
An Alternative Approach to the Efficiency
of Recursive Merge Sort∗

Tibor Ásványi

Eötvös Loránd University, Faculty of Informatics
Budapest, Hungary

asvanyi@inf.elte.hu

Abstract

The time complexity (also called asymptotic running time or operational
complexity) Θ(𝑛 lg𝑛) of merge sort is usually calculated by solving the recur-
rence

𝑇 (𝑛) =

{︂
𝑇 (⌊𝑛/2⌋) + 𝑇 (⌈𝑛/2⌉) + Θ(𝑛) if 𝑛 > 1,
Θ(1) if 𝑛 = 1,

where 𝑛 is the length of the sequence of keys to be sorted, 𝑇 (𝑛) is either the
best-case or the worst-case asymptotic running time of the algorithm, Θ(𝑛)
is that of division + sorted merge, and Θ(1) is that of the base case [1, 2].

In this paper we invent an alternative approach: We analyze the structure
of the tree of recursive calls, consider its depth and estimate the number of
steps [8] of computation at the different levels of that tree. Compared to
the equation above we use a more strict notation [5, 6, 7] and argue about
its scientific and didactic advantages in efficiency analysis of algorithms in
general.

Keywords: algorithm, merge sort, recursion, operational complexity, asymp-
totic running time, efficiency analysis, education

MSC: 68P05, 68P10, 68P20, 68Q25

1. Introduction

In the following sections of this paper first we introduce our time complexity mea-
sure (section 2) which is quite traditional (see [8]) but following [5, 6] we try to
avoid abuse of notation. Next we make clear some notational conventions (section

∗Thanks to the Eötvös Loránd University, Faculty of Informatics for financial support.
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Proceedings of the 11th International Conference on Applied Informatics
Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org

1

3). Then we discuss our version of the algorithm of merge sort (section 4). Next
we present our calculation of the time complexity of this merge sort (section 5).
Finally we argue about the educational and scientific advantages of our method of
calculation compared to solving a recurrence of the above style (Section 6).

2. Operational complexity of programs

Let 𝑀𝑟𝑇 (𝑛) and 𝑚𝑟𝑇 (𝑛) be the maximum and minimum running time of some
program where 𝑛 is the size of its input. Thus 𝑀𝑟𝑇,𝑚𝑟𝑇 : N→ P where P = {𝑥 ∈
R : 𝑥 > 0}. The problem is that we cannot speak of the running time of it, because
we do not know the computing environment. We count the number of steps of the
algorithm instead.

In this paper we define the steps of an algorithm as its subprogram invo-
cations1 and its loop iterations. Counting these steps we get the appropriate
information about the running time of the program while omitting constant factors
which are unknown because we do not know the programming environment [8].

We will be interested in the maximum number of steps denoted as 𝑀𝑇 (𝑛)
(Maximum Time complexity) and in the minimum number of steps denoted as
𝑚𝑇 (𝑛) where 𝑛 is the size of the input data structure, in case of a sorting algorithm
𝑛 is the length of the input array or list. Thus 𝑀𝑇,𝑚𝑇 : N→ N.

While we omit constant factors it is enough to give good estimations of functions
𝑀𝑇 (𝑛) and 𝑚𝑇 (𝑛). These estimations may be functions of type N→ R and they
may be negative for small sizes of the input. Consequently the following sets of
functions are introduced traditionally.

Definition 2.1. 𝑓 : N→ R is
- asymptotically nonnegative, iff ∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 : 𝑓(𝑛) ≥ 0
- asymptotically positive, iff ∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 : 𝑓(𝑛) > 0

Definition 2.2. Assume that 𝑓, 𝑔 and ℎ are asymptotically nonnegative functions.
𝑂(𝑔) = {𝑓 : ∃𝑑 > 0,∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 : 0 ≤ 𝑓(𝑛) ≤ 𝑑 * 𝑔(𝑛)}
Ω(𝑔) = {𝑓 : ∃𝑐 > 0,∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 : 0 ≤ 𝑐 * 𝑔(𝑛) ≤ 𝑓(𝑛)}
Θ(𝑔) = 𝑂(𝑔) ∩ Ω(𝑔)
ℎ+ Θ(𝑔) = {𝑓 : ∃𝑝 ∈ Θ(𝑔) : 𝑓 = ℎ+ 𝑝}
We can say,
𝑓 ∈ 𝑂(𝑔) means that function 𝑔 is an asymptotic upper bound of function 𝑓 ,
𝑓 ∈ Ω(𝑔) means that function 𝑔 is an asymptotic lower bound of function 𝑓
and 𝑓 ∈ Θ(𝑔) means that functions 𝑓 and 𝑔 are asymptotically equivalent (see
corollary 2.3.b). 𝑓 ∈ Θ(𝑔) also means that the asymptotic order of 𝑓 is 𝑔.

