maximal

for P iff X |= P Y and, for eachX ′ with X ≺B
H X ′ ⊂ Y , X ′ 6|= PY .

Observe thatY being anH-total model forP matches Property (i) from Definition 6
and follows the same intuition. Being�B

H-maximal refers to being maximal (wrt subset
inclusion) in the atoms fromH and simultaneously minimal in the atoms fromB.

Definition 9. GivenH,B ⊆ U , and interpretationsX ⊆ Y ⊆ U , a pair (X, Y ) is an
〈H,B〉-modelof a programP ∈ CU iff Y is anH-total model forP and, if X ⊂ Y ,
there exists anX ′ ⊂ Y with X ′|H∪B = X , such that(X ′, Y ) is �B

H maximal forP .
The set of all〈H,B〉-models of a programP is denoted byσ〈H,B〉(P ).

Moreover, we call a pair(X, Y ) total if X = Y , otherwise it is callednon-total. Ob-
serve that each non-total〈H,B〉-model(X, Y ) satisfiesX ⊆ Y |H∪B andX |H ⊂ Y |H.

Example 3.In Example 1, we already mentioned thatP = {a∨b←; a← b} andQ =
{a ← not b; b ← not a; a ← b} are〈{a, b}, {b}〉-equivalent. Hence, fixH = {a, b},
B = {b}, and let us compute the〈H,B〉-models ofP , and resp.,Q. In Example 2 we
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already have obtained the models of these programs as well astheir reducts. There,
we have seen thatY1 = {a, b} andY2 = {a} are the models of bothP andQ. Since
H = {a, b}, both areH-total models forP andQ. So,(Y1, Y1) and(Y2, Y2) are the total
〈H,B〉-models of both programs. It remains to check whether the non-total 〈H,B〉-
models ofP andQ coincide. First observe that(Y2, Y1) is 〈H,B〉-model of bothP and
Q, as well. The interesting candidate is(∅, Y1) since∅ is model ofQY1 but not ofPY1 .
Hence,(∅, Y1) cannot be〈H,B〉-model ofP . But (∅, Y1) is also not〈H,B〉-model of
Q, since there exists an interpretationX ′ satisfying∅ ≺B

H X ′ ⊂ Y , which is model of
QY1 , viz. X ′ = {a}. In fact,∅|H ⊂ X ′|H and∅|B = X ′|B hold.

ForH = {a} andB = {a, b}, one can show that(Y2, Y2) is the only〈H,B〉-model
(over{a, b}) of P as well as ofQ, sinceY1 is noH-total model in this setting. ⋄

Before stating our main theorem, we require one further lemma.

Lemma 4. Let P, Q ∈ CU , H,B ⊆ U , andY be an interpretation. Then,(Y, Y ) ∈
σ〈H,B〉(P ) \ σ〈H,B〉(Q) iff there is a witness(X, Y ) to P ⊆〈H,B〉Q with X |H = Y |H.

Proof. For the only-if direction, we directly obtain from(Y, Y ) ∈ σ〈H,B〉(P ), that
Property (i) in Definition 6 holds. To show the remaining Property (ii), observe that
from (Y, Y ) /∈ σ〈H,B〉(Q), we either haveY 6|= Q or existence of someY ′ ⊂ Y , such
thatY ′ |= QY andY ′|H = Y |H. In the former case, we are already done, and get that
any(X, Y ) with X ⊆ Y is a witness forP ⊆〈H,B〉 Q, in particular forX |H = Y |H.
It remains to show that, in caseY |= Q, and for someY ′ ⊂ Y with Y ′|H = Y |H,
Y ′ |= QY , eachX ′ with Y ′ �B

H X ′ ⊂ Y satisfiesX ′ 6|= PY . By definition, this would
make(Y ′, Y ) a witness forP ⊆〈H,B〉 Q. Towards a contradiction, suppose such anX ′

exists. But then, fromY ′ �B
H X ′ ⊂ Y andY ′|H = Y |H, we getY ′|H = X ′|H = Y |H.

Thus,Y cannot be anH-total model ofP ; a contradiction to(Y, Y ) ∈ σ〈H,B〉(P ).
For the if-direction, let(X, Y ) be a witness forP ⊆〈H,B〉 Q. Property (i) in Def-

inition 6 yields(Y, Y ) ∈ σ〈H,B〉(P ). It remains to show(Y, Y ) /∈ σ〈H,B〉(Q). Now,
(X, Y ) being a witness implies that eitherY 6|= Q or X |= QY , whereX |H = Y |H
andX ⊂ Y hold. Both cases prevent(Y, Y ) from being〈H,B〉-model ofQ. ⊓⊔

Theorem 1. For any programsP, Q ∈ CU and alphabetsH,B ⊆ U , P ≡〈H,B〉 Q
holds iffσ〈H,B〉(P ) = σ〈H,B〉(Q).

Proof. If-direction: Suppose that eitherP ⊆〈H,B〉 Q or Q ⊆〈H,B〉 P does not hold. Let
us wlog assumeP ⊆〈H,B〉 Q does not hold (the other case is symmetric). By Lemma 3,
then a witness(X, Y ) to P ⊆〈H,B〉 Q exists. By Property (i) in Definition 6, we im-
mediately get(Y, Y ) ∈ σ〈H,B〉(P ). In case(Y, Y ) /∈ σ〈H,B〉(Q) we are already done.
So suppose(Y, Y ) ∈ σ〈H,B〉(Q). Hence, we can assumeY |= Q, and by Lemma 4,
X |H 6= Y |H. Since(X, Y ) is a witness forP ⊆〈H,B〉 Q, we get thatX |= QY holds,
and for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY . Consider now an arbitrary pair
(Z, Y ) of interpretations withZ ⊂ Y which is�B

H-maximal forQ. ThenX �B
H Z

has to hold and since(Y, Y ) ∈ σ〈H,B〉(Q), Y is anH-total model ofQ, and we obtain
(Z|H∪B, Y ) ∈ σ〈H,B〉(Q). On that other hand,(Z|H∪B, Y ) /∈ σ〈H,B〉(P ) holds. This
is a consequence of the observation that for eachX ′ with X �B

H X ′ ⊂ Y , X ′ 6|= PY ,
(since(X, Y ) is a witness forP ⊆〈H,B〉 Q), and by the fact thatX �B

H Z.
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Only-if direction: Wlog assume(X, Y ) ∈ σ〈H,B〉(P ) \ σ〈H,B〉(Q); again, the other
case is symmetric. From(X, Y ) ∈ σ〈H,B〉(P ), (Y, Y ) ∈ σ〈H,B〉(P ) follows by Defini-
tion 9. Hence, if(Y, Y ) /∈ σ〈H,B〉(Q), we are done, since we know from Lemma 4 that
then, there exists a witness forP ⊆〈H,B〉 Q and we get by Lemma 3, thatP ⊆〈H,B〉 Q
does not hold. Consequently,P ≡〈H,B〉 Q cannot hold as well. Thus, letX ⊂ Y , and
(Y, Y ) ∈ σ〈H,B〉(Q). We distinguish between two cases: First suppose there exists an
X ′ with X �B

H X ′ ⊂ Y , such that(X ′, Y ) ∈ σ〈H,B〉(Q). Since(X, Y ) /∈ σ〈H,B〉(Q),
by definition of〈H,B〉-models,X ≺B

H X ′ has to hold, and there exists aZ ⊂ Y with
Z|H∪B = X ′, such thatZ |= QY . We show that(Z, Y ) is a witness forP ⊆〈H,B〉 Q.
Since(Y, Y ) ∈ σ〈H,B〉(P ), Property (i) in Definition 6 holds. We knowZ |= QY , and
since(X, Y ) ∈ σ〈H,B〉(P ), we get by definition of〈H,B〉-models, that, for eachX ′′

with X ≺B
H X ′′ ⊂ Y , X ′′ 6|= PY . Now sinceX ≺B

H Z, Property (ii) in Definition 6
holds forZ (instead ofX) as well. This shows that(Z, Y ) is a witness forP ⊆〈H,B〉 Q.
So suppose, for eachX ′ with X �B

H X ′ ⊂ Y , (X ′, Y ) /∈ σ〈H,B〉(Q) holds. We
have(X, Y ) ∈ σ〈H,B〉(P ), thus there exists aZ ⊂ Y , with Z|H∪B = X , such that
Z |= PY . We show that(Z, Y ) is a witness for the reverse problem,Q ⊆〈H,B〉 P .
From (Y, Y ) ∈ σ〈H,B〉(Q), we get that Property (i) in Definition 6 is satisfied for
Q andY . Moreover, we haveZ |= P Y . It remains to show that, for eachX ′′ with
X �B

H X ′′ ⊂ Y , X ′′ 6|= QY . This holds by assumption, i.e.,(X ′, Y ) /∈ σ〈H,B〉(Q), for
eachX ′ with X �B

H X ′ ⊂ Y . Hence, both cases yield a witness, either forP ⊆〈H,B〉 Q
or Q ⊆〈H,B〉 P . By Lemma 3 and Proposition 2,P ≡〈H,B〉 Q does not hold. ⊓⊔

5 Special Cases

In this section, we analyze how〈H, B〉-models behave for special instantiations ofH
andB. We first consider the case where eitherH = U or B = U . We call the former
scenariobody-relativizedand the latterhead-relativized. Then, we sketch more general
settings where the only restriction is that eitherH ⊆ B orB ⊆ H holds.

5.1 Body-Relativized and Head-Relativized Equivalence

First, we consider〈U ,B〉-equivalence problems, whereU is fixed by the universe, but
B can be arbitrarily chosen. Note that〈U ,B〉-equivalence ranges from strong (setting
B = U) to uniform equivalence (settingB = ∅ and cf. Corollary 1) and thus provides
a common view on these two important problems, as well as on problems “inbetween”
them. Second, head-relativized equivalence problems,P ≡〈H,U〉 Q, have as special
cases once more strong equivalence (now by settingH = U) but also the case where
H = ∅ is of interest, since it amounts to check whetherP andQ possess the same
answer sets under any addition of constraints. It is quite obvious that this holds iffP
andQ are ordinarily equivalent, since constraints can only “rule out” answer sets. That
observation is also reflected in Corollary 1, since the only unary program inC〈∅,U〉 is
the empty program.

The following result simplifies the definition of�B
H within these settings.

Proposition 3. For interpretationsV, Z ⊆ U and an alphabetA ⊆ U , it holds that
(i) V �A

U Z iff V ⊆ Z andV |A = Z|A; and (ii) V �U
A Z iff Z ⊆ V andV |A = Z|A.
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Thus, maximizing wrt�B
H becomes in case ofH = U a form of⊆-maximization;

and in case ofB = U a form of⊆-minimization. Obviously, both neutralize themselves
for B = H = U , i.e., in the strong equivalence setting, whereV �U

U Z iff V = Z.
For body-relativized equivalence, our characterization now simplifies as follows.

Corollary 2. A pair (X, Y ) of interpretations is an〈U ,B〉-model ofP ∈ CU iff X ⊆ Y ,
Y |= P , X |= P Y , and for allX ′ with X ⊂ X ′ ⊂ Y andX ′|B = X |B, X ′ 6|= PY .

Observe that for the notions inbetween strong and uniform equivalence the max-
imality test, which tests if eachX ′ with X ⊂ X ′ ⊂ Y and X ′|B = X |B yields
X ′ 6|= PY , gets more localized the more atoms are contained inB. In particular, for
B = U it disappears and we end up with a very simple condition for〈U ,U〉-models
which exactly matches the definition of SE-models by Turner [11]: a pair(X, Y ) of
interpretations is an SE-model of a programP iff X ⊆ Y , Y |= P , andX |= P Y .

ForB = ∅, on the other hand, we observe thatX ′|B = X |B always holds forB = ∅.
Thus, a pair(X, Y ) is a〈U , ∅〉-model of a programP , if X ⊆ Y , Y |= P , X |= P Y ,
and for allX ′ with X ⊂ X ′ ⊂ Y , X ′ 6|= PY . These conditions are now exactly the
ones given for UE-models following [2]. Hence, Corollary 2 provides a common view
on the characterizations of uniform and strong equivalence.

For head-relativized equivalence notions, simplifications are as follows.

Corollary 3. A pair (X, Y ) of interpretations is an〈H,U〉-model ofP ∈ CU iff X ⊆
Y , Y is anH-total model forP , X |= P Y , and for eachX ′ ⊂ X with X ′|H = X |H ,
X ′ 6|= PY .

In the case ofH = U , 〈H,U〉-models again reduce to SE-models. The other special
case isH = ∅. Recall that〈∅,U〉-equivalence amounts to ordinary equivalence.〈∅,U〉-
models thus characterize answer sets as follows: First,Y is an∅-total model forP , iff
no X ⊂ Y satisfiesX |= P Y . Moreover, this requires that all〈∅,U〉-models are total.
So, the condition in Corollary 3 forX ⊂ Y is immaterial and we have a one-to-one
correspondence between〈∅,U〉-models and answer sets of a program.

5.2 B ⊆ H - and H ⊆ B - Equivalence

Due to lack of space, we just highlight a few results here, in order to establish a con-
nection between〈H,B〉-models and relativized SE- and UE-models, as defined in [12].

Proposition 4. For interpretationsV, Z ⊆ U and alphabetsH,B ⊆ U with B ⊆ H
(resp.,H ⊆ B), V �B

H Z iff V |H ⊆ Z|H andV |B = Z|B (resp., iffZ|B ⊆ V |B and
V |H = Z|H). Moreover, ifA = H = B, V �B

H Z iff V |A = Z|A.

Observe that�A
A-maximality (in the sense of Definition 8) of a pair(X, Y ) for P

reduces to testX |= P Y . Thus, to make(X |A, Y ) an 〈A,A〉-model ofP , we just
additionally needA-totality of Y . In other words, we obtain the following criteria.

Corollary 4. GivenA ⊆ U , a pair (X, Y ) of interpretations is an〈A,A〉-model of a
programP ∈ CU , iff (1) X = Y or X ⊂ Y |A, (2) Y |= P and for eachY ′ ⊂ Y ,
Y ′ |= PY impliesY ′|A ⊂ Y |A; and (3) if X ⊂ Y then there exists anX ′ ⊆ Y with
X ′|A = X , such thatX ′ |= PY .
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This exactly matches the definition ofA-SE-models according to [12]. Finally, if
we switch from〈A,A〉-equivalence to〈A, ∅〉-equivalence (i.e., from relativized strong
to relativized uniform equivalence) we obtain the following result for〈A, ∅〉-models
which coincides with an explicit definition ofA-UE-models according to [12].

