
Planning Safety Solutions, Models and
Algorithms for Special Databases∗

Fanni Magdolna Hízóa, Attila Kissb

aELTE Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
fanni.hizo@gmail.com

bELTE Eötvös Loránd University, Faculty of Informatics, Budapest, Hungary
kiss@inf.elte.hu

Abstract

DNA sequencing is the process of determining the order of nucleotides in
DNA. The rapid speed of sequencing attained with modern DNA sequenc-
ing technology has been instrumental in the sequencing of complete DNA
sequences, including the human genome. Nevertheless it is a sensitive data
which needs safe but efficient storage methods.

The goal in this research was to analyze different models and algorithms
to determine which is the most applicable for storage, and query considering
the need of user permissions, and encryption.

Keywords: bioinformatics, data science, data protection, data compression,
database applications

MSC: 68P15, 92B05, 97R50, 68P20, 97R30

1. Motivation

Due to cheaper methods it is possible for everyone to keep their own DNA on
their own device. However these are sensitive data which needs to be secured.
Genomes are stored mostly in text files. The size of these files could be even
3GB or more depending on the analyzed species. Secured data management is not
solved in these files. By using database managers, the levels of permissions can
be easily managed, because many database manager systems have built-in security
and encryption possibility.

∗The project was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002).
Copyright © 2020 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

Proceedings of the 11th International Conference on Applied Informatics
Eger, Hungary, January 29–31, 2020, published at http://ceur-ws.org

160



2. Related Works

Previous researches are also available about using database manager systems for
storing genotypic data, describing and comparing multiple techniques [1]. One uses
the database as a container to store bioinformatic file formats [2]. The authors of
this paper explores the array-based technique, showing that it scales to far greater
volumes than other existing techniques [1].

In this paper the authors construct a DNA relational database with a simple
data model in which one DNA molecule stores one piece of data, [3] and this
one introduces the database aspects of DNA computing [4]. This paper discuss
the Cassandra NoSQL database approach for storing genomic data [5]. In [6]
the authors managed to implement a web interface, to help students to develop
informatic thinking skills. When considering possible encryption methods for data
security, one of them is the 64-bit block ciphers (e.g Blowfish, 3DES), but these
ciphers are known to be susceptible to collision attacks [7]. On the other hand the
AES-128 uses 128-bit blocks and gives better protection [8].

3. DNA processing

3.1. DNA
Deoxyribonucleic acid (DNA) is a molecule composed of two chains that coil around
each other to form a double helix carrying genetic instructions. Nucleic acids are
one of the four major types of macromolecules that are essential for all known forms
of life. Each nucleotide is composed of one of four nitrogen-containing nucleobases
(cytosine [C], guanine [G], adenine [A] or thymine [T]). DNA sequencing is the
process of determining the nucleic acid sequence. In this paper we worked with
these sequences.

3.2. MySQL database
Firstly we created a database in local host, followed by a database table. We split
the sequences into 1680-character-long pieces and uploaded many different DNA
sequences into the table.

CREATE TABLE dna (
id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
seqPosition INT NOT NULL,
sequence TEXT NOT NULL

);

Only with this structure, a simple pattern searching SQL query took about 5-10
minutes in MySQL [9].

SELECT * FROM dna

161



where seq like "%GACCGCGGCGCCGAGCGGCAGCCGCGCCGGCCCGGAC%"
and id=101;
1 row(s) returned 550.953 sec / 0.000 sec

3.3. PostgreSQL database
We did the same in PostgreSQL.

CREATE TABLE dna (
id SERIAL PRIMARY KEY NOT NULL,
seqPosition INT NOT NULL,
sequence TEXT NOT NULL

);

However in PostgreSQL [10] a pattern searching query has never took more than
5 minutes.

3.4. Indexing
A B-tree index can be used for column comparisons in expressions that use the
=, >, >=, <, <=, or BETWEEN operators. The index also can be used for
LIKE comparisons if the argument to LIKE is a constant string that does not start
with a wildcard character. MySQL uses the Turbo Boyer-Moore [11] algorithm
to initialize the pattern for the string and then uses this pattern to perform the
search more quickly. We examined the query runtime after creating indexes for the
table columns. As we mentioned before, a simple selection statement could took
minutes to complete. After creating indexes in the database columns, the following
statement returned within seconds.