Using these notions we can give appropriate estimations of functions 𝑀𝑇 (𝑛) and
𝑚𝑇 (𝑛), as it is illustrated in Section 5.

1Surely we can omit nonrecursive calls and this omission is optional.

2

From the definitions above we can easily derive the following useful conse-
quences:

Corollary 2.3. Assume that 𝑓, 𝑔, ℎ : N→ R are asymptotically nonnegative.
(a) 𝑓 ∈ Θ(𝑔) ∧ 𝑔 ∈ Θ(ℎ) =⇒ 𝑓 ∈ Θ(ℎ)
(b) 𝑓 ∈ Θ(𝑔) ⇐⇒ 𝑔 ∈ Θ(𝑓)

Corollary 2.4. Assume that 𝑓 : N→ R is asymptotically nonnegative
and 𝑔 : N→ R is asymptotically positive.

𝑓 ∈ 𝑂(𝑔) ⇐⇒ (∃𝜓 : N→ R),∃𝑑 > 0,∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 :

𝑑 * 𝑔(𝑛) + 𝜓(𝑛) ≥ 𝑓(𝑛) ∧ lim
𝑘→∞

𝜓(𝑘)

𝑔(𝑘)
= 0

𝑓 ∈ Ω(𝑔) ⇐⇒ (∃𝜙 : N→ R),∃𝑐 > 0,∃𝑁 ∈ N,∀𝑛 ≥ 𝑁 :

𝑐 * 𝑔(𝑛) + 𝜙(𝑛) ≤ 𝑓(𝑛) ∧ lim
𝑘→∞

𝜙(𝑘)

𝑔(𝑘)
= 0

Theorem 2.5. 𝑀𝑟𝑇 ∈ Θ(𝑀𝑇) and 𝑚𝑟𝑇 ∈ Θ(𝑚𝑇).

Proof. Let we have maximum 𝑘 processors where 𝑘 is a constant.
Let a subprogram call as a step consist of the call and return of the subprogram

and all the statements in the subprogram, including the process of exiting from
directly embedded loops, but excluding the iterations of those loops and excluding
the run of the directly embedded subprogram invocations.

Let a loop iteration as a step consist of the evaluation of the condition of
the loop – when this condition is true – followed by performing the statement
part of the loop, including the process of exiting from directly embedded loops,
but excluding the iterations of those loops and excluding the run of the directly
embedded subprogram invocations.

Thus we covered the text of the whole program with a finite number disjoint
stages as steps. (The whole program is considered a special subprogram here.) No
step contains another loop iteration or recursion, although these may be embedded
into the step. Consequently each step has a maximal and a minimal running
time. Let 𝑀 be the maximum of the maximums and let 𝑚 be the minimum
of the minimums. Therefore (𝑚/𝑘) * 𝑀𝑇 (𝑛) ≤ 𝑀𝑟𝑇 (𝑛) ≤ 𝑀 * 𝑀𝑇 (𝑛). Thus
𝑀𝑟𝑇 (𝑛) ∈ Ω(𝑀𝑇 (𝑛)) ∩ 𝑂(𝑀𝑇 (𝑛)) = Θ(𝑀𝑇 (𝑛)). Similarly (𝑚/𝑘) * 𝑚𝑇 (𝑛) ≤
𝑚𝑟𝑇 (𝑛) ≤𝑀 *𝑚𝑇 (𝑛). Thus 𝑚𝑟𝑇 (𝑛) ∈ Ω(𝑚𝑇 (𝑛)) ∩𝑂(𝑚𝑇 (𝑛)) = Θ(𝑚𝑇 (𝑛)).