Corollary 5. GivenA ⊆ U , a pair (X, Y ) of interpretations is an〈A, ∅〉-model ofP ∈
CU , iff (1) and (2) from Corollary 4 hold, and ifX ⊂ Y then there existsX ′ ⊆ Y such
thatX ′|A = X , X ′ |= PY , and for eachX ′′ ⊂ Y with X ′|A ⊂ X ′′|A, X ′′ 6|= PY .

6 Computational Issues

Former results on uniform [2] or relativized [12] equivalence show that these problems
are, in general,ΠP

2 -hard for disjunctive logic programs. Hence,〈H,B〉-equivalence is
ΠP

2 -hard as well. However,ΠP
2 -membership still holds in the view of Corollary 1. In

particular, it is sufficient to guess an interpretationY and a unary programR ∈ C〈H,B〉,
and then to check whetherY is contained in eitherAS(P ∪ R) or AS(Q ∪ R), but
not in both. Answer-set checking is in coNP, and since one cansafely restrictY and
R to contain only atoms which also occur inP or Q, this algorithm for disproving
〈H,B〉-equivalence runs in nondeterministic polynomial time withaccess to an NP-
oracle. Thus, that problem is inΣP

2 , and consequently〈H,B〉-equivalence is inΠP
2 .

Concerning implementation, we briefly discuss an approach which makes use of
Corollary 1 in a similar manner and compiles〈H,B〉-equivalence into ordinary equiv-
alence for which a dedicated system exists [9]; a similar method was also discussed
in [12, 10]. The idea hereby is to incorporate the guess of theunary context programs
over the specified alphabets in both programs accordingly. To this end, let, for an
〈H,B〉-equivalence problem between programsP andQ, f as well asca,b and c̄a,b

for eacha ∈ H, b ∈ B ∪ {f}, be new distinct atoms, not occurring inP ∪ Q.
Then,P ≡〈H,B〉 Q holds iff P+

〈H,B〉 andQ+

〈H,B〉 are ordinarily equivalent, where, for
R ∈ {P, Q},

R+

〈H,B〉 = R ∪
{

ca,b ∨ c̄a,b ←; a← b, ca,b | a ∈ H, b ∈ B ∪ {f}
}

∪ {f ←}.

In fact, the role of atomsca,f is to guess a set of factsF ⊆ H, while atomsca,b with
b 6= f guess a subset of unary rulesa← b with a ∈ H andb ∈ B.

7 Conclusion

The aim of this work is to provide a general and uniform characterization for different
equivalence problems, which have been handled by inherently different concepts, so far.
We have introduced an equivalence notion parameterized by two alphabets to restrict the
atoms allowed to occur in the heads, and respectively, bodies of the context programs.
We showed that our approach captures the most important equivalence notions studied,
including strong and uniform equivalence as well as relativized notions thereof.

Figure 1 gives an overview of〈H,B〉-equivalence and its special cases, i.e., rela-
tivized uniform equivalence (RUE), relativized strong equivalence (RSE), body-relativ-
ized equivalence (BRE), and head-relativized equivalence(HRE). On the bottom line
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Fig. 1. The landscape of〈H,B〉-equivalence with eitherH ⊆ B or B ⊆ H.

we have ordinary equivalence, while the top-left corner amounts to uniform equivalence
(UE) and the top-right corner to strong equivalence (SE).

Future work includes the study of further properties of〈H,B〉-equivalence, as well
as potential applications, which include relations to openlogic programs [1] and new
concepts for program simplification [3]. Also an extension in the sense of [5], where a
further alphabet is used to specify the atoms which have to coincide in comparing the
answer sets is considered. While [5] provides a characterization for relativizedstrong
equivalence with projection, recent work [8] addresses theproblem of relativizeduni-
formequivalence with projection. Our results may be a basis to provide a common view
on these two recent characterizations, as well.
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Abstract. Logic programs under answer-set semantics constitute an important
tool for declarative problem solving. In recent years, two research issues received
growing attention. On the one hand, concepts like loops and elementary sets have
been proposed in order to extend Clark’s completion for computing answer sets
of logic programs by means of propositional logic. On the other hand, different
concepts of program equivalence, like strong or uniform equivalence, have been
studied in the context of program optimization and modular programming. In
this paper, we bring these two lines of research together andprovide alternative
characterizations for different conceptions of equivalence in terms of unfounded
sets, along with the related concepts of loops and elementary sets. Our results
yield new insights into the model theory of equivalence checking. We further ex-
ploit these characterizations to develop novel encodings of program equivalence
in terms of propositional logic.

1 Introduction

The increasing success of answer-set programming [1] as a tool for declarative problem
solving has produced the need to optimize logic programs in various ways, while leav-
ing their semantics unaffected. Different scenarios have led to different criteria of when
a program’s semantics is preserved. Formally, this is reflected by different definitions of
program equivalence (see below). For instance, in solving,one is usually interested in
program modifications preserving all answer sets, while program optimization requires
a stronger definition, guaranteeing that replacing one subprogram by another preserves
answer sets, no matter how the encompassing program looks like.

In what follows, we elaborate upon the model theory underlying program equiva-
lence, dealing primarily with the well-known concepts of SE- and UE-models [2, 3].
In particular, we provide a new perspective on these semantic structures by usingun-
founded sets[4] and related constructs likeelementary sets[5] and loops[6, 7]. Recall
that SE- and UE-models are defined as pairs(X, Y ), whereY is a model of a given
logic programP andX is a model of the reductP Y . The major difference between this

⋆ Partially supported by the Austrian Science Fund (FWF) under project P15068-INF.
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characterization and our approach is that we refer to(Y \X) rather than toX itself. As
it turns out, an explicit reference to the reduct and its models is not required, rather, the
respective unfoundedness property possessed by(Y \X) allows us to characterize and
distinguish SE- and UE-models.

2 Background

A propositionaldisjunctive logic programis a finite set of rules of the form

a1 ∨ · · · ∨ ak ← ak+1, . . . , am,not am+1, . . . ,not an, (1)

where1 ≤ k ≤ m ≤ n and everyai (1 ≤ i ≤ n) is a propositional atom from
some universeU ; not denotes default negation. A rule as in (1) is called afact if
k = n = 1; it is said to bepositiveif m = n. For a ruler, H(r) = {a1, . . . , ak} is the
headof r, B(r) = {ak+1, . . . , am,not am+1, . . . ,not an} is thebodyof r, B+(r) =
{ak+1, . . . , am} is thepositive bodyof r, andB−(r) = {am+1, . . . , an} is thenegative
bodyof r. We sometimes denote a ruler by H(r)← B(r).

The (positive) dependency graphof a programP is (U , {(a, b) | r ∈ P, a ∈ H(r),
b ∈ B+(r)}). A nonempty setU ⊆ U is a loopof P if the subgraph of the dependency
graph ofP induced byU is strongly connected. Similar to Lee [7], we consider every
singleton as a loop. A programP is tight [8, 9] if every loop ofP is a singleton.

As usual, an interpretationY is a set of atoms (i.e., a subset ofU). For a ruler, we
write Y |= r iff H(r) ∩ Y 6= ∅, B+(r) 6⊆ Y , or B−(r) ∩ Y 6= ∅. An interpretationY
is amodelof a programP , denoted byY |= P , iff Y |= r for everyr ∈ P . Thereduct
of P with respect toY is P Y = {H(r) ← B+(r) | r ∈ P, B−(r) ∩ Y = ∅}. An
interpretationY is ananswer setof P iff Y is a minimal model ofP Y .

Two programs,P andQ, areordinarily equivalentiff their answer sets coincide.
Furthermore,P andQ arestrongly equivalent[10] (resp.,uniformly equivalent[3]) iff,
for every program (resp., set of facts)R, P ∪R andQ ∪R are ordinarily equivalent.

For interpretationsX, Y , the pair(X, Y ) is anSE-interpretationiff X ⊆ Y . Given
an SE-interpretation(X, Y ) and a programP , (X, Y ) is anSE-model[2] of P iff Y |=
P andX |= P Y . An SE-model(X, Y ) is aUE-model[3] of P iff there is no SE-model
(Z, Y ) of P such thatX ⊂ Z ⊂ Y . The set of all SE-models (resp., UE-models)
of P is denoted bySE (P ) (resp.,UE (P )). Two programsP andQ are strongly (resp.,
uniformly) equivalent iffSE (P ) = SE (Q) (resp.,UE (P ) = UE (Q)) [2, 3].

Example 1.ConsiderP = {a ∨ b ←} andQ = {a ← not b; b ← not a}. Clearly,
both programs are ordinarily equivalent as{a} and{b} are their respective answer sets.
However, they are not strongly equivalent. Indeed, sinceP is positive, we have that
SE (P ) = {(a, a), (b, b), (ab, ab), (a, ab), (b, ab)}.1 For Q, we have to take the reduct
into account. In particular, we haveQ{a,b} = ∅, and so any interpretation is a model of
Q{a,b}. Hence, each pair(X, ab) with X ⊆ {a, b} is an SE-model ofQ. We thus have
SE (Q) = {(a, a), (b, b), (ab, ab), (a, ab), (b, ab), (∅, ab)}. That is,SE (P ) 6= SE (Q),

1 Whenever convenient, we use strings likeab as a shorthand for{a, b}. As a convention, we let
universeU be the set of atoms occurring in the programs under consideration.
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soP andQ are not strongly equivalent. A witness for this isR = {a← b; b← a}, as
P ∪R has{a, b} as its (single) answer set, whileQ ∪R has no answer set.

Concerning uniform equivalence, observe first thatUE (P ) = SE (P ). This is not
the case forQ, where the SE-model(∅, ab) drops out since there exist further SE-
models(Z, ab) of Q with ∅ ⊂ Z ⊂ {a, b}, viz. (a, ab) and (b, ab). One can check
that(∅, ab) is in fact the only pair inSE (Q) that is no UE-model ofQ. So,UE (Q) =
SE (Q) \ {(∅, ab)} = SE (P ) = UE (P ). Thus,P andQ are uniformly equivalent. ♦

We conclude this section with the following known properties. First, for any pro-
gramP and any interpretationY , the following statements are equivalent: (i)Y |= P ;
(ii) Y |= PY ; (iii) (Y, Y ) ∈ SE (P ); and (iv) (Y, Y ) ∈ UE (P ). Second, ifY |= P ,
Y is an answer set ofP iff, for each SE-model (resp., UE-model)(X, Y ) of P , X = Y .

3 Model-Theoretic Characterizations by Unfounded Sets

In this section, we exploit the notion of an unfounded set [4]and provide alterna-
tive characterizations of models for logic programs and program equivalence. Roughly
speaking, the aim of unfounded sets is to collect atoms that cannot be derived from a
program with respect to a fixed interpretation. Given the closed-world reasoning flavor
of answer sets, such atoms are considered to be false. However, we shall relate here
unfounded sets also to SE- and UE-models, and thus to conceptsthat do not fall un-
der the closed-world assumption (since they implicitly deal with program extensions).
For the case of uniform equivalence, we shall also employ therecent concept of ele-
mentarily unfounded sets [5], which via elementary sets decouple the idea of (minimal)
unfounded sets from fixed interpretations. Finally, we linkour results to loops.

Given a programP and an interpretationY , a setU ⊆ U is unfounded[4] for P
with respect toY if, for eachr ∈ P , at least one of the following conditions holds:

1. H(r) ∩ U = ∅,
2. H(r) ∩ (Y \ U) 6= ∅,
3. B+(r) 6⊆ Y or B−(r) ∩ Y 6= ∅, or
4. B+(r) ∩ U 6= ∅.

Note that the empty set is unfounded for any programP with respect to any interpreta-
tion, since the first condition,H(r) ∩ ∅ = ∅, holds for allr ∈ P .

Example 2.Consider the following program:

P =

{

r1 : a ∨ b← r3 : c← a r5 : c← b, d
r2 : b ∨ c← r4 : d← not b r6 : d← c,not a

}

.

Let U = {c, d}. We haveH(r1) ∩ U = {a, b} ∩ {c, d} = ∅, that is,r1 satisfies
Condition 1. Forr5 andr6, B+(r5) ∩ U = {b, d} ∩ {c, d} 6= ∅ andB+(r6) ∩ U =
{c} ∩ {c, d} 6= ∅. Hence, both rules satisfy Condition 4. Furthermore, consider the
interpretationY = {b, c, d}. We haveH(r2) ∩ (Y \ U) = {b, c} ∩ {b} 6= ∅, thus
r2 satisfies Condition 2. Finally, forr3 andr4, B+(r3) = {a} 6⊆ {b, c, d} = Y and
B−(r4)∩Y = {b}∩{b, c, d} 6= ∅, that is, both rules satisfy Condition 3. From the fact
that each rule inP satisfies at least one of the unfoundedness conditions, we conclude
thatU = {c, d} is unfounded forP with respect toY = {b, c, d}. ♦
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The basic relation between unfounded sets and answer sets isas follows.

Proposition 1 ([11]). Let P be a program andY an interpretation. Then,Y is an
answer set ofP iff Y |= P and no nonempty subset ofY is unfounded forP with
respect toY .

Example 3.ProgramP in Example 2 has two answer sets:{a, c, d} and{b}. For the
latter, we just have to check that{b} is not unfounded forP with respect to{b} it-
self, which holds in view of either ruler1 or r2. To verify via unfounded sets that
Y = {a, c, d} is an answer set ofP , we have to check all nonempty subsets ofY . For
instance, takeU = {c, d}. We have already seen thatr1, r5, andr6 satisfy Condition 1
or 4, respectively; but the remaining rulesr2, r3, andr4 violate all four unfoundedness
conditions forU with respect toY . ♦

We next detail the relation between unfounded sets and models of logic programs
as well as of their reducts. First, we have the following relationships between models
and unfounded sets.

Lemma 1. Let P be a program andY an interpretation. Then, the following state-
ments are equivalent:(a) Y |= P ; (b) every setU ⊆ U \ Y is unfounded forP with
respect toY ; and (c) every singletonU ⊆ U \ Y is unfounded forP with respect toY .

Proof. (a)⇒ (b): Assume that some setU ⊆ U \Y is not unfounded forP with respect
to Y . Then, for some ruler ∈ P , we have

(α) H(r) ∩ U 6= ∅,
(β) H(r) ∩ (Y \ U) = ∅,
(γ) B+(r) ⊆ Y andB−(r) ∩ Y = ∅, and
(δ) B+(r) ∩ U = ∅.