SELECT * FROM dna where pos=111;
10 row(s) returned 0.110 sec / 0.015 sec

4. K-mers

In bioinformatics, k-mers are subsequences of length k contained within a biolog-
ical sequence. Primarily used within the context of computational genomics and
sequence analysis. Usually, the term k-mer refers to all of a sequence’s subsequences
of length k, such that the sequence AGAT would have four monomers (A, G, A,
and T), three 2-mers (AG, GA, AT), two 3-mers (AGA and GAT) and one 4-mer
(AGAT). The maximum number of variations of the possible substrings are 4𝑘.

4.1. Method
We developed a program in python to determine the number of k-mers. With
reading the file line by line it counts the occurring nucleotid variations.

We examined human, hominoidea, plant and bacteria dna sequence too.

162



Figure 1: Human monomer

Figure 2: Bonobo monomer

The next diagram shows the difference in percentage between each of the genom
3-mers self-compared value of occurrence.

163



Figure 3: Comparison of a human genom and a bonobo genom
3-mer

4.2. Multiprocessing
We had an idea to use multiprocessing to increase the program efficiency. The
basic idea was that if we split the file into smaller pieces, (for example four equal
sized files) and if we add each piece into a thread, it should reduce the runtime.
In python, multiprocessing is a package that supports spawning processes using
an API similar to the threading module. Due to this, the multiprocessing module
allows the programmer to fully leverage multiple processors on a given machine. It
runs on both Unix and Windows.

The multiprocessing module also introduces APIs which do not have analogs in
the threading module. A prime example of this is the Pool object which offers a
convenient means of parallelizing the execution of a function across multiple input
values, distributing the input data across processes (data parallelism).

We get the following results without and with multiprocessing:
The runtime with a 3gb sized dna sequence is more than 24 minutes (1440.026 sec)
without parallelism.
The runtime with the same, but divided file is less than 10 minutes (585.83 sec)
with parallelism. This means a 59% performance improvement.

For a better representation we tested our program on a 820MB sized DNA
sequence. At first we did not use multiprocessing, then split the file into 3/6/11
equal pieces and used multiprocessing for our calculation. The following figure
represents the taken time by each run.

164



Figure 4: Multiprocessing

5. Compression

The Lempel–Ziv–Markov chain algorithm (LZMA) is an algorithm used to perform
lossless data compression. This algorithm uses a dictionary compression scheme
somewhat similar to the LZ77 algorithm published by Abraham Lempel and Jacob
Ziv in 1977. It is used by 7zip nowadays [12, 13]. We decided to use this algorithm to
compress our data because it features a very high compression ratio. The algorithm
creates a dictionary while encodes the data and the fact that we are working only
four characters provides us a small dictionary. With this method a 3GB sized DNA
sequence compressed size is only 831 MB which means more than 73% storage space
saving.

6. Safety solutions

In discussing security, it is necessary to consider fully protecting the entire server
host (not just the server) against all types of applicable attacks: eavesdropping,
altering, playback, and denial of service. Both MySQL and PostgreSQL have the
option to create and add privileges with different roles to the database. Which
provides the opportunity to determine which user could access the database and
which could edit it. Every fresh MySql and PostgreSql system has an already
defined role, which is always the superuser.

165



6.1. MySQL
The privilege system is the most basic security feature MySQL has to offer. It
allows defining who can access database. Each user may be assigned a number
of privileges. They define what each user can do once they have been authorized
to connect. The privileges can be either global, granting specific right without
restrictions, or limited to a specific object such as database or table.

MySQL implements an SSL library to provide connection encryption. All end-
points – server and clients – require their own set of private keys and certificates
to be able to use encryption.

It offers a number of cryptographic [14] and hashing functions that can be
used to either encrypt or decrypt data directly in queries – AES_ENCRYPT(),
AES_DESCRYPT(), DES_ENCRYPT(), DES_DECRYPT(), SHA(), etc.