Thus it is enough to calculate the asymptotic order of 𝑀𝑇 (𝑛) and 𝑚𝑇 (𝑛), that
of 𝑀𝑟𝑇 (𝑛) and 𝑚𝑟𝑇 (𝑛) will be the same respectively. (See corollary 2.3.) Conse-
quently we have the following corollary.

Corollary 2.6. (𝑀𝑇 ∈ Θ(ℎ) ⇐⇒ 𝑀𝑟𝑇 ∈ Θ(ℎ)) ∧ (𝑚𝑇 ∈ Θ(𝑔) ⇐⇒ 𝑚𝑟𝑇 ∈
Θ(𝑔))

Remark 2.7. Clearly, any definitions of 𝑀𝑇 (𝑛) and 𝑚𝑇 (𝑛) suffice, provided that
theorem 2.5 remains true. For example, we can omit (some of the) nonrecursive
calls, if it is more convenient for us.

3

3. Notations

We suppose that an array consists of a pointer and a so-called array object where
the pointer refers to the object. An array object contains the length of the array
object and its elements.

𝐴 : T[𝑛] means that 𝐴 is a pointer referring to an array object with element
type T and length 𝑛. If we write 𝐴 : T[𝑛] on a formal parameter list, it specifies
pointer 𝐴 of type T[] and 𝑛 is just a short notation for the length of the (actual
parameter) array: 𝑛 can be omitted here, if it is not needed. 𝐴 : T[𝑛] can also be
a declaration statement. Then it declares pointer 𝐴 of type T[], creates the array
object of 𝑛 elements and assigns its address to 𝐴. We suppose that this array
object is automatically deleted when the block containing it is finished. Arrays are
indexed from 0. 𝐴[𝑢..𝑣) represents the sequence ⟨𝐴[𝑢], . . . , 𝐴[𝑣−1]⟩

The size of a binary tree 𝑡 is its number of nodes |𝑡|, the empty tree is �,
the number of internal nodes of 𝑡 is 𝑖(𝑡), the number of its leaves is 𝑙(𝑡), where
|𝑡| = 𝑖(𝑡) + 𝑙(𝑡). The height of 𝑡 is ℎ(𝑡) where ℎ(�) = −1. If 𝑡 ̸= �, 𝑡.𝑙𝑒𝑓𝑡 and
𝑡.𝑟𝑖𝑔ℎ𝑡 are its left and right subtrees.

4. Merge sort

Merge sort was invented by John von Neumann in 1945 [3, 4] (see Figure 1). It
uses the divide and conquer approach. Given a sequence of keys to be sorted, in
this algorithm we have two cases:

The empty sequences and those consisting of a single item are already sorted;
but we half the longer sequences, sort the half-sequences with the same method
and merge the sorted parts in a sorted way. (See Figure 1.)

The interface procedure of merge sort is given in Figure 2. And its recursive
subroutine can be found in Figure 3. With the choice of 𝑚 := ⌊𝑢+𝑣

2 ⌋, 𝐴[𝑢..𝑚) and
𝐴[𝑚..𝑣) have the same length, provided that the length of 𝐴[𝑢..𝑣) is even number;
and 𝐴[𝑢..𝑚) is shorter by one than 𝐴[𝑚..𝑣), if the length of 𝐴[𝑢..𝑣) is odd number,
because

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴[𝑢..𝑚)) = 𝑚− 𝑢 =

⌊︂
𝑢+ 𝑣

2

⌋︂
− 𝑢 =

⌊︂
𝑢+ 𝑣

2
− 𝑢

⌋︂
=

⌊︂
𝑣 − 𝑢

2

⌋︂
=

⌊︂
𝑙𝑒𝑛𝑔𝑡ℎ(𝐴[𝑢..𝑣))

2

⌋︂

The pseudocode of sorted merge is in Figure 4. Local array 𝑍 : T[𝑑] is needed so
that the output does not overwrite the input. Notice that a trivial solution would
copy both halves of 𝐴[𝑢..𝑣) to temporal arrays before merge, but it is enough to
copy 𝐴[𝑢..𝑚) to 𝑍[0..𝑑) and this is done by the first loop.