SinceU ∩ Y = ∅ by the assumption, we conclude from (β) thatH(r) ∩ Y = ∅. Since
(γ) holds in addition, we haveY 6|= r and thusY 6|= P .

(b)⇒ (c) is trivial.
(c) ⇒ (a): AssumeY 6|= P . Then, there is a ruler ∈ P such thatY 6|= r, that

is, H(r) ∩ Y = ∅ and(γ) hold. By the definition of rules,H(r) 6= ∅. So, consider
anya ∈ H(r) and the singletonU = {a}. Clearly, (α) holds forr, and (β) holds by
H(r) ∩ Y = ∅. Finally, sinceB+(r) ⊆ Y anda /∈ Y , (δ) holds as well. That is, there
is a singletonU ⊆ U \ Y that is not unfounded forP with respect toY . ⊓⊔

We further describe the models of a program’s reduct by unfounded sets.

Lemma 2. Let P be a program,Y an interpretation such thatY |= P , andU ⊆ U .
Then,(Y \ U) |= P Y iff U is unfounded forP with respect toY .

Proof. (⇒) Assume thatU is not unfounded forP with respect toY . Then, for some
ruler ∈ P , (α)–(δ) from the proof of Lemma 1 hold. Clearly,B−(r) ∩ Y = ∅ implies
(H(r) ← B+(r)) ∈ PY . FromB+(r) ⊆ Y and (δ), we concludeB+(r) ⊆ (Y \ U).
Together with (β), we obtain(Y \ U) 6|= (H(r)← B+(r)) and thus(Y \ U) 6|= P Y .

(⇐) Assume(Y \U) 6|= P Y . Then, there is a ruler ∈ P such that(Y \U) 6|= {r}Y .
We conclude thatr satisfies (β), B+(r) ⊆ (Y \U), andB−(r)∩Y = ∅. SinceB+(r) ⊆
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(Y \U) immediately impliesB+(r) ⊆ Y , (γ) holds. Moreover,B+(r) ⊆ (Y \U) also
implies (δ). It remains to show (α). From (γ) andY |= r (which holds by the assumption
Y |= P ), we concludeH(r) ∩ Y 6= ∅. Together with (β), this implies (α). Since (α),
(β), (γ), and (δ) jointly hold for some ruler ∈ P , we have thatU is not unfounded
for P with respect toY . ⊓⊔

Example 4.For illustration, reconsiderP from Example 2 andY = {b, c, d}. For sin-
gleton{a} andr1, we haveH(r1) ∩ (Y \ {a}) = {a, b} ∩ {b, c, d} 6= ∅. Furthermore,
a /∈ H(r) for all r ∈ {r2, . . . , r6}. That is,{a} is unfounded forP with respect toY .
From this, we can conclude by Lemma 1 thatY is a model ofP , i.e.,Y |= P .

As we have already seen in Example 2,U = {c, d} is unfounded forP with
respect toY . Lemma 2 now tells us that(Y \ U) = {b} is a model ofP Y =
{

r1, r2, r3, r5,
(

H(r6)← B+(r6)
)}

. Moreover, one can check that{a, c, d} is as well
unfounded forP with respect toY . ♦

The last observation in Example 4 stems from a more general side effect of Lemma 2:
For any programP , any interpretationY such thatY |= P , andU ⊆ U , U is unfounded
for P with respect toY iff (U∩Y ) is unfounded forP with respect toY . For modelsY ,
this allows us to restrict our attention to unfounded setsU ⊆ Y .

We are now in a position to state the following alternative characterizations of SE-
and UE-models.

Theorem 1. Let P be a program,Y an interpretation such thatY |= P , andU ⊆ U .
Then,(Y \U, Y ) is an SE-model ofP iff (U ∩Y ) is unfounded forP with respect toY .

Theorem 2. Let P be a program,Y an interpretation such thatY |= P , andU ⊆ U .
Then,(Y \ U, Y ) is a UE-model ofP iff (U ∩ Y ) is unfounded forP with respect toY
and no nonempty proper subset of(U ∩ Y ) is unfounded forP with respect toY .

Note that the inherent maximality criterion of UE-models isnow reflected by a
minimality conditionon (nonempty) unfounded sets. Theorem 1 and 2 allow us to char-
acterize strong and uniform equivalence in terms of unfounded sets, avoiding an explicit
use of programs’ reducts. Details will be discussed in Section 4.

Example 5.Recall programsP = {a ∨ b ←} andQ = {a ← not b; b ← not a}
from Example 1. We have seen that the only difference in theirSE-models is the pair
(∅, ab), which is an SE-model ofQ, but not ofP . Clearly,Y = {a, b} is a classical
model ofP and ofQ, and, in view of Theorem 1, we expect thatY is unfounded forQ
with respect toY , but not forP with respect toY . The latter is easily checked since the
ruler = (a∨ b←) yields (1)H(r)∩ Y 6= ∅; (2) H(r)∩ (Y \ Y ) = ∅; (3) B+(r) ⊆ Y
andB−(r) ∩ Y = ∅; and (4)B+(r) ∩ Y = ∅. Thus, none of the four unfoundedness
conditions is met. However, forr1 = a ← not b and r2 = b ← not a, we have
B−(ri) ∩ Y 6= ∅, for i ∈ {1, 2}, and thusY is unfounded forQ with respect toY .

Recall that(∅, ab) is not a UE-model ofQ. In view of Theorem 2, we thus expect
that Y = {a, b} is not a minimal nonempty unfounded set. As one can check, both
nonempty proper subsets{a} and{b} are in fact unfounded forQ with respect toY . ♦
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In the remainder of this section, we provide a further characterization of UE-models
that makes use of elementary sets [5]. This not only gives us amore intrinsic charac-
terization of the differenceU = (Y \ X) for a UE-model(X, Y ) than that stated in
Theorem 2, but also yields a further direct relation to loops. We make use of this fact
and provide a new result for the UE-models of tight programs.

We define a nonempty setU ⊆ U aselementaryfor a programP if, for eachV such
that∅ ⊂ V ⊂ U , there is somer ∈ P jointly satisfying

1. H(r) ∩ V 6= ∅,
2. H(r) ∩ (U \ V ) = ∅,
3. B+(r) ∩ V = ∅, and
4. B+(r) ∩ (U \ V ) 6= ∅.

Due to Conditions 1 and 4, every elementary set is also a loop of P , but the converse
does not hold in general [5].

To link elementary sets and unfounded sets together, for a programP , an interpre-
tationY , andU ⊆ U , we define:

PY,U = {r ∈ P | H(r) ∩ (Y \ U) = ∅, B+(r) ⊆ Y, B−(r) ∩ Y = ∅}.

Provided thatH(r) ∩ U 6= ∅, a ruler ∈ PY,U supportsU with respect toY , while
no rule in (P \ PY,U ) supportsU . Analogously to Gebser, Lee, and Lierler [5], we
say thatU is elementarily unfoundedfor P with respect toY iff (i) U is unfounded
for P with respect toY and (ii)U is elementary forPY,U . Any elementarily unfounded
set ofP with respect toY is also elementary forP , but an elementary setU that is
unfounded forP with respect toY is not necessarily elementarily unfounded because
U might not be elementary forPY,U [5].

Elementarily unfounded sets coincide with minimal nonemptyunfounded sets.

Proposition 2 ([5]). Let P be a program,Y an interpretation, andU ⊆ U . Then,
U is a minimal nonempty unfounded set ofP with respect toY iff U is elementarily
unfounded forP with respect toY .

The fact that every nonempty unfounded set contains some elementarily unfounded
set, which by definition is an elementary set, allows us to derive some properties of the
differenceU = (Y \X) for SE-interpretations(X, Y ). For instance, we can exploit the
fact that every elementary set is also a loop in the characterization of minimal nonempty
unfounded sets, where the latter are only defined with respect to interpretations.

Formally, we derive the following properties for UE-models(resp., SE-models):

Corollary 1. Let P be a program and(X, Y ) a UE-model(resp., SE-model) of P . If
X 6= Y , then(Y \X) is (resp., contains) (a) an elementarily unfounded set ofP with
respect toY ; (b) an elementary set ofP ; and (c) a loop ofP .

For tight programs, i.e., programs such that every loop is a singleton, we obtain the
following property:

Corollary 2. Let P be a tight program and(X, Y ) an SE-model ofP . Then,(X, Y )
is a UE-model ofP iff X = Y or (Y \X) is a singleton that is unfounded forP with
respect toY .
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Example 6.Recall the SE-model(∅, ab) of Q = {a ← not b; b ← not a}. The loops
of Q are{a} and{b}; thus,Q is tight. This allows us to immediately conclude that
(∅, ab) is not a UE-model ofQ, without looking for any further SE-model to rebut it.♦

The above result shows that, for tight programs, the structure of UE-models is par-
ticularly simple, viz. they are always of the form(Y, Y ) or (Y \ {a}, Y ), for some
a ∈ Y . As we will see in the next section, this also allows for simplified encodings.

4 Characterizations for Program Equivalence

In this section, we further exploit unfounded sets to characterize different notions of
program equivalence. We start by comparing two programs,P andQ, regarding their
unfounded sets for deriving conditions under whichP andQ are ordinarily, strongly,
and uniformly equivalent, respectively. Based on these conditions, we then provide
novel encodings in propositional logic.

4.1 Characterizations based on Unfounded Sets

Two programs are ordinarily equivalent if they possess the same answer sets. As Propo-
sition 1 shows, answer sets are precisely the models of a program that do not contain
any nonempty unfounded set. Hence, ordinary equivalence can be described as follows:

Theorem 3. Let P andQ be programs. Then,P andQ are ordinarily equivalent iff,
for every interpretationY , the following two conditions are equivalent:

1. Y |= P and no nonempty subset ofY is unfounded forP with respect toY ;
2. Y |= Q and no nonempty subset ofY is unfounded forQ with respect toY .

Note that ordinarily equivalent programs are not necessarily classically equivalent,
as is for instance witnessed by programsP = {a ∨ b←} andQ = {a ∨ b←; a← c}
possessing the same answer sets:{a} and{b}. However,{b, c} is a model ofP but not
of Q. In turn, for strong and uniform equivalence, classical equivalence is a necessary
(but, in general, not a sufficient) condition. This follows from the fact that every model
of a program participates in at least one SE-model (resp., UE-model) and is thus relevant
for testing strong (resp., uniform) equivalence. Indeed, the following characterization
of strong equivalence considers all classical models.

Theorem 4. Let P and Q be programs. Then,P and Q are strongly equivalent iff,
for every interpretationY such thatY |= P or Y |= Q, P andQ possess the same
unfounded sets with respect toY .

Proof. (⇒) Assume thatP andQ are strongly equivalent. Fix any interpretationY
such thatY |= P (or Y |= Q). Then,(Y, Y ) is an SE-model ofP (or Q), and sinceP
andQ are strongly equivalent,(Y, Y ) is also an SE-model ofQ (or P ). That is, both
Y |= P andY |= Q hold. Fix any setU ⊆ U . By Lemma 2 and the fact thatP andQ
are strongly equivalent,U is unfounded forP with respect toY iff (Y \ U, Y ) is an
SE-model ofP . But the latter holds iff(Y \ U, Y ) is an SE-model ofQ, which in turn
holds iff U is unfounded forQ with respect toY .
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(⇐) Assume thatP andQ are not strongly equivalent. Then, without loss of gen-
erality, there is an SE-model(X, Y ) of P that is not an SE-model ofQ (the other case
is symmetric). By the definition of SE-models, we haveY |= P , and by Lemma 2,
(Y \ X) is unfounded forP with respect toY , but eitherY 6|= Q or (Y \ X) is not
unfounded forQ with respect toY . If (Y \X) is not unfounded forQ with respect to
Y , thenP andQ do not possess the same unfounded sets with respect toY . Otherwise,
if Y 6|= Q, by Lemma 1, there is a setU ⊆ U \ Y that is not unfounded forQ with
respect toY , butU is unfounded forP with respect toY . ⊓⊔

Theorem 4 shows that strong equivalence focuses primarily on the unfounded sets
admitted by the compared programs. In the setting of uniformequivalence, the consid-
eration of unfounded sets is further restricted to minimal ones (cf. Theorem 2), and by
Proposition 2, these are exactly the elementarily unfounded sets.

Theorem 5. Let P andQ be programs. Then,P andQ are uniformly equivalent iff,
for every interpretationY such thatY |= P or Y |= Q, P andQ possess the same
elementarily unfounded sets with respect toY .

Proof. (⇒) Assume thatP andQ are uniformly equivalent. Fix any interpretationY
such thatY |= P (or Y |= Q). Then,(Y, Y ) a UE-model ofP (or Q), and sinceP
andQ are uniformly equivalent,(Y, Y ) is also a UE-model ofQ (or P ). That is, both
Y |= P andY |= Q hold. Fix any elementarily unfounded setU for P (or Q) with
respect toY . If U ⊆ U \ Y , by Lemma 1 and Proposition 2,U is a singleton that is
unfounded for bothP andQ with respect toY , which implies thatU is elementarily
unfounded forQ (or P ) with respect toY . Otherwise, ifU ∩ Y 6= ∅, then Lemma 1
and Proposition 2 implyU ⊆ Y . By Proposition 2 and Theorem 2,(Y \ U, Y ) is a
UE-model ofP (or Q), and sinceP andQ are uniformly equivalent,(Y \U, Y ) is also
a UE-model ofQ (or P ). Since∅ 6= U ⊆ Y , by Theorem 2 and Proposition 2, we
conclude thatU is elementarily unfounded forQ (or P ) with respect toY .

(⇐) Assume thatP and Q are not uniformly equivalent. Then, without loss of
generality, there is a UE-model(X, Y ) of P that is not a UE-model ofQ (the other case
is symmetric). Since(X, Y ) is also an SE-model ofP , we haveY |= P . If Y 6|= Q, by
Lemma 1, there is a singletonU ⊆ U \ Y that is not unfounded forQ with respect to
Y , but U is unfounded forP with respect toY . That is,U is elementarily unfounded
for P with respect toY , but not forQ with respect toY . Otherwise, ifY |= Q, (Y, Y )
is a UE-model both ofP and ofQ. We conclude thatX ⊂ Y , and by Theorem 2 and
Proposition 2,(Y \X) is elementarily unfounded forP with respect toY . Furthermore,
the fact that(X, Y ) is not a UE-model ofQ, by Theorem 2 and Proposition 2, implies
that(Y \X) is not elementarily unfounded forQ with respect toY . ⊓⊔

In contrast to arbitrary unfounded sets, elementarily unfounded sets exhibit a certain
structure as they are in fact loops or, even more accurately,elementary sets (cf. Corol-
lary 1). By Theorem 5, such structures alone are material to uniform equivalence.