6.2. PostgreSQL
Same as in MySQL, PostgreSQL also use user roles to manage access privileges.
Roles can act as users, groups or both. Roles can own database objects and can
manage the permissions on these objects. Both of the discussed database manage-
ment systems the owner of a created object is the user who created it.

PostgreSQL has native support for SSL connections to encrypt client/server
communications for increased security.

We would like to mention that it also has the possibility to encrypt data, both
one way (e.g passwords) or two way(e.g credit cards). For one way encryption,
the crypt function packaged in pgcrypto provides an added level of security above
the md5 way. We have several ways to accomplish the two way encryption, these
implements the encryption part of the OpenPGP(RFC 4880) standard. However
we did not try these methods out.

7. Conclusion

We created an environment where we can manage the user privileges and store
the data securely and encrypted. The database manager gives us many options to
easily add new users and create user hierarchy, from the principle of least privilege
to a user with admin authority. We also managed to implement the first basic
version of our processing tool that gives us the opportunity to compare different
species genomes. Even started to test the multi-threaded version of the program
for faster process of the genomes.

8. Future Work

In the future we want to try new data storage options and compare our results
with other database managers, e.g NoSQL. As our reviewers insisted it would be
interesting to examine another compression algorithms, and compare them to our

166



results. Moreover, the processing optimization and performance improvement is
in our main scope. Implementing a user friendly interface with options to import
genomic data, which also capable of creating different graphs and reports based on
the results is also one of our main goals.

References

[1] Lichtenwalter, R.N., Zorina-Lichtenwalter, K., Diatchenko, L. Genotypic
data in relational databases: efficient storage and rapid retrieval, In: Kirikova, M.,
Norvag, K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS vol. 10509 (2017), 408–
421.

[2] Uwe Roehm, Jose Blakeley Data management for high-throughput genomics
(2009), https://arxiv.org/abs/0909.1764

[3] Yamamoto M., Kita Y., Kashiwamura S., Kameda A., Ohuchi A. Develop-
ment of DNA Relational Database and Data Manipulation Experiments, In: Mao
C., Yokomori T. (eds) DNA Computing. DNA Lecture Notes in Computer Science
vol. 4287 (2006), 418–427.

[4] Gillis J.J.M., Van den Bussche J. A Formal Model for Databases in DNA. In:
Horimoto K., Nakatsui M., Popov N. (eds) Algebraic and Numeric Biology. Lecture
Notes in Computer Science vol. 6479 (2012), 18–37.

[5] Aniceto, R., Xavier, R., Guimarães, V., Hondo, F., Holanda, M., Wal-
ter, M.E., Lifschitz, S. Evaluating the Cassandra NoSQL database approach for
genomic data persistency, Int. J. Genomics 2015, 1–7.

[6] Rice, M., Gladstone, W., Weir, M., Relational databases: a transparent frame-
work for encouraging biology students to think informatically, Cell Biol. Educ. 3(4)
(2004), 241–252.

[7] Bhargavan, K., Leurent, G., On the practical (in-) security of 64-bit block ci-
phers: collision attacks on HTTP over TLS and OpenVPN, In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security (2016),
456–467.

[8] Bogdanov, A., Khovratovich, D., Rechberger, C. Biclique cryptanalysis of
the full AES, In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073
(2011), 344–371.

[9] MySQL Documentation, https://dev.mysql.com/doc/
[10] PostgreSQL Documentation, https://www.postgresql.org/docs/
[11] Jorma Tarhio, Esko Ukkonen Approximate Boyer–Moore String Matching,

SIAM Journal on Computing 22(2) (1993), 243–260.
[12] Lempel–Ziv–Markov chain algorithm, https://en.wikipedia.org/wiki/Lempel-

Ziv-Markov_chain_algorithm

[13] A. D. Wyner and J. Ziv Fixed data base version of the Lempel-Ziv data com-
pression algorithm. IEEE Transactions on Information Theory vol. 37(3) (1991),
878–880.

[14] Qiu, Manying, and Steve Davis Database Security Mechanisms and Implemen-
tation Issues