The actual merge is done by the second and third loops of the procedure: each
time we write into 𝐴[𝑘], we read from (𝑍[𝑖..𝑑) and) 𝐴[𝑗..𝑣), so it is enough to prove
that 𝑘 < 𝑗:

4

5 3 1 6 8 2 4

5 3 1 6 8 2 4

5 3 1 6 8 2 4

3 1 6 8 2 4

1 3 6 8 2 4

1 3 5 2 4 6 8

1 2 3 4 5 6 8

Figure 1: Illustration of merge sort

procedure mergeSort(𝐴 : T[𝑛]) ◁ sort the whole array 𝐴
mSort(𝐴, 0, 𝑛) ◁ which means sorting 𝐴[0..𝑛)

end procedure ◁ 𝑚𝑇 (𝑛),𝑀𝑇 (𝑛) ∈ Θ(𝑛 lg 𝑛)

Figure 2: Interface procedure of merge sort

When we overwrite 𝐴[𝑘], 𝑖 items have been copied from 𝑍[0..𝑑) and 𝑗−𝑚 items
from 𝐴[𝑚..𝑣) to 𝐴[𝑢..𝑣), altogether 𝑘− 𝑢 items. In addition, 𝑖 < 𝑑 = 𝑚− 𝑢 comes
from the conditions of these loops. Thus

𝑘 − 𝑢 = 𝑖+ 𝑗 −𝑚 < 𝑚− 𝑢+ 𝑗 −𝑚

𝑘 − 𝑢 < 𝑗 − 𝑢
𝑘 < 𝑗

Now we explain while the actual merge is divided into the second and third loops.
The second loop runs while both of 𝑍[0..𝑑) and 𝐴[𝑚..𝑣) contains some item(s) to
be copied to 𝐴[𝑢..𝑣).

5

procedure mSort(𝐴 : T[];𝑢, 𝑣 : N) ◁ sort subarray 𝐴[𝑢..𝑣)
if 𝑢 < 𝑣 − 1 then ◁ if 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴[𝑢..𝑣)) ≥ 2 then

𝑚 := ⌊𝑢+𝑣
2 ⌋

mSort(𝐴, 𝑢,𝑚) ◁ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴[𝑢..𝑚)) ≥ 1
mSort(𝐴,𝑚, 𝑣) ◁ 𝑙𝑒𝑛𝑔𝑡ℎ(𝐴[𝑚..𝑣)) ≥ 1
merge(𝐴, 𝑢,𝑚, 𝑣)

end if
end procedure

Figure 3: Recursive subroutine of merge sort

If the second loop stops with 𝑖 = 𝑑 = 𝑚− 𝑢, we have copied all the content of
𝑍[0..𝑑) to 𝐴[𝑢..𝑣) and this is 𝑑 = 𝑚 − 𝑢 items, while we have copied 𝑗 −𝑚 items
form 𝐴[𝑚..𝑣) to 𝐴[𝑢..𝑣). Altogether we have copied 𝑘 − 𝑢 items there. Thus

𝑘 − 𝑢 = (𝑚− 𝑢) + (𝑗 −𝑚)

𝑘 − 𝑢 = 𝑗 − 𝑢
𝑘 = 𝑗

This means that the elements of 𝐴[𝑗..𝑣) are already in place and the third loop
does nothing as needed.

If the second loop stops with 𝑗 = 𝑣, we have copied all the content of 𝐴[𝑚..𝑣)
to 𝐴[𝑢..𝑣) and the remainder of 𝑍[0..𝑑) is copied to the end of 𝐴[𝑢..𝑣) as efficiently
as possible.

(Notice that the stability of merge sort is ensured by condition 𝑍[𝑖] ≤ 𝐴[𝑗] of
the second loop.)

5. The time complexity of merge sort

The time complexity analysis of sorting algorithms is often based on counting key
comparisons. Our method which counts steps [8] is more general. It is useful, even
if we have nothing to do with key comparisons.

Let 𝑀𝑇 (𝑛) and 𝑚𝑇 (𝑛) be the maximal and minimal number of steps of algo-
rithm mergeSort(𝐴 : T[𝑛]). Considering figures 2 and 3, 𝑀𝑇 (0) = 𝑚𝑇 (0) = 2 is
trivial. Thus in the rest of this section we can suppose that 𝑛 ≥ 1. Consequently
no subarray determined by the algorithm will be empty.