4.2 Characterizations in Propositional Logic

We now exploit the above results about unfounded sets to encode program equivalence
in propositional logic. For ordinary equivalence, we use the well-known concept of loop
formulas, while for strong and uniform equivalence we directly refer to unfounded sets.
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In what follows, we write for a set of default literals, likeB(r), and a set of atoms,
like H(r), B(r)→ H(r) as a shorthand for

(
∧

a∈B+(r)a ∧
∧

a∈B−(r)¬a
)

→
∨

a∈H(r)a,

where, as usual, empty conjunctions (resp., disjunctions)are understood as⊤ (resp.,
⊥). For instance, for a ruler of the form (1),B(r)→ H(r) yields the implication

ak+1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → a1 ∨ · · · ∨ ak.

Furthermore, within the subsequent encodings, an occurrence of a programP is under-
stood as

∧

r∈P (B(r)→ H(r)).
As a basis for the encodings, we use the following concept. Following Lee [7], for

a programP andU ⊆ U , theexternal support formulaof U for P is

ESP (U) =
∨

r∈P,H(r)∩U 6=∅,B+(r)∩U=∅¬
(

B(r)→ (H(r) \ U)
)

. (2)

The relation between unfounded sets and external support formulas is as follows:

Lemma 3. Let P be a program,Y an interpretation, andU ⊆ U . Then,U is un-
founded forP with respect toY iff Y 6|= ESP (U).

Proof. (⇒) Assume thatY |= ESP (U). Then, there is a ruler ∈ P such that

(α) H(r) ∩ U 6= ∅,
(β) B+(r) ∩ U = ∅,
(γ) B+(r) ⊆ Y andB−(r) ∩ Y = ∅, and
(δ) (H(r) \ U) ∩ Y = H(r) ∩ (Y \ U) = ∅.

That is,U is not unfounded forP with respect toY .
(⇐) Assume thatU is not unfounded forP with respect toY . Then, there is a

ruler ∈ P for which (α), (β), (γ), and (δ) hold. From (γ) and (δ), we conclude

Y |= ¬
(

B(r)→ (H(r) \ U)),

which together with (α) and (β) impliesY |= ESP (U). ⊓⊔

For a programP andU ⊆ U , the (conjunctive)loop formula[7] of U for P is

LFP (U) =
(
∧

p∈Up
)

→ ESP (U).

With respect to an interpretationY , the loop formula ofU is violated ifY containsU
as an unfounded set, otherwise, the loop formula ofU is satisfied.

Proposition 3 ([7, 5]).LetP be a program andY an interpretation such thatY |= P .
Then, the following statements are equivalent:

(a) Y is an answer set ofP ;
(b) Y |= LFP (U) for every nonempty subsetU ofU ;
(c) Y |= LFP (U) for every loopU of P ;
(d) Y |= LFP (U) for every elementary setU of P .
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For ordinary equivalence, the following encodings (as wellas different combina-
tions thereof) can thus be obtained.

Theorem 6. LetP andQ be programs. LetL andE denote the set of all loops and ele-
mentary sets, respectively, ofP andQ. Then, the following statements are equivalent:

(a) P andQ are ordinarily equivalent;
(b)

(

P ∧
∧

∅6=U⊆U LFP (U)
)

↔
(

Q ∧
∧

∅6=U⊆U LFQ(U)
)

is a tautology;
(c)

(

P ∧
∧

U∈L LFP (U)
)

↔
(

Q ∧
∧

U∈L LFQ(U)
)

is a tautology;
(d)

(

P ∧
∧

U∈E LFP (U)
)

↔
(

Q ∧
∧

U∈E LFQ(U)
)

is a tautology.

Recall that, for tight programs, each loop (and thus, each elementary set) is a sin-
gleton. In this case, the encodings in (c) and (d) are thus polynomial in the size of the
compared programs. Moreover, one can verify that they amount to checking whether
the completions [12] of the compared programs are equivalent in classical logic.

For strong and uniform equivalence betweenP and Q, the models ofP and Q
along with the corresponding unfounded sets are compared, as Theorem 4 and 5 show.
We thus directly consider external support formulas, rather than loop formulas.

Theorem 4 and Lemma 3 yield the following encoding for strongequivalence:

Theorem 7. Let P and Q be programs. Then,P and Q are strongly equivalent iff
(

P ∨Q
)

→
(
∧

U⊆U

(

ESP (U)↔ ESQ(U)
))

is a tautology.

In order to also encode uniform equivalence, we have to single out elementarily
unfounded sets. To this end, we modify the definition of the external support formula,
ESP (U), and further encode the case thatU is (not) a minimal nonempty unfounded
set. For a programP andU ⊆ U , we define theminimality external supportformula as

ES
⋆
P (U) = ESP (U) ∨ ¬

(
∧

∅⊂V ⊂UESP (V )
)

.

Similar to external support formulas and unfounded sets, minimality external support
formulas correspond to elementarily unfounded sets as follows.

Lemma 4. Let P be a program,Y an interpretation, and∅ ⊂ U ⊆ U . Then,U is
elementarily unfounded forP with respect toY iff Y 6|= ES

⋆
P (U).

Proof. (⇒) Assume thatY |= ES
⋆
P (U). Then, one of the following two cases holds:

1. Y |= ESP (U): By Lemma 3,U is not unfounded forP with respect toY , which
implies thatU is not elementarily unfounded forP with respect toY .

2. Y 6|=
(
∧

∅⊂V ⊂UESP (V )
)

: For someV such that∅ ⊂ V ⊂ U , we haveY 6|=
ESP (V ). By Lemma 3,V is unfounded forP with respect toY . We conclude
thatU is not a minimal nonempty unfounded set ofP with respect toY , and by
Proposition 2,U is not elementarily unfounded forP with respect toY .

(⇐) Assume thatY 6|= ES
⋆
P (U). Then,Y 6|= ESP (U), and by Lemma 3,U is un-

founded forP with respect toY . Furthermore,Y |=
(
∧

∅⊂V ⊂UESP (V )
)

, and thus no
setV such that∅ ⊂ V ⊂ U is unfounded forP with respect toY (again by Lemma 3).
We conclude thatU is a minimal nonempty unfounded set ofP with respect toY , and
by Proposition 2,U is elementarily unfounded forP with respect toY . ⊓⊔
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Theorem 5 and Lemma 4 allow us to encode uniform equivalence as follows.

Theorem 8. LetP andQ be programs. LetL andE denote the set of all loops and ele-
mentary sets, respectively, ofP andQ. Then, the following statements are equivalent:

(a) P andQ are uniformly equivalent;
(b)

(

P ∨Q
)

→
(
∧

U⊆U

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology;
(c)

(

P ∨Q
)

→
(
∧

U∈L

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology;
(d)

(

P ∨Q
)

→
(
∧

U∈E

(

ES
⋆
P (U)↔ ES

⋆
Q(U)

))

is a tautology.

Proof. By Theorem 5,P andQ are uniformly equivalent iff, for every interpretationY
such thatY |= P or Y |= Q, P andQ possess the same elementarily unfounded sets
with respect toY . Clearly, any elementarily unfounded set ofP or Q belongs to the
setE of all elementary sets ofP andQ, which is a subset of the setL of all loops
of P andQ, and every element ofL is a subset ofU . Furthermore, by Lemma 4, a
set ∅ ⊂ U ⊆ U is elementarily unfounded forP (resp.,Q) with respect toY iff
Y 6|= ES

⋆
P (U) (resp.,Y 6|= ES

⋆
Q(U)). Finally, we haveES

⋆
P (∅) ≡ ES

⋆
Q(∅) ≡ ⊥, so

thatY |=
(

ES
⋆
P (∅) ↔ ES

⋆
Q(∅)

)

for any interpretationY . From this, the statement of
Theorem 8 follows. ⊓⊔

Again, we exploit the fact that, for tight programs, all loops and elementary sets
are singletons. It is thus sufficient to consider only the external support formulas of
singletons. To the best of our knowledge, this provides a novel technique to decide uni-
form equivalence between tight programs. Indeed, the following result is an immediate
consequence of (c), or likewise (d), in Theorem 8.

Corollary 3. LetP andQ be tight programs. Then,P andQ are uniformly equivalent
iff

(

P ∨Q
)

→
(
∧

a∈U

(

ESP ({a})↔ ESQ({a})
))

is a tautology.

Indeed, for singletons{a}, ¬
(
∧

∅⊂V ⊂{a} ESP (V )
)

(resp.,¬
(
∧

∅⊂V ⊂{a} ESQ(V )
)

)
can be dropped fromES

⋆
P ({a}) (resp.,ES

⋆
Q({a})) because it is equivalent to⊥.

Except for ordinary and uniform equivalence between tight programs, all of the
above encodings are of exponential size. As with the known encodings for answer sets,
reproduced in Proposition 3, we do not suggest toa priori reduce the problem of de-
ciding program equivalence to propositional logic. Rather, our encodings provide an
alternative view on the conditions underlying program equivalence; similar characteri-
zations have already been successfully exploited in answer-set solving [6, 13].

For strong equivalence, however, we can resolve the exponential number of con-
juncts in Theorem 7 as follows. We use a copyU ′ = {p′ | p ∈ U} of the universeU ,
where allp′ are mutually distinct new atoms, and introduce a module representing
ESP (U), as given in (2), but without explicitly referring to certain setsU ; rather, a
particularU is determined by the true atoms from the copyU ′ of U . We define:

ESP =
∨

r∈P

(
∨

p∈H(r)p
′ ∧

∧

p∈H(r)(p
′ ∨¬p)∧

∧

p∈B+(r)(p∧¬p
′)∧

∧

p∈B−(r)¬p
)

.

Given a programP , for an interpretationY (overU) andU ⊆ U , U is unfounded forP
with respect toY iff (Y ∪ {p′ | p ∈ U}) 6|= ESP . This yields the following result:

Theorem 9. Let P and Q be programs. Then,P and Q are strongly equivalent iff
(P ∨Q)→ (ESP ↔ ESQ) is a tautology.
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5 Discussion

We provided novel characterizations for program equivalence in terms of unfounded
sets, along with the related notions of loops and elementarysets. This allowed us to
identify close relationships between these important concepts. While answer sets, and
thus ordinary equivalence, rely on the absence of (nonempty) unfounded sets, we have
shown that potential extensions of programs, captured by SE- and UE-models, can also
be characterized directly by appeal to unfounded sets, thereby avoiding any reference
to reducts of programs. We have seen that uniform equivalence is located in between
ordinary and strong equivalence, in the sense that it considers all models, similar to
strong equivalence, but only minimal (nonempty) unfoundedsets, which are sufficient
to decide whether a model is an answer set. This allowed us to develop particularly
simple characterizations for uniform equivalence betweentight programs.
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Abstract. For a given semantics, two nonmonotonic theoriesΠ1 andΠ2 can be
said to be equivalent if they have the same intended models and strongly (resp.,
uniformly) equivalent if for anyΣ, Π1∪Σ andΠ2∪Σ are equivalent, whereΣ is
a set of sentences (resp., literals). In the general case, norestrictions are placed on
the language (signature) ofΣ. Relativised notions of strong and uniform equiv-
alence are obtained by requiring thatΣ belongs to a specified sublanguageL of
the theoriesΠ1 andΠ2. For normal and disjunctive logic programs under stable-
model semantics, relativised strong and uniform equivalence have been defined
and characterised in previous work by Woltran. Here, we extend these concepts
to nonmonotonic theories in equilibrium logic and discuss applications in the
context of prediction and explanation.

1 Introduction

Equilibrium logic [12] is a general purpose formalism for nonmonotonic reasoning ex-
tending the stable-model and answer-set semantics for all the usual classes of logic
programs, adhering to the generalanswer-set programming(ASP) paradigm. It is a
form of minimal-model reasoning in the non-classical logicof here-and-there, which
is basically intuitionistic logic restricted to two worlds, “here” and “there”, and sub-
sumes all important syntactic extensions considered in ASP, including the addition of
strong negation, rules with negation-by-default in their heads, and nested programs, as
well as those constructs like cardinality and weight constraints and aggregates that have
equivalent representations in the more general syntax of equilibrium logic [4, 5].

Recent research in ASP focuses on advanced notions of program equivalence rele-
vant for program optimisation and modular programming [11,1, 14]. A traditional con-
cept of equivalence, where two nonmonotonic theories, under a given semantics, are
viewed as being equivalent if they have the same intended models, is not adequate for

⋆ This work was partially supported by the Spanish Ministry ofEducation and Science (MEC)
under projects TIC-2003-9001-C02 and TIN2006-15455-CO3,and by the Austrian Science
Fund (FWF) under grant P18019.
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these purposes because such a notion does not satisfy a replacement property like in
classical logic. Better candidates, however, are strong and uniform equivalence. While
the former meets a replacement principle by definition, the latter is suitable for hierar-
chically ordered modules. In formal terms, two nonmonotonic theories,Π1 andΠ2, are
strongly (resp., uniformly) equivalent if for anyΣ, Π1 ∪ Σ andΠ2 ∪ Σ are equiva-
lent, whereΣ is a set of sentences (resp., literals). In the general case,no restrictions
are placed on the language (signature) ofΣ. Relativised notionsof strong and uniform
equivalence are obtained by requiring thatΣ belongs to a specified sublanguageL of the
theoriesΠ1 andΠ2. For normal and disjunctive logic programs under stable-model se-
mantics, relativised strong and uniform equivalence have been defined and characterised
in previous work by Woltran [19], together with a discussionabout complexity issues
and implementation strategies. Furthermore, relativisedstrong and uniform equivalence
are special cases ofupdate equivalenceintroduced by Inoue and Sakama [7].

In this paper, we extend the work of Woltran [19] and Pearce and Valverde [14]
by characterising relative notions of equivalence for arbitrary (propositional) theories
in equilibrium logic. Furthermore, we discuss how relativised equivalences can be ap-
plied to certain problems from the areas of diagnosis and abduction, with respect to the
problem of deciding whether two logical descriptions have the same explanatory power,
and provide a semantical characterisation of this problem.The formal model of an ab-
ductive explanation our discussion is based is an extensionof a corresponding concept
used by Inoue and Sakama [8] for disjunctive logic programs with default negation in
their heads. Finally, we address the computational complexity of relative equivalence in
equilibrium logic, showing that it remains on the same levelas for logic programs.