In this section first we estimate the number of steps of subroutine merge. Then
we analyze the structure of the call-tree of recursive procedure mSort. Thus we
can determine the number of subroutine invocations excluding merge calls + give
a good estimate of the number of steps in all of the merge calls. Adding these two
we will have a lower bound of 𝑚𝑇 (𝑛) and an upper bound of 𝑀𝑇 (𝑛) of merge sort,
and with corollary 2.4 we will establish the asymptotic order of its running time.

6

procedure merge(𝐴 : T[];𝑢,𝑚, 𝑣 : N)
◁ sorted merge of 𝐴[𝑢..𝑚) and 𝐴[𝑚..𝑣) into 𝐴[𝑢..𝑣)

𝑑 := 𝑚− 𝑢
𝑍 : T[𝑑]
for 𝑖 := 𝑢 ; 𝑖 < 𝑚 ; 𝑖+ + do ◁ copy 𝐴[𝑢..𝑚) into 𝑍[0..𝑑)

𝑍[𝑖− 𝑢] := 𝐴[𝑖]
end for

◁ sorted merge of 𝑍[0..𝑑) and 𝐴[𝑚..𝑣) into 𝐴[𝑢..𝑣)
𝑘 := 𝑢 ◁ copy into 𝐴[𝑘]
𝑖 := 0 ; 𝑗 := 𝑚 ◁ from 𝑍[𝑖] or 𝐴[𝑗]
while 𝑖 < 𝑑 ∧ 𝑗 < 𝑣 do

if 𝑍[𝑖] ≤ 𝐴[𝑗] then
𝐴[𝑘 + +] := 𝑍[𝑖+ +]

else
𝐴[𝑘 + +] := 𝐴[𝑗 + +]

end if
end while
while 𝑖 < 𝑑 do ◁ copy 𝑍[𝑖..𝑑) to the end of 𝐴[𝑢..𝑣)

𝐴[𝑘 + +] := 𝑍[𝑖+ +]
end while

end procedure ◁ 𝑙 ≤ 𝑚𝑇 (𝑙) ≤𝑀𝑇 (𝑙) ≤ 2𝑙 where 𝑙 = 𝑣 − 𝑢+ 1

Figure 4: Pseudocode of sorted merge

5.1. The number of steps of procedure merge

In order to calculate the operational complexity of procedure merge(𝐴, 𝑢,𝑚, 𝑣)
first we introduce the notation 𝑙 = 𝑣− 𝑢. Procedure merge is called, iff 𝑢 < 𝑣− 1,
i.e. 𝑙 ≥ 2. Let 𝑚𝑇merge(𝑙) and 𝑀𝑇merge(𝑙) be the minimum and maximum number
of steps of performing procedure merge(𝐴, 𝑢,𝑚, 𝑣), respectively.

Remember that a step is a subroutine call or an iteration of a loop. We have a
single procedure call now + the ⌊𝑙/2⌋ iterations of the first loop + the iterations of
the second and third loops: Minimum the ⌊𝑙/2⌋ items in array 𝑍 must be copied
back to 𝐴, which means ⌊𝑙/2⌋ iterations of the second loop and no iteration of the
third loop. If the second and third loop copies all the items, then it is the maximal
𝑙 iterations of these loops together. Consequently

𝑚𝑇merge(𝑙) ≥ 1 +
⌊︀
𝑙
2

⌋︀
+

⌊︀
𝑙
2

⌋︀
≥

⌈︀
𝑙
2

⌉︀
+

⌊︀
𝑙
2

⌋︀
= 𝑙 and

𝑀𝑇merge(𝑙) ≤ 1 +
⌊︀
𝑙
2

⌋︀
+ 𝑙 ≤ 2𝑙, thus

𝑙 ≤ 𝑚𝑇merge(𝑙) ≤𝑀𝑇merge(𝑙) ≤ 2𝑙

(Therefore 𝑚𝑇merge(𝑙),𝑀𝑇merge(𝑙) ∈ Θ(𝑙).)