2 Equilibrium Logic

We work in the nonclassical logic of here-and-there with strong negationN5 and its
nonmonotonic extension, equilibrium logic [12], which generalises the answer-set se-
mantics for logic programs to arbitrary propositional theories [11]. For more details, the
reader is referred to [12, 13] and the logic texts cited below.

Formulas ofN5 are built-up in the usual way using the logical constants∧, ∨,→,
¬,∼, standing respectively for conjunction, disjunction, implication, weak (or intuition-
istic) negation, and strong negation. The axioms and rules of inference forN5 include
those of intuitionistic logic (see, e.g., [16]) and the strong negation axioms from the
calculus of Vorob’ev [17, 18]; for details, see [13].

The model theory ofN5 is based on the usual Kripke semantics for Nelson’s con-
structive logicN (see, e.g., [6, 16]), butN5 is complete for Kripke framesF = 〈W,≤〉
(where as usualW is the set ofpointsor worlds and≤ is a partial-ordering onW )
having exactly two worlds, sayh (“here”) andt (“there”) withh ≤ t. As usual, amodel
is a frame together with an assignmenti that associates to each element ofW a set
of literals1 such that ifw ≤ w′ theni(w) ⊆ i(w′). An assignment is then extended
inductively to all formulas via the usual rules for conjunction, disjunction, implication
and (weak) negation in intuitionistic logic together with the following rules governing

1 We use the term “literal” to denote an atom, or an atom prefixedby strong negation.
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strongly negated formulas:

∼(ϕ ∧ ψ) ∈ i(w) iff ∼ϕ ∈ i(w) or ∼ψ ∈ i(w);
∼(ϕ ∨ ψ) ∈ i(w) iff ∼ϕ ∈ i(w) and ∼ψ ∈ i(w);
∼(ϕ→ ψ) ∈ i(w) iff ϕ ∈ i(w); and ∼ψ ∈ i(w);
∼¬ϕ ∈ i(w) iff ∼∼ϕ ∈ i(w) iff ϕ ∈ i(w).

It is convenient to represent anN5-model as an ordered pair〈H,T 〉 of sets of literals,
whereH = i(h) andT = i(t) under a suitable assignmenti. By h ≤ t it follows
thatH ⊆ T . Again, by extendingi inductively we know what it means for an arbitrary
formulaϕ to be true in a modelM = 〈H,T 〉. We writeM, w |= ϕ to express thatϕ is
true at worldw in modelM.

A formulaϕ is true in a here-and-there modelM = 〈H,T 〉, in symbolsM |= ϕ,
if it is true at each world inM. A formulaϕ is said to bevalid in N5, in symbols|= ϕ,
if it is true in all here-and-there models. Logical consequence forN5 is understood as
follows:ϕ is said to be anN5-consequenceof a setΠ of formulas, writtenΠ |= ϕ, iff
for all modelsM and any worldw ∈ M,M, w |= Π impliesM, w |= ϕ. Equivalently,
this can be expressed by saying thatϕ is true in all models ofΠ . Further properties of
N5 are studied in [10].

Equilibrium models are special kinds of minimalN5 Kripke models. We first define
a partial ordering� onN5 models that will be used both to characterise the equilibrium
property as well as the property of uniform equivalence.

Definition 1. Given any two models〈H,T 〉, 〈H ′, T ′〉, we set〈H,T 〉� 〈H ′, T ′〉 if T =
T ′ andH ⊆ H ′.

Definition 2. LetΠ be a set ofN5 formulas and〈H,T 〉 a model ofΠ .

1. 〈H,T 〉 is said to betotal if H = T (otherwise, ifH ⊂ T , it is non-total).
2. 〈H,T 〉 is said to be anequilibriummodel if it is total and minimal under� among

models ofΠ .

In other words, a model〈H,T 〉 ofΠ is in equilibrium if it is total and there is no model
〈H ′, T 〉 of Π with H ′ ⊂ H . Equilibrium logic is the logic determined by the equi-
librium models of a theory. It generalises answer-set semantics in the following sense:
For all the usual classes of logic programs, including normal, extended, disjunctive and
nested programs, equilibrium models correspond to answer sets [12, 11]. The “transla-
tion” from the syntax of programs toN5 propositional formulas is the trivial one, viz.,
a ground rule of an (extended) disjunctive program of the form

K1 ∨ . . . ∨Kk ← L1, . . . Lm,notLm+1, . . . ,notLn,

where theLi andKj are literals, corresponds to theN5 sentence

L1 ∧ . . . ∧ Lm ∧ ¬Lm+1 ∧ . . . ∧ ¬Ln → K1 ∨ . . . ∨Kk.

A set ofN5 sentences is called atheory. Two theories areequivalentif they have the
same equilibrium models.
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3 Relativised Equivalence Concepts

We consider theoriesΠ1,Π2, etc., and languagesL, L′, etc. It will be convenient nota-
tionally viewing a language as a set of literals. A theory is said to bein the languageL
if all its atomic formulas belong toL.

Definition 3. LetΠ1 andΠ2 be theories.

(i) Π1 andΠ2 arestrongly equivalent relative toL iff for any(empty or non-empty) set
Σ ofL formulas,Π1∪Σ andΠ2∪Σ are equivalent, i.e., have the same equilibrium
models.

(ii ) Π1 andΠ2 areuniformly equivalent relative toL iff for any (empty or non-empty)
setX of L literals,Π1 ∪X andΠ2 ∪X are equivalent, i.e., have the same equi-
librium models.

Note that if the theories are logic programs, this means theyhave the same answer sets.
We explain some terminology and notation. A model〈H,T 〉 of a theoryΠ is said

to bemaximally non-total(or just maximal) if it is non-total and is maximal among
models ofΠ under the ordering�. In other words, a model〈H,T 〉 of Π is maximal
if for any model〈H ′, T 〉 of Π , if H ⊂ H ′ thenH ′ = T . It is clear that if a theory
Π is finite and has a non-total model〈H,T 〉, then it has a maximally non-total model
〈H ′, T 〉 such thatH ⊆ H ′. However, maximal models need not exist in case thatΠ is
an infinite theory. In what follows, we shall assume that all theories are finite.

Let L be a sublanguage ofL′. If M = 〈H,T 〉 is anL′ model, itsL-1-reductis
defined by

〈H ∩ L, T 〉

and denoted byM|L. The term “1-reduct” stems from the fact that it refers to thefirst
component of the model.

4 Characterising Relative Equivalence

For logic programs, the above relativised notions of equivalence are characterised by
Woltran [19] in terms of what are calledrelativised strong(resp.,uniform) equivalence
models, or RSE(resp.,RUE) modelsfor short. We start by re-expressing these concepts
in terms of ordinary models in the logicN5.

Definition 4. LetΠ be a theory inL′ andL a sublanguage ofL′. A modelM = 〈H,T 〉
is anRSEL-modelofΠ if it meets the following criteria:

4.1 M is a total model ofΠ or
4.2 M is theL-1-reduct of a non-total model〈H ′, T 〉 ofΠ , and
4.3 for any non-total model〈J, T 〉 ofΠ , T \J ∩ L 6= ∅.

In other words, 4.3 holds together with one of 4.1 or 4.2. It iseasy to see that for disjunc-
tive logic programs, the above concept coincides with that of an RSE-model as defined
by Woltran [19]. Indeed, we must check a preliminary condition and Conditions (i)-(iii)
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of Definition 6 by Woltran [19]. Clearly, both 4.1 and 4.2 above imply thatT is a clas-
sical model ofΠ as required by (i). Condition 4.3 above re-expresses Clause(ii), while
Condition 4.2 re-expresses Clause (iii). Finally, we checkthe preliminary condition of
Woltran [19]. By 4.2, ifH 6= T then〈H,T 〉 is the reduct of a non-total model〈H ′, T 〉
of Π , soH ′ ⊂ T . Therefore,H ′ ∩ L ⊆ T ∩ L. But by 4.3,H ′ ∩ L 6= T ∩ L. Since
H = H ′ ∩ L, it follows thatH ⊂ T ∩ L as required by the original definition of an
RSE-model.

Now the following lemma is straightforward but useful. It says that two models with
the sameL-1-reduct satisfy the sameL-sentences.

Lemma 1. LetM andM′ beN5 models andϕ a formula all of whose atoms belong
to the languageL. IfM|L =M′|L, thenM |= ϕ iffM′ |= ϕ.

4.1 Relativised Strong Equivalence

Relativised strong equivalence (RSE) is defined as Woltran [19] does but for arbitrary
theories. We can now show that sameness of RSE-models is a sufficient condition to
ensure RSE.

Theorem 1. LetΠ1 andΠ2 be theories having the same RSEL-models. Then,Π1 and
Π2 are strongly equivalent relative toL.

Proof. Assume the hypothesis of the theorem and consider the theoryΠ1∪Σ whereΣ
is any set of sentences inL. Consider any equilibrium modelM = 〈T, T 〉 of Π1 ∪ Σ.
We shall show thatM is also an equilibrium model ofΠ2 ∪Σ. By the symmetry of the
situation, the same argument will show that any equilibriummodel ofΠ2 ∪Σ must be
an equilibrium model ofΠ1 ∪Σ.

We first show thatM is an RSEL-model ofΠ1. Evidently, it is a total model of
Π1, so Condition 4.1 holds. Suppose that Condition 4.3 fails, so that there is a model
〈J, T 〉 of Π1 with J ⊂ T such thatT ∩ L = J ∩ L. Since〈T, T 〉 |= Σ, by Lemma 1,
〈J, T 〉 |= Σ, but this contradicts the assumption that〈T, T 〉 is an equilibrium model
of Π1 ∪ Σ. So Condition 4.3 applies andM is an RSEL-model ofΠ1 and hence by
assumption ofΠ2. Therefore

〈T, T 〉 |= Π2 ∪Σ.

We need to show that it is in equilibrium. Note that since〈T, T 〉 is an RSEL-model of
Π2, by Condition 4.3 there is no model〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L =
J ∩ L. Suppose thatM is not an equilibrium model ofΠ2 ∪ Σ. ThenΠ2 ∪ Σ has a
model〈H,T 〉 with H ⊂ T , so in particular〈H,T 〉 |= Π2 and by 4.3,T \H ∩ L 6= ∅.
So,H ∩ L ⊂ T ∩ L ⊆ T . It follows that 〈H ∩ L, T 〉 is theL-1-reduct of a model
〈H,T 〉 |= Π2, withH ⊂ T . By Condition 4.2,〈H ∩L, T 〉 is therefore an RSEL-model
of Π2, hence ofΠ1. So, again by 4.2, it is theL-1-reduct of some model〈H ′, T 〉 of
Π1 with H ′ ⊂ T such thatH ′ ∩ L = H ∩ L. By Lemma 1, since〈H,T 〉 |= Σ also
〈H ′, T 〉 |= Σ and hence〈H ′, T 〉 |= Π1 ∪ Σ. But this contradicts the assumption that
〈T, T 〉 is an equilibrium model ofΠ1 ∪ Σ. Therefore,〈T, T 〉 is an equilibrium model
of Π2 ∪Σ. ⊓⊔
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We now tackle the converse of Theorem 1.

Theorem 2. LetΠ1 andΠ2 be theories such thatΠ1 andΠ2 are strongly equivalent
relative toL. Then, they have the same RSEL-models.

Proof. Suppose thatΠ1 andΠ2 have different RSEL-models. We shall define a set of
L-sentencesΣ such thatΠ1∪Σ andΠ2∪Σ have different equilibrium models. Without
loss of generalisation, assume there is anM which is an RSEL-model ofΠ1 but not of
Π2. We consider several cases and subcases.

CASE 1. M = 〈T, T 〉 is a total RSEL-model ofΠ1 that is not an RSEL-model ofΠ2.
SetΣ = T ∩L. Then clearlyM |= Π1∪Σ. Moreover,M is an equilibrium model
of Π1 ∪ Σ. For, if not, there is a model〈H,T 〉 of Π1 ∪ Σ with H ⊂ T . Since
Σ = T ∩L, we must haveT ∩L ⊆ H . But thenT ∩L = H ∩L, which contradicts
Condition 4.3 forM being an RSEL-model ofΠ1. There are two reasons whyM
is not an RSEL-model ofΠ2.
SUBCASE 1.1. M 6|= Π2. In this case, sinceM 6|= Π2, it cannot be an equilibrium

model ofΠ2 ∪Σ.
SUBCASE 1.2. M |= Π2, but Condition 4.3 fails forΠ2. So, there is a model
〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L = J ∩ L. Applying Lemma 1, we
conclude that〈J, T 〉 |= Σ since〈T, T 〉 |= Σ. Therefore,〈J, T 〉 |= Π2 ∪Σ, so
M is not an equilibrium model ofΠ2 ∪Σ.

CASE 2. M = 〈H,T 〉 is a non-total RSEL-model ofΠ1 that is not an RSEL-model
of Π2. Observe that〈T, T 〉 is a total RSEL-model ofΠ1. Hence, in case〈T, T 〉 is
not an RSEL-model ofΠ2, we can apply the same argument of Case 1 to conclude
that〈T, T 〉 is an equilibrium model ofΠ1∪Σ and, again, cannot be an equilibrium
model ofΠ2 ∪Σ.
So suppose〈T, T 〉 is an RSEL-model ofΠ2 and Condition 4.2 fails forM =
〈H,T 〉, i.e., there is no non-total model ofΠ2 whoseL-1-reduct equalsM. Let
Γ = {A → B | A,B ∈ (T \H) ∩ L}. By Condition 4.3,Γ is non-empty. Set
Σ = H ∪ Γ . Now, evidently〈T, T 〉 is a model of bothH , sinceH ⊆ T , and
of Γ , so 〈T, T 〉 |= Π2 ∪ Σ. We claim it is an equilibrium model ofΠ2 ∪ Σ,
For, if not, there is a model〈J, T 〉 of Π2 ∪ Σ with J ⊂ T . Clearly,H ⊆ J , but
H 6= J ∩ L, otherwise〈J ∩ L, T 〉 = M would be an RSEL-model ofΠ2. So,
H ⊂ J ∩ L. Thus,(J ∩ L)\H is non-empty, and by Condition 4.3,(T \J) ∩ L
is also non-empty. Choose anA from (J ∩ L)\H andB from (T \J) ∩ L. Then,
A → B ∈ Γ , but 〈J, T 〉 6|= A → B, since〈J, T 〉, h |= A but 〈J, T 〉, h 6|= B. It
follows that〈J, T 〉 6|= Σ and so〈T, T 〉 is an equilibrium model ofΠ2 ∪ Σ. On
the other hand, it is not an equilibrium model ofΠ1 ∪ Σ. In particular, we know
that 〈H ′, T 〉 |= Π1 ∪ H , since there is a non-total model〈H ′, T 〉 of Π1 whose
L-1-reduct equalsM. Moreover,〈H ′, T 〉 |= Γ since〈H ′, T 〉, h 6|= A for each
A→ B ∈ Γ and〈H ′, T 〉, t |= B for eachA→ B ∈ Γ . ⊓⊔

4.2 Relativised Uniform Equivalence

We now turn to the characterisation of relativised uniform equivalence via the concept
of a relativised uniform equivalence model. First, we mention the following lemma that
will be useful later.
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Lemma 2. SupposeΠ1 andΠ2 are theories which are uniformly equivalent relative to
L. Then, they have same total RSEL-models.