7

5.2. The call-tree of recursive procedure mSort

Let us consider figure 3. The number of mSort calls is clearly equal to the size |𝑇 |
of the call-tree 𝑇 of mSort. The leaves of 𝑇 correspond to case 𝑢 = 𝑣 − 1. Thus
𝑙(𝑇) = 𝑛. (𝑛 ≥ 1 is the length of array 𝐴 which is being sorted.) And 𝑇 is strictly
binary tree according to the next definition.

Definition 5.1. 𝑡 is strictly binary tree, iff each internal node of 𝑡 has two children.

The next consequence comes by mathematical induction on 𝑙(𝑡).

Corollary 5.2. If 𝑡 ̸= � is a strictly binary tree, then 𝑖(𝑡) = 𝑙(𝑡) − 1. (Thus
|𝑡| = 2 * 𝑙(𝑡)− 1.)

Thus mergeSort is invoked first + |𝑇 | = 2𝑛−1 = the number of mSort calls.

Corollary 5.3. The number of subroutine invocations excluding merge calls = 2𝑛.

Now we are going to prove that 𝑇 is nearly complete, so the depth of 𝑇 is Θ(lg 𝑛).
First we give the necessary definitions.

Definition 5.4. 𝑡 binary tree is
- leaf-balanced, iff for each internal node of 𝑡, the number of leaves of its two subtrees
can differ maximum by 1.
- complete, iff it is strictly binary and each of its leaves are at the same level.
- nearly complete, iff 𝑡 is empty, or removing its lowest level we receive a complete
tree.

Corollary 5.5. Tree 𝑇 is leaf-balanced (because mSort divides the actual subarray
in a balanced way and the number of leaves in both parts is equal to the length of
the part).

If 𝑡 ̸= � is complete binary tree with height ℎ, then at its zeroth (root) level there
is 20 node, at the its first level 21 nodes and so on, on its (last) level ℎ, it has 2ℎ

nodes, altogether |𝑡| = 2ℎ+1 − 1.

Corollary 5.6. If 𝑡 is nearly complete nonempty binary tree with height ℎ, then
2ℎ ≤ |𝑡| ≤ 2ℎ+1 − 1. Thus ℎ = ⌊lg |𝑡|⌋.
Theorem 5.7. If 𝑡 is a leaf-balanced strictly binary tree, then 𝑡 is also nearly
complete.

Proof. We can suppose 𝑡 ̸= �. Use mathematical induction on ℎ. If ℎ = 0, then
𝑡 consists of a single node, and 𝑡 is nearly complete. If the statement is true for
heights ≤ ℎ, consider case ℎ(𝑡) = ℎ+ 1. Then 𝑡.𝑙𝑒𝑓𝑡 and 𝑡.𝑟𝑖𝑔ℎ𝑡 are leaf-balanced
strictly binary trees with heights ≤ ℎ, so they are nearly complete. We have two
cases. (1) 𝑙(𝑡.𝑙𝑒𝑓𝑡) = 𝑙(𝑡.𝑟𝑖𝑔ℎ𝑡) ⇒ |𝑡.𝑙𝑒𝑓𝑡| = |𝑡.𝑟𝑖𝑔ℎ𝑡| ⇒ ℎ(𝑡.𝑙𝑒𝑓𝑡) = ℎ(𝑡.𝑟𝑖𝑔ℎ𝑡) ⇒
𝑡 is also nearly complete. (2) We can suppose that 𝑙(𝑡.𝑙𝑒𝑓𝑡) + 1 = 𝑙(𝑡.𝑟𝑖𝑔ℎ𝑡) ⇒
|𝑡.𝑙𝑒𝑓𝑡| + 2 = |𝑡.𝑟𝑖𝑔ℎ𝑡| ⇒ ℎ(𝑡.𝑙𝑒𝑓𝑡) = ℎ(𝑡.𝑟𝑖𝑔ℎ𝑡) ∨ ℎ(𝑡.𝑙𝑒𝑓𝑡) + 1 = ℎ(𝑡.𝑟𝑖𝑔ℎ𝑡). Case
ℎ(𝑡.𝑙𝑒𝑓𝑡) = ℎ(𝑡.𝑟𝑖𝑔ℎ𝑡) is trivial. In case ℎ(𝑡.𝑙𝑒𝑓𝑡) + 1 = ℎ(𝑡.𝑟𝑖𝑔ℎ𝑡) there are two
leaves at the lowest level of the strictly binary, nearly complete 𝑡.𝑟𝑖𝑔ℎ𝑡, and 𝑡.𝑙𝑒𝑓𝑡
is complete. Thus 𝑡 is also nearly complete.

8

Corollary 5.8. ⌊lg 𝑛⌋ ≤ ℎ(𝑇) = ⌊lg |𝑇 |⌋ = ⌊lg(2𝑛−1)⌋ ≤ ⌊lg(2𝑛)⌋ = ⌊lg 𝑛⌋+ 1.

5.3. The number of steps of all the merge invocations
In this section we give upper and lower estimates of the number of steps of all
the merge invocations. First notice that the merge-calls correspond to the in-
ternal nodes of 𝑇 defined at the beginning of subsection 5.2. Let 𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛)
and 𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛) be the maximal and minimal number of steps of all the merge
invocations where 𝑛 is the length of the input array of mergeSort.

First we give an upper estimate of 𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛). Based on corollary 5.8, the
internal nodes (i.e. merge-calls) of 𝑇 are maximum at levels 0..⌊lg 𝑛⌋ of 𝑇 . Let
𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) be the maximal number of steps of all the merge invocations at
some level 𝑖 of 𝑇 excluding its lowest level. Clearly 𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) ≤ the sum of
the 𝑀𝑇merge(𝑙) values of all the merge calls at level 𝑖 (see subsection 5.1). And the
subarrays 𝐴[𝑢..𝑣) of these merge calls are disjoint. We also know from subsection
5.1 that 𝑀𝑇merge(𝑙) ≤ 2𝑙 where 𝑙 = 𝑣−𝑢. Thus with the distributive rule of
addition and multiplication of numbers we have 𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) ≤ 2𝑛. Therefore
𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛) ≤ (⌊lg 𝑛⌋+ 1) * 2𝑛.

Now we give a lower estimate of 𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛). Because 𝑇 is a nearly complete
tree, excluding its lowest two levels all the nodes of 𝑇 are internal nodes. Based
on corollary 5.8, all the nodes of 𝑇 are internal nodes (with merge-calls) mini-
mum at levels 0..(⌊lg 𝑛⌋−2) of 𝑇 . Considering such a level 𝑖, procedure merge is
called in each node of this level and the whole array 𝐴 is covered by the disjoint
𝐴[𝑢..𝑣) subarrays of the merge-calls. Let 𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) be the minimal number
of steps of all the merge invocations at this level 𝑖. Clearly 𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) ≥
the sum of the 𝑚𝑇merge(𝑙) values of all the merge calls at level 𝑖 (see subsec-
tion 5.1). We also know from subsection 5.1 that 𝑚𝑇merge(𝑙) ≥ 𝑙 where 𝑙 = 𝑣−𝑢.
Thus with the distributive rule of addition and multiplication of numbers we have
𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑖)(𝑛) ≥ 𝑛. Therefore 𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛) ≥ (⌊lg 𝑛⌋ − 1) * 𝑛.

5.4. The number of steps of procedure mergeSort

We finish our calculations on the efficiency of mergeSort in this section. Based on
corollary 5.3 we have 𝑀𝑇 (𝑛) = 2𝑛+𝑀𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛) and 𝑚𝑇 (𝑛) = 2𝑛+𝑚𝑇𝑚𝑒𝑟𝑔𝑒𝑠(𝑛).
Thus𝑀𝑇 (𝑛) ≤ 2𝑛+(⌊lg 𝑛⌋+1)*2𝑛. Consequently𝑀𝑇 (𝑛) ≤ 2𝑛*lg 𝑛+4𝑛. Similarly
𝑚𝑇 (𝑛) ≥ 2𝑛 + (⌊lg 𝑛⌋ − 1) * 𝑛 ≥ 2𝑛 + (lg 𝑛 − 2) * 𝑛. Therefore 𝑚𝑇 (𝑛) ≥ 𝑛 * lg 𝑛.
Summarizing our results we have

𝑛 * lg 𝑛 ≤ 𝑚𝑇 (𝑛) ≤𝑀𝑇 (𝑛) ≤ 2𝑛 * lg 𝑛+ 4𝑛.