Proof. Assume the hypothesis. SupposeΠ1 has a total RSEL-model〈T, T 〉 that is not
a total RSEL-model ofΠ2. Evidently,〈T, T 〉 |= Π1 ∪ (T ∩ L). Moreover, by Condi-
tion 4.3,〈T, T 〉must be an equilibrium model ofΠ1 ∪ (T ∩L) since there is no model
〈J, T 〉 of Π1 with J ⊂ T such thatT ∩ L ⊆ J ∩ L. Clearly, if 〈T, T 〉 6|= Π2, it cannot
be an equilibrium model ofΠ2 ∪ (T ∩ L). On the other hand, if〈T, T 〉 |= Π2 and
it is not an RSEL-model ofΠ2, then Condition 4.3 fails forΠ2. So, there is a model
〈J, T 〉 of Π2 with J ⊂ T such thatT ∩ L = J ∩ L, whence clearly〈T, T 〉 is not in
equilibrium forΠ2 ∪ (T ∩ L). This contradicts the assumption of relativised uniform
equivalence. ⊓⊔

From now on we assume that all theories are finite. As mentioned previously, this
means that, under the�-ordering among their models, maximal elements are guaran-
teed to exist. So, the following notion is well-defined.

Definition 5. LetΠ be a theory inL′ andL a sublanguage ofL′. An RSEL-model of
Π is anRUEL-modelofΠ if it is either total or maximal under� among all non-total
RSEL-models ofΠ .

Theorem 3. LetΠ1 andΠ2 be theories which are uniformly equivalent relative toL.
Then, they have the same RUEL-models.

Proof. Assume the hypothesis. By Lemma 2, the two theories have the same total
RSEL-models, hence total RUEL-models. Suppose that they differ on non-total RUEL-
models, say thatΠ1 has a non-total RUEL-model〈H,T 〉 that is not an RUEL-model of
Π2.

CASE 1. Suppose there is a non-total RSEL-model〈J, T 〉 of Π2 with H ⊂ J . So,Π2

has a non-total model〈H ′, T 〉 with H ′ ∩ L = J . Choose an elementA from J\H
and setX = H ∪ {A}. Clearly,〈T, T 〉 |= Π1 ∪ X and by maximality,〈T, T 〉 is
an equilibrium model ofΠ1 ∪ X . On the other hand, by inspection,〈H ′, T 〉 is a
non-total model ofΠ2 ∪X , so〈T, T 〉 is not an equilibrium model ofΠ2 ∪X .

CASE 2. Suppose there is no non-total RSEL-model〈J, T 〉 of Π2 with H ⊂ J . Since
〈H,T 〉 is not an RUEL-model ofΠ2, it cannot be an RSEL-model ofΠ2 as well.
Consider the model〈T, T 〉. Since Condition 4.3 holds forΠ1, clearly〈T, T 〉 is an
RSEL-model ofΠ1, and hence by Lemma 2 an RSEL-model ofΠ2. So,〈T, T 〉 |=
Π2 ∪H . Since there is noH2 ⊇ H such thatH2 ⊂ T and〈H2, T 〉 |= Π2, 〈T, T 〉
is an equilibrium model ofΠ2∪H . On the other hand,〈T, T 〉 is not an equilibrium
model ofΠ2 ∪H since〈H ′, T 〉 |= Π1 ∪H , for someH ′ ∩ L = H . ⊓⊔

Theorem 4. Suppose thatΠ1 andΠ2 are theories with the same RUEL-models. Then,
they are uniformly equivalent relative toL.

Proof. Assume the hypothesis and suppose that for some setX of L atoms,Π1∪X has
an equilibrium model〈T, T 〉 that is not an equilibrium model ofΠ2∪X . Clearly,〈T, T 〉
is a total RUEL-model ofΠ1 and so, by assumption, also ofΠ2. Therefore,〈T, T 〉 |=
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Π2. Since it is not an equilibrium model ofΠ2∪X , there is a model〈H,T 〉 |= Π2∪X
with H ⊂ T and clearlyX ⊆ H . Then,〈H ∩L, T 〉 is an RSEL-model ofΠ2. Keeping
T fixed, we extend this to a maximal non-total RSEL-model 〈H2, T 〉 of Π2, where
H ⊆ H2. Then, there is a model〈H ′, T 〉 of Π2 such that

H ′ ∩ L = H2 ⊇ H ∩ L.

Evidently,〈H2, T 〉 is an RUEL-model ofΠ2. However, it is not even an RSEL-model
of Π1. If it were, there would be a model〈H1, T 〉 of Π1 with H1 ∩ L = H2. Since
X ⊆ H∩L ⊆ H1, 〈H1, T 〉would be a non-total model ofΠ1∪X , which is impossible
by the initial assumption that〈T, T 〉 is an equilibrium model ofΠ1 ∪X . ⊓⊔

As we have seen in Lemma 2, total RUEL-models and total RSEL-models coincide.
For non-total RUEL-models, we obtain an alternative characterisation as follows:

Lemma 3. LetΠ be a theory inL′ andL a sublanguage ofL′. A pair 〈H,T 〉 is a non-
total RUEL-model ofΠ iff 〈T, T 〉 |= Π and it is theL-projection of an(unrelativised)
UE-model〈H ′, T 〉 ofΠ withH ′ ∩ L ⊂ T ∩ L.

5 An Application to Prediction and Explanation

In this section, we illustrate how the concept of relativised uniform equivalence can be
applied in contexts such as prediction and abductive inference and explanation. Differ-
ent types of scenarios are possible. For instance, in predicting the behaviour of physical
systems we might have a general theoryΠ comprising strict laws as well as nonmono-
tonic rules, e.g., describing inertia axioms, default conditions etc., together with initial
conditions represented by atomic formulas in a suitable subset of the language. Another
type of scenario is represented by anabductive logic program, 〈Π,A〉, whereΠ is a
logic program (of any general type, e.g., disjunctive, nested, etc.) andA is a set of lit-
erals calledabduciblesin a suitable sublanguage ofΠ . In each case, we are interested
in the question: When are two such “theories” equivalent in terms of predictive power,
explanatory capacity, and so on? The structure of inferenceis similar in the two cases
mentioned. In each case, the theoryΠ conjoined with a set{A1, . . . , An} of literals
representing initial conditions, abducibles, etc., entails a sentence, sayϕ, representing,
e.g., the prediction of a physical state, the effects of an action, or an explanandum in an
abductive system. In the context of equilibrium logic and ASP, entailment is of course
nonmonotonic.2

To fix notation and terminology, let us consider the general case ofabductive the-
ories, which are given as pairs of form〈Π,A〉, whereΠ is a theory andA is a set of
literals, and the matter of equivalence with respect to abductive explanations. This leads
to the following definition.

2 The main difference between a prediction in the former senseand an abductive explanation
in the latter sense ismethodological: in the first case, the literals{A1, . . . , An} are specified
in advance as part of the initial conditions of the system, while in the second case, it isϕ
that is supplied in advance as an explanandum, and the abducibles{A1, . . . , An} are to be
discovered.
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Definition 6. An abductive explanationof a sentenceϕ by an abductive theoryP =
〈Π,A〉 is a set{A1, . . . , An} satisfying

Π ∪ {A1, . . . , An} |∼ ϕ (1)

as well as the following two conditions:

6.1 {A1, . . . , An} ⊆ A and
6.2 Π ∪ {A1, . . . , An} is consistent,

where|∼ is nonmonotonic entailment.3

Note that Condition 6.2 merely ensures that the explanationof ϕ is non-trivial. For
present purposes we do not, however, insist that{A1, . . . , An} be a minimal set of
abducibles explainingϕ, nor even that it is non-empty. We note further that Defini-
tion 6 is equivalent to the definition of an abductive explanation as given by Inoue and
Sakama [8] for the case of disjunctive logic programs with default negations in their
heads.

If {A1, . . . , An} is an abductive explanation ofϕ from P , then we also say that
{A1, . . . , An} explainsϕ in P .P is said to haveexplanatory powerif there exist some
ϕ and{A1, . . . , An} satisfying (1) as well as Conditions 6.1 and 6.2. Evidently,two
abductive theories can have the same explanatory power in weaker or stronger senses.
They may capture the same explananda by means of possibly differing explanans (ab-
ducibles), and therefore differing explanations, or they may support essentially the same
explanations. In this latter sense, we can say therefore that two abductive theories,P1

andP2, based on the same abducible setA, have thesame explanatory power in the
strong senseif, for any ϕ and any{A1, . . . , An} ⊆ A, {A1, . . . , An} explainsϕ in
P1 iff {A1, . . . , An} explainsϕ in P2. We consider here only abductive theories with
(non-vacuous) explanatory power.

We can easily relate this notion of explanatory equivalenceto relativised uniform
equivalence. The following is straightforward.

Proposition 1. LetP1 = 〈Π1,A〉 andP2 = 〈Π2,A〉 be abductive theories based on
the same abducibles. IfΠ1 andΠ2 are uniformly equivalent relative toA, thenP1 and
P2 have the same explanatory power(in the strong sense).

If Π1 andΠ2 are uniformly equivalent relative toA, then for any{A1, . . . , An} ⊆ A,
Π1 ∪ {A1, . . . , An} andΠ2 ∪ {A1, . . . , An} have the same equilibrium models, so the
explanatory power ofP1 andP2 is the same whether we interpret entailment|∼ in the
cautious or brave sense.

To establish a converse of Proposition 1, we need to pin down the type of inference
defined by|∼. Evidently, brave reasoning has a greater chance of succeeding, since
prima facieit seems possible that theories might have the same consequences in the
cautious sense, even under the addition of new atoms, yet have different equilibrium
models and therefore not be relativised uniformly equivalent.

So let us suppose that|∼ is entailment with respect to to some equilibrium model;
in other words,Π |∼ ϕ iff ϕ is true in some equilibrium model ofΠ . Then we have:

3 We leave open for the moment whether entailment is to be understood in the cautious or brave
sense.
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Proposition 2. If P1 andP2 have the same(non-vacuous) explanatory power(in the
strong sense), thenΠ1 andΠ2 are uniformly equivalent relative toA.

Proof. Assume the hypothesis of the proposition and suppose that they are not uni-
formly equivalent relative toA. Then, there exists a subset{A1, . . . , An} ⊆ A such
thatΠ1 ∪ {A1, . . . , An} andΠ2 ∪ {A1, . . . , An} have different equilibrium models.
Say,Π1 ∪{A1, . . . , An} has an equilibrium modelM that is not an equilibrium model
of Π2 ∪ {A1, . . . , An}. We can establish thatP1 andP2 have different explanatory
powers if we can find a sentenceϕ that is true inM, so that

Π1 ∪ {A1, . . . , An} |∼ ϕ (2)

but
Π2 ∪ {A1, . . . , An} 6 |∼ϕ. (3)

This means thatϕ has to be chosen so there is no other equilibrium model ofΠ2 ∪
{A1, . . . , An} in whichϕ is true. Moreover, Conditions 6.1 and 6.2 above should also
hold for (2). By assumption, no equilibrium model ofΠ2∪{A1, . . . , An} can be equiva-
lent toM in that it satisfies exactly the same sentences; otherwise itwould make exactly
the same literals true and false and so be exactlyM. So, for each equilibrium model
Mi ofΠ2∪{A1, . . . , An}, there must be some sentenceαi true inM that is not true in
Mi. Since we are assuming that the theories are finite, there areat most finitely many
equilibrium modelsMi of Π2 ∪ {A1, . . . , An} and therefore finitely many suchαi.
Evidently, the sentence

∧
i αi is true inM but not true in any equilibrium model of

Π2 ∪ {A1, . . . , An}. So, we have

Π1 ∪ {A1, . . . , An} |∼
∧

i

αi and (4)

Π2 ∪ {A1, . . . , An} 6 |∼
∧

i

αi. (5)

Furthermore, we have that 6.1 is satisfied and 6.2 holds sinceΠ1 ∪{A1, . . . , An} has a
model. This contradicts the initial assumption thatP1 andP2 have the same explanatory
power. ⊓⊔

Combining Propositions 1 and 2 with Theorems 3 and 4 yields the following se-
mantic characterisation of explanatory equivalence.

Corollary 1. Two abductive theoriesP1 = 〈Π1,A〉 andP2 = 〈Π2,A〉 have the same
explanatory power(in the strong sense) iff Π1 andΠ2 have the same RUEA-models.

We note that Inoue and Sakama [8, 9] provided for the case of abductive logic pro-
grams with default negations in the heads a characterisation similar to our Proposi-
tions 1 and 2. However, they derived that two abductive programs〈Π1,A〉 and〈Π1,A〉
have the same explanatory power iffΠ andΠ2 are strongly equivalent relative toA.
In view of our results, it seems that relativised strong equivalence should in their char-
acterisation be replaced by relative uniform equivalence.Because otherwise we would
obtain that, for anyA, strong equivalence relative toA would coincide with uniform
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equivalence relative toA, which is obviously violated (consider, e.g., the programs
{a ∨ b ←} and{a ← not b; b ← not a} which are uniformly equivalent relative to
{a, b} but not strongly equivalent relative to{a, b}). Let us also note that they do not
apply any semantic characterisations of equivalence analogous to Corollary 1 above. On
the other hand, they also consider equivalence in the context of an extended abduction
concept [9].

6 Complexity

The complexity of relativised equivalence between disjunctive logic programs has been
established by Woltran [19] and has been further studied by Eiter, Fink, and Woltran [2].
Both notions, i.e., RSE and RUE, yieldΠP

2 -complete decision problems. Thus,ΠP
2 -

hardness for these problems is immediate for equilibrium logic. To show that RSE and
RUE remain in classΠP

2 for the general setting studied here, first observe that the
central subtask of checking whether a given pair〈T, T 〉 is an equilibrium model of
some theoryΠ is in coNP. Moreover, to decide the complementary problem ofRUE
betweenΠ1 andΠ2, one can guess setsT, F of literals and check whether〈T, T 〉 is an
equilibrium model of exactly one ofΠ1 ∪ F andΠ2 ∪ F . This algorithm runs in non-
deterministic time with access to an NP-oracle, and thus inΣP

2 . ΠP
2 -membership for

RUE follows immediately. The same argumentation holds for RSE in view of the proof
of Theorem 2, where it is shown that only very simple theories(which are polynomial
in the size to the compared programs) are sufficient to decideRSE.

7 Conclusions and Future Work

In this paper, we extended results for relativised notions of equivalence from logic pro-
grams under the answer-set semantics to arbitrary (propositional) theories in equilib-
rium logic. To this end, we introduced the concept of anL-1-reduct which restricts
the language of one world in the two-world Kripke-model for equilibrium logic. These
partially bound models can be shown to characterise relativised strong and uniform
equivalence between theories in the same manner as relativised SE- and UE-models
are used for logic programs [19]. Furthermore, we discusseda possible application of
relativised equivalences in the area of abduction and we briefly studied the complexity
of the introduced equivalence notions.

An interesting topic for further work is to extend our notions to include the removal
of auxiliary letters—important for considering submodules of theories having dedicated
output atoms—tantamount to consideringprojected equilibrium models, where only
a subset of the atoms are of interest. This would be an extension of the framework
introduced by Eiter, Fink, and Woltran [3] for disjunctive logic programs.
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Abstract. The study of synonymy among propositional theories in equilibrium
logic, begun in [36], is extended to the first-order case.

1 Introduction

Quantified equilibrium logic (QEL) has been developed in [37–39] as a logical founda-
tion for answer set programs with variables. In particular,the version of QEL presented
in [39] and [23] can be considered adequate for the general, first-order version of stable
model semantics as given in [16]. This version of QEL is basedon the logicQHT

s
=

,
called quantified here-and-there logic with static domainsand decidable equality. Logic
programs or general theories are strongly equivalent with respect to QEL (or stable
model semantics) if and only if they are logically equivalent in QHTs

=
, [23].

In answer set programming (ASP) strong equivalence (and other forms of equiv-
alence between programs) has been recognised as providing an important conceptual
and practical tool for program simplification, transformation and optimisation. Follow-
ing its initial study in [22], the concept of strong equivalence for logic programs in ASP
has given rise to a substantial body of further work looking at different characterisations
[15, 43], new variations and applications of the idea [8, 35,44], as well as developing
systems to test for strong equivalence [35, 9]. Recently, some of this work on program
transformation [10, 45] has been extended to the first-ordercase.

In basic areas of mathematics, like algebra and geometry, one is familiar with the
idea that theories may be presented in different ways with different primitive concepts.
Similarly, if one consideres taxonomies, classification schemes, ontologies and in gen-
eral any knowledge-based system, there are often many different ways to represent ap-
parently the same information. This motivates the search for a concept of equivalence
or synonymy that applies to logic programs or nonmonotonic theories that are formu-
lated in different vocabularies. This idea was pursued in [36] which proposed a formal
concept of synonymy applying to logic programs and propositional theories in equi-
librium logic and answer set semantics. The aim of the present paper is to extend this

⋆ Partially supported by CICyT projects TIC-2003-9001-C02 and TIN2006-15455-CO3.
⋆⋆ Partially supported by CICyT project TIC-2003-9001-C01, TIN2006-15455-CO1 and Junta

de Andalucia project TIC-115
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work to theories formulated in first-order logic by using quantified equilibrium logic.
We start following [36] by considering formal and informal desiderata that a concept
of synonymy should fulfil. We then introduce QEL as a logical foundation for ASP
and extensions, and present the main characterisation of strong equivalence from [23].
In §4 we propose a strong concept of equivalence or synonymy for theories in quanti-
fied equilibrium logic, give different characterisations of it, and show that it fulfils the
adequacy conditions discussed in 2. The main characteristics of this concept are as fol-
lows. TheoriesΠ1 andΠ2 in distinct languages are said to be synonymous if each is
bijectively interpretable in the other. In particular, thismeans that there is faithful inter-
pretation of each theory in the other and a one-one correspondence between the models
of the two theories. This correspondence preserves the property of being an equilib-
rium model or answer set. In addition,Π1 has a definitional extensions that is strongly
equivalent to a definitional extension ofΠ2. Moreover, in a suitable sense,Π1 andΠ2

remain equivalent or synonymous when extended by the addition of new formulas.

2 Synonymous Theories

What does it mean to say that two programs or theories,Π1 andΠ2, in different lan-
guages,L1 andL2, are synonymous? We consider six desiderata D1-D6 that we believe
should be satisfied by any basic concept of synonymy. D1-D3 and D5-D6 are quite gen-
eral and seem to be applicable to any theories describing or modelling some knowledge
domain; D4 takes account of the special nature of a nonmonotonic or logic program-
ming system.

D1. Translatability. The languageL1 of Π1 should be translatable, via a mapping, say
τ , into the languageL2 of Π2. The translationτ should be uniform, so we require
it to be recursive.

D2. Semantic correspondence. There should be a corresponding correlation between
the structures ofL1 andL2, in particular a mappingF from L2-structures toL1-
structures that respects the translationτ in the sense that for anyL2-structureI and
L1-formulaϕ,

F (I) |= ϕ⇔ I |= τ(ϕ).

D3. Equivalence. Under translation,Π1 andΠ2 should be in an obvious sense equiva-
lent.

D4. Intended models. The semantic correlation should respect the intended models of
the two theories. In the present case this means preserving the property of being an
equilibrium model or answer set:M is an answer setΠ2 iff F (M) is an answer
set ofΠ1.

D5. Idempotence. IfΠ1 is synonymous withΠ2 under the previous mappings, then
under corresponding mappings, sayτ ′ andF ′,Π2 should be synonymous withΠ1.

D6. Robustness.Π1 andΠ2 should remain synonymous under the addition of new
formulas, ie. for anyΣ,Π1 ∪Σ should be synonymous withΠ2 ∪ τ(Σ), similarly
Π2 ∪Π with Π1 ∪ τ

′(Π).

The first two conditions provide the cornerstone of any formal approach to interthe-
ory relations. Different kinds of relations between theories are obtained by specifying
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additional conditions that the mappings should satisfy (see eg [30, 34, 41]). In this case
we require (D3, D5) that theories are in an obvious sense equivalent once the translation
maps are made available. Since we are dealing here with logicprograms and their gen-
eralisations in the ASP framework, we can understand this either in the weaker sense
of having the same answer sets, or in the sense of strong equivalence explained earlier.
The problem is that if we choose the weaker variant then we have virtually no hope to
fulfil condition D6 which requires that the theories remain equivalent when embedded
in any richer context. On the other hand, if we interpret D3 tomean that under suitable
translation manuals,Π1 andΠ2 are strongly equivalent, then we may expect thatΠ1

andΠ2 remain synonymous when extended with new rules.
Perhaps somewhat surprisingly we shall approach the problem of synonymy via the

classical theory of interpretations. Briefly we shall say that theories are synonymous
if each is faithfully interpreted in the other in such a way that the interpretations are
idempotent (see below); this is basically the standard approach followed in classical
predicate logic, see eg. [4, 40]. We adapt it here to the case of a nonmonotonic system
based on a non-classical logic.

3 Quantified Equilibrium Logic (QEL)

Equilibrium logic for propositional theories and logic programs was presented in [31]
as a foundation for answer set semantics and extended to the first-order case in [37, 38]
and in slightly more general, modified form in [39]. For a survey of the main properties
of equilibrium logic, see [32]. Usually in quantified equilibrium logic we consider a
full first-order language allowing function symbols and we include a second, strong
negation operator as occurs in several ASP dialects. For thepresent purpose we consider
the function-free language with a single negation symbol, ‘¬’. So, in particular, we shall
work with a quantified version of the logic HT ofhere-and-there. In other respects we
follow the treatment of [39].

3.1 General Structures for Quantified Here-and-There Logic

A function-free first-order languageL = 〈C,P 〉 consists of a sets of constantsC and
predicate symbolsP ; each predicate symbolp ∈ P has an assigned arity. Moreover,
we assume a fixed countably infinite set of variables, the symbols, ‘→’, ‘ ∨’, ‘ ∧’, ‘ ¬’,
‘∃’, ‘ ∀’ and auxiliary parentheses ‘(’,‘ )’. Variables and constant are generically called
terms. Atomsandformulasare constructed as usual;closedformulas, orsentences, are
those where each variable is bound by some quantifier. AtheoryΠ is a set of sentences.

If D is a non-empty set, we denote byAtD(C,P ) the set of atomic sentences of
L = 〈C,P 〉 with additional constant symbols for each element ofD. A here-and-there
L-structure with static domains is a tupleI = 〈(D, I), Ih, It〉 where

– D is a non-empty set, called thedomainof I.
– I : C ∪D → D is called theassignmentand verifiesI(d) = d for all d ∈ D.
– Ih ⊆ It ⊂ AtD(C,P ).
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We can think ofI as a structure similar to a first-order classical structure,but having
two parts or componentsh andt that correspond to two different points or “worlds”,
‘here’ and ‘there’ in the sense of Kripke semantics for intuitionistic logic [7], where the
worlds are ordered byh ≤ t. At each worldw ∈ {h, t} one verifies a set of atomsIw

in the expanded language for the domainD. We call the model static, since, in contrast
to say intuitionistic logic, the same domain serves each of the worlds.1 Sinceh ≤ t,
whatever is verified ath remains true att. The satisfaction relation forI is defined so
as to reflect the two different components, so we writeI, w |= ϕ to denote thatϕ is
true inI with respect to thew component. Evidently we should require that an atomic
sentence is true atw just in case it belongs toIw. Formally, ifp(t1, . . . , tn) ∈ AtD then

I, w |= p(t1, . . . , tn) iff p(I(t1), . . . , I(tn)) ∈ Iw.

Then|= is extended recursively as follows2:

– I, w |= ϕ ∧ ψ iff I, w |= ϕ andI, w |= ψ.
– I, w |= ϕ ∨ ψ iff I, w |= ϕ or I, w |= ψ.
– I, t |= ϕ → ψ iff I, t 6|= ϕ or I, t |= ψ.
– I, h |= ϕ→ ψ iff I, t |= ϕ → ψ andI, h 6|= ϕ or I, h |= ψ.
– I, w |= ¬ϕ iff I, t 6|= ϕ.
– I, t |= ∀xϕ(x) iff I, t |= ϕ(d) for all d ∈ D.
– I, h |= ∀xϕ(x) iff I, t |= ∀xϕ(x) andI, h |= ϕ(d) for all d ∈ D.
– I, w |= ∃xϕ(x) iff I, w |= ϕ(d) for somed ∈ D.

Truth of a sentence in a structure is defined as follows:I |= ϕ iff I, w |= ϕ for each
w ∈ {h, t}; in this case,I is said to be amodelof ϕ. An structureI is a model of a
theoryΠ if it is a model of everyϕ ∈ Π , denoted byI |= Π . A sentenceϕ is valid if
it is true in all structures, denoted by|= ϕ. A sentenceϕ is aconsequenceof a theory
Π if every model ofΠ is a model ofϕ, in symbolsΠ |= ϕ. The resulting logic is
calledQuantified Here-and-There Logic with static domainsdenoted byQHTs(L). In
terms of satisfiability and validity this logic is equivalent to the logic introduced before
in [38].

The logicQHT
s(L) can be axiomatised as follows. We start with the usual axioms

and rules of intuitionistic propositional logic and add theaxiom of Hosoi

α ∨ (¬β ∨ (α→ β))

which determines 2-element, here-and-there models. This system is extended to first-
order logic (see [38, 39]) by adding the following axiom to obtain the usual non-static
version of first-order here-and-there logic:

∀x¬¬α(x) → ∃x(α(x) → ∀xα(x))

1 Alternatively it is quite common to speak of a logic withconstantdomains. However this is
ambiguous since it might suggest that the domain is composedonly of constants, which is not
intended here.

2 The reader may easily check that the following correspond exactly to the usual Kripke seman-
tics for intuitionistic logic given our assumptions about the two worldsh andt and the single
domainD, see eg [6]
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Finally, we add the following axiom for static domains, to obtainQHTs(L):

¬¬∃xα(x) → ∃x¬¬α(x)

Ono proved in [28] that the system obtained by extending the propositional calculus
with the axiom∀x(α(x) ∨ β) → (∀xα(x) ∨ β) is complete forQHT

s(L). In [23],
another complete calculus is obtained by extending the propositional calculus with the
axiom

∃x(α(x) → ∀xα(x))

In this paper we also consider the equality predicate,
.
= 6∈ P , interpreted by the following

condition for everyw ∈ {h, t}

– M, w |= a
.
= b iff I(a) = I(b) for all constantsa, b.

To obtain a complete axiomatisation, we then need to add the axiom of “decidible equal-
ity”

∀x∀y(x
.
= y ∨ x 6

.
= y).

We denote the resulting logic byQHTs
=

(L) (see [23] for details).
As usual in first order logic, satisfiability and validity areindependent from the

language. IfI = 〈(D, I), Ih, It〉 is anL′-structure andL′ ⊃ L, we denote byI|L the
restriction ofI to the sublanguageL:

I|L = 〈(D, I|L), Ih|L, I
t|L〉

Proposition 1. Suppose thatL′ ⊃ L, Π is a theory inL andM is anL′-model ofΠ .
ThenM|L is aL′-model ofΠ .

Proposition 2. Suppose thatL′ ⊃ L andϕ ∈ L. Thenϕ is valid (resp. satisfiable) in
QHT

s
=
(L) if and only if is valid (resp. satisfiable) inQHT

s
=
(L′).

This proposition allows us to omit reference to the languagein the logic so it can be
denoted simply byQHTs

=
.

3.2 Equilibrium Models

As in the propositional case, quantified equilibrium logic is based on a suitable notion
of minimal model.