The first two inequalities and definition 2.2 of Ω(𝑔) imply 𝑚𝑇 (𝑛),𝑀𝑇 (𝑛) ∈ Ω(𝑛 *
lg 𝑛). We have lim𝑘→∞ 4𝑘/(𝑘 * lg 𝑘) = lim𝑘→∞ 4/(lg 𝑘) = 0. Using corollary 2.4 we
receive 𝑚𝑇 (𝑛),𝑀𝑇 (𝑛) ∈ 𝑂(𝑛 * lg 𝑛). With definition 2.2 of Θ(𝑔) we can conclude

𝑚𝑇 (𝑛),𝑀𝑇 (𝑛) ∈ Θ(𝑛 * lg 𝑛).

9

6. Critical note on the notation of recurrence on 𝑇 (𝑛)

As we mentioned in the Abstract of this paper, the runtime complexity of merge
sort is traditionally calculated by solving the recurrence [1, 2]

𝑇 (𝑛) =

{︂
𝑇 (⌊𝑛/2⌋) + 𝑇 (⌈𝑛/2⌉) + Θ(𝑛) if 𝑛 > 1,
Θ(1) if 𝑛 = 1,

Our problem is that this notation is not well defined. It uses a notation like
𝑓 = ℎ + Θ(𝑔) or 𝑓 = 𝑂(𝑔) where 𝑓, 𝑔, ℎ : N → R are asymptotically non-negative.
And in this notation “=” means sometimes “∈”, other times “⊆” and it may mean
even equality. For example, 2𝑛+3 = Θ(𝑛) means 2𝑛+3 ∈ Θ(𝑛), 𝑂(𝑛) = 𝑂(𝑛* lg 𝑛)
means 𝑂(𝑛) ⊆ 𝑂(𝑛* lg 𝑛) and Θ(2𝑛+3) = Θ(𝑛) means that the two sets are equal.

Each time it is used – maybe in many steps of a long proof – one has to decide
intuitively about its exact meaning.

This notation is often used, because it makes proofs shorter, but it also makes
proofs unclear, so we believe that it does not serve purposes of teaching. A student
must be careful not to derive false consequences like the following one.

1 = 𝑂(1) ∧ 2 = 𝑂(1)⇒ 1 = 2

This is a grotesque case of abuse of notation.

We invented an alternative method instead. We analyzed the call-tree of the recur-
sive program, and performed elementary, but mathematically exact calculations.

7. Summary

The calculation of the computational complexity of some recursive algorithms is
traditionally based on the recurrences like that above. Their meaning may be
intuitively clear but it is mathematically unclear. Thus we proposed a calculation
on the efficiency of merge sort which is based strictly on the notions introduced
and on the analysis of the call-tree of the recursive part of the algorithm.

Further work may go in this direction or in the direction of well defined recursive
formulas like in [5, 6].

Acknowledgements. Thanks to my campus (Eötvös Loránd University, Faculty
of Informatics) for financial support. And thanks to my student, Kristóf Umann
for making Figure 1.

10

References

[1] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., Introduction to Algo-
rithms (Third Edition), The MIT Press (2009).

[2] Cormen, Thomas H., Algorithms Unlocked, The MIT Press (2013).

[3] Goldstine, H.H., Neumann, J. von, Planning and coding of problems for an elec-
tronic computing instrument, Part II, Volume 2, reprinted in John von Neumann
Collected Works, Volume V: Design of Computers, Theory of Automata and Numeri-
cal Analysis, Pergamon Press, Oxford, England, pp. 152-214. (1963)

[4] Knuth, Donald, “Section 5.2.4: Sorting by Merging”. Sorting and Searching. The
Art of Computer Programming. 3 (2nd ed.). Addison-Wesley. pp. 158–168. ISBN 0-
201-89685-0. (1998).

[5] Neapolitan, Richard E., Foundations of Algorithms (Fifth Edition), Jones &
Bartlett Learning (2015).

[6] Shaffer, Clifford A.. A Practical Introduction to Data Structures and Algorithm
Analysis, Edition 3.1 (C++ Version), Virginia Tech, Blacksburg (2011).

[7] Tarján, Róbert Endre, Data Structures and Network Algorithms, Bell Laborato-
ries (1983).

[8] Weiss, Mark Allen, Data Structures and Algorithm Analysis, Addison-Wesley
(2013).

11