Definition 1. Among quantified here-and-there structures we define the order � as fol-
lows: 〈(D, I), Ih, It〉 � 〈(D′, J), Jh, J t〉 if D = D′, I = J , It = J t andIh ⊆ Jh. If
the subset relation holds strictly, we write ‘�’.

Definition 2. LetΠ be a theory andI = 〈(D, I), Ih, It〉 a model ofΠ .

1. I is said to betotal if Ih = It.
2. I is said to be anequilibriummodel ofΠ (or short, we say: “I is in equilibrium”) if

it is minimal under� among models ofΠ , and it is total. It is denoted byI |=e Π .
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Notice that a total here-and-there model of a theoryΠ is equivalent to a classical first
order model ofΠ .

The logic defined by the equilibrium models is calledQuantified Equilibrium Logic
and it is also independent of the language, as seen by the following result.

Proposition 3. LetΠ be a theory inL andM an equilibrium model ofΠ in QHTs
=
(L′)

with L′ ⊃ L. ThenM|L is an equilibrium model ofΠ in QHT
s
=
(L).

3.3 Strong equivalence for theories

We say that two setsΓ , ∆ of first-order sentences arestrongly equivalentif for every
setΣ of first-order sentences, possibly of a larger signature, the setsΓ ∪Σ,∆∪Σ have
the same equilibrium models.

Theorem 1 (Strong Equivalence of theories, [23]).For any setsΓ , ∆ of first-order
sentences, the following conditions are equivalent:

(i) the setsΓ and∆ are satisfied by the same here-and-there structures;
(ii) for every setΣ of first-order sentences, possibly of a larger signature, the setsΓ∪Σ

and∆∪Σ have the same equilibrium models, ieΓ and∆ are strongly equivalent.

Note that the above notion of equilibrium model coincides with the concept of stable
model for logic programs with variables presented in [16]. The concept of strong equiv-
alence and its characterisation can be found in [23]. By strong completeness, condition
(i) of Theorem 1 means thatΓ and∆ are logically equivalent inQHTs

=
.

4 Interpretability and Synonymy

We use the following notation and terminology. Boldfacex stands for a tuple of vari-
ables,x = (x1, . . . , xn), whileϕ(x) = ϕ(x1, . . . , xn) is a formula whose free variables
arex1,. . . ,xn, and∀x = ∀x1 . . .∀xn. If ti are terms, thent = (t1, . . . , tn) denotes a
vectorof terms. LetL = 〈C,P 〉 be a first-order language,p 6∈ P a new predicate sym-
bol andL′ = 〈C,P ∪ {p}〉. LetΠ be a theory inL′. Explicit and implicit definability
are understood as follows

(i) p is said to beexplicitly definablein Π , if there is anL-formulaδτ
p (x) such that

Π |= ∀x(p(x) ↔ δτ
p (x)).

δτ
p is called thedefinitionof p.

(ii) p is said to beimplicitly definablein Π if for any modelsM1 andM2 of Π such
thatM1|L = M2|L we haveM1 = M2.
By the strong completeness theorem forQHT

s
=

proved in [23], this definition is
equivalent to the following one.

(ii’) p is implicitly definablein Π if

Π ∪Π [p/q] |= ∀x(p(x) ↔ q(x))

whereq 6∈ P is a new predicate symbol with the same arity asp andΠ [p/q] is the
theory obtained by replacing every occurrence ofp by q.
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In other words,p is implicitly definable if whenever the interpretation of the L
predicates in models ofΠ is fixed, the interpretation ofp becomes fixed also. The above
definitions are readily extended to the case where several new predicates are definable
in a theory.

4.1 Interpolation and Beth properties in superintuitionistic logics

When the conditions (i) and (ii’) of explicit and implicit definability are always equiv-
alent, the logic in question is said to have theBeth property, [18]. Closely related to
Beth is the property ofinterpolation. A logic is said to have the interpolation property
if whenever

⊢ ϕ→ ψ

there exists a sentenceξ (the interpolant) such that

⊢ ϕ→ ξ and ⊢ ξ → ψ

where all predicate and constant symbols ofξ are contained in bothϕ andψ.
It can be shown that the interpolation property implies the Beth property in all super-

intuionistic predicate logics [18]. Moreover, Ono [28] showed that interpolation holds
in the logicQHTs of quantified here-and-there with constant domains.3 Consequently,
QHT

s also has the Beth property. Lastly, Maksimova showed in [24,25] that adding
pure equality axioms, eg decidible equality axiom, to any superintuitionistic logic pre-
serves the interpolation and Beth properties (see also [18]). We conclude therefore

Proposition 4. The logicQHTs
=

possesses the Beth property.

LetL1 = 〈C1, P1〉 andL2 = 〈C2, P2〉 be disjoint languages.4 By an interpretation
of L1 in L2 we mean

1. For each predicatep ∈ P1, anL2-formulaδτ
p explicitly definingp by the formula

∀x(p(x) ↔ δτ
p (x)); we denote byτ the set of all definitions.

2. An induced mapping, also denoted byτ , fromL1-formulas (resp.L1-terms) toL2-
formulas (resp.L2-terms) such that
(a) τ(x) = x and for everya ∈ C1, τ(a) ∈ C2; if t = (t1, . . . , tn) is a vector of

terms,τ(t) denotes(τ(t1), . . . , τ(tn));
(b) if t is a vector of terms, thenτ(p(t)) = δτ

p (τ(t)); τ(t1
.
= t2) = τ(t1)

.
= τ(t2);

(c) τ is extended recursively byτ(ϕ ∧ ψ) = τ(ϕ) ∧ τ(ψ), τ(ϕ ∨ ψ) = τ(ϕ) ∨
τ(ψ), τ(ϕ → ψ) = τ(ϕ) → τ(ψ), τ(¬ϕ) = ¬τ(ϕ), τ(∀xϕ) = ∀xτ(ϕ) and
τ(∃xϕ) = ∃xτ(ϕ).

Any interpretationτ of L1 in L2 induces a mappingFτ from L2-structures toL1-
structures: ifI = 〈(D, I), Ih, It〉, thenFτ (I) = 〈(D, J), Jh, J t〉 is defined as follows:

3 Ono’s axiomatisation ofQHTs uses the constant domains axiom∀x(α(x)∨β) → (∀xα(x)∨
β), as well as alternative axioms for propositional here-and-there, viz.p ∨ (p → (q ∨ ¬q))
and(p→ q)∨ (q → p)∨ (p↔¬q). However, the axioms given here are equivalent to Ono’s.

4 Any languages can be made disjoint by renaming. Alternatively we can allow thatL1 andL2

have a common sublanguage which any translations simply leave untouched, ie the sublan-
guage is always translated by the identity map.
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– For everya ∈ C1, J(a) = I(τ(a))
– p(t) ∈ Jw iff I, w |= δτ

p (τ(t))

It is easy to check that for anyL1-sentenceϕ and anyw ∈ {h, t}:

Fτ (I), w |= ϕ ⇔ I, w |= τ(ϕ) (1)

and therefore
Fτ (I) |= ϕ ⇔ I |= τ(ϕ) (2)

LetΠ1 andΠ2 be theories inL1 andL2 respectively and letτ be an interpretation of
L1 in L2. Thenτ is said to be aninterpretation ofΠ1 in Π2 if for all L1-sentenceϕ,

Π1 |= ϕ ⇒ Π2 |= τ(ϕ). (3)

In this case it is evident that

I |= Π2 ⇒ Fτ (I) |= Π1. (4)

Generally speaking the mapFτ associated with an interpretationτ of L1 in L2 does not
preserve the ordering� betweenL2-structures. However the following properties are
easy to check and will be useful later:

Lemma 1. Let τ be an interpretation ofL1 in L2, and letI be a totalL2-structure.
Then (i)Fτ (I) is a totalL1-structure; and (ii) ifI ′ � I, thenFτ (I ′) � Fτ (I).

An interpretation ofΠ1 in Π2 is said to befaithful if the converse of (3) also holds,
ie we haveΠ1 |= ϕ iff Π2 |= τ(ϕ). As in classical interpretability theory, further
special cases of interpretation can be obtained by imposingadditional conditions on the
syntactic and semantic translations.

Proposition 5. Let τ be an interpretation ofΠ1 in Π2. Then the following are equiva-
lent.
(i) For everyL2-formulaψ(x) there is anL1-formulaϕ(x) such thatΠ2 |= ∀x(ψ(x)↔
τ(ϕ(x))); ie τ is surjective.
(ii) There is an interpretationσ ofL2 in L1 such that for everyL2-formulaψ,Π2 |=
∀x(ψ(x) ↔ τ(σ(ψ(x)))).
(iii) The mappingFτ from models ofΠ2 into models ofΠ1 is an injection.

An interpretation satisfying any of (i)-(iii) of Proposition 5 is said to besurjective.
Such interpretation preserve the property of being an equilibrium model, in the follow-
ing sense.

Proposition 6. Let τ be a surjective interpretation ofΠ1 in Π2. For any modelM of
Π2, if Fτ (M) is an equilibrium model ofΠ1 thenM is an equilibrium model ofΠ2.

If τ is a surjective and a faithful interpretation, then it is said to be abijective in-
terpretationof Π1 in Π2. It is easy to verify that ifτ is a bijective interpretation ofΠ1

in Π2, then the interpretationσ of Π2 in Π1, defined by condition (ii) in Prop. 5, is
also bijective. The interpretationσ is called theinverseof τ and we say that the two
programs or theories aresynonymouswith respect toτ andσ.
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Proposition 7. If τ is a bijective interpretation ofΠ1 in Π2 then the mappingFτ is a
one-one correspondence between models ofΠ1 and models ofΠ2.

Given an inverse interpretationσ, we can mapL1-structuresI to L2-structures
Fσ(I) in the same way as before. It is readily seen thatFσ(Fτ (M)) = M if M is
a model ofΠ2; however the equality need not hold for other structures (even in the
classical case).

4.2 Verifying the adequacy conditions

Let us now consider synonymy in light of the adequacy conditions D1-D6. First we
consider the sense in which two synonymous theories can be considered equivalent.

Proposition 8. LetΠ1 andΠ2 be synonymous wrtτ andσ. ThenΠ2 ∪ τ is strongly
equivalent withΠ1∪σ. ThusΠ1 andΠ2 have a common definitional extension, ie there
is a theoryΠ in L2 ∪ L1, such thatΠ2 ∪ τ ≡ Π1 ∪ σ ≡ Π .

In fact Proposition 8 can be strengthened to an equivalence:two theories are bi-
jectively interpretable if and only if they have a common definitional extension. This
expresses one way in which the two theories are in an obvious sense equivalent once
enriched with suitable translation manuals. Notice too that there is a close relationship
betweenΠ2 and the translationτ(Π1) ofΠ1 (similarly betweenΠ1 and the translation
σ(Π2) of Π2). It is already clear thatΠ2 |= τ(Π1). Although it is not generally true,
even in the classical case, thatΠ2 ≡ τ(Π1), we do however have:

Corollary 1. LetΠ1 andΠ2 be synonymous wrtτ andσ. For anyL2-formulaϕ,Π2 |=
ϕ↔ τσ(ϕ), andΠ2 |= ϕ⇒ τ(Π1) |= τσ(ϕ).

Next we turn to condition D4.

Proposition 9. LetΠ1 andΠ2 be theories inL1 andL2 respectively, synonymous wrt
τ andσ. Then the bijective mappingFτ from models ofΠ2 to models ofΠ1 preserves
the equilibrium property, ie.M |=e Π2 iff Fτ (M) |=e Π1.

Clearly, condition D5 is satisfied and the presence of an inverse interpretation pro-
vides the sense in which the correspondence betweenΠ1 andΠ2 is idempotent. Lastly
we consider D6.

Proposition 10. LetΠ1 andΠ2 be theories inL1 andL2 respectively synonymous wrt
τ andσ. LetΠ a set ofL1-formulas. ThenΠ1 ∪Π is synonymous withΠ2 ∪ τ(Π) wrt
τ andσ.

5 Literature and Related Work

In classical logic there is a large and well-developed body of work on interpretability
dating from the 1950s. The first systematic treatments of synonymous theories in this
context can be found in [3, 4], a more algebraic approach can be found in [20]. The
classical version of Proposition 6 is essentially contained in [3], though a more detailed
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statement and proof can be found in [40]. Outside the field of mathematics, the classi-
cal theory of interpretability and definitional equivalence was extended and applied to
empirical forms of knowledge in [29, 34, 30]; see also [41] for a more recent account
of translatability issues in such contexts. The theory of interpretations and equivalence
in nonclassical logics is less developed, however especially in the case of superintu-
itionistic logics much is known about key properties, such as interpolation and Beth, on
which interpretability theory depends, see eg. [24–26]. Inthe context of nonmonotonic
logic programming the study of different kinds of equivalence between programs is rel-
atively new (see references in section 1). Until now the caseof programs in different
languages has only been considered in [36]. There has been some discussion of the role
and properties of definitions in ASP in [17, 12],.

6 Concluding Remarks

We have argued that formal approaches to intertheory relations developed for mathe-
matical and scientific knowledge can be applied to systems oflogic programming and
nonmonotonic reasoning used for practical problem solvingand knowledge represen-
tation in AI. In particular, we have described how the theoryof interpretability and
definitional equivalence can be applied in the context of first-order logic programs un-
der answer set semantics and nonmonotonic theoreis in the system of quantified equi-
librium logic. In this setting we regard theories as synonymous if each is bijectively
interpretable in the other, and we have characterised this relation in different ways. We
also showed that this reconstruction satisfies a number of intuitive, informal adequacy
conditions. The applicability of what is essentially a classical logical approach in a non-
classical context relies on two essential features: first, our underlying logic has several
properties such asBeththat help to relate the syntax to the semantics of definitionsand
translations; secondly, in ASP and equilibrium logic the strong concept of equivalence
between theories is fully captured in the underlying monotonic logic (quantified here-
and-there). This allows us to define a robust or modular concept of equivalence across
different languages.

Several avenues are left open for future exploration. For example, one might want
to study other kinds of interpretability relations, eg where the formulaδτ

p defining a
predicatepmay contain additional parameters, or where the semantic mappingFτ may
relate models with different domains. Secondly, one might search for simple structural
properties on the models of two programs or theories that areequivalent to or sufficient
for synonymy. Thirdly, based on these or other properties ofthe theories concerned, it
would be useful to develop systems for checking synonymy, thereby extending current
methods for checking strong equivalence in the case of programs in the same language
[9, 35].
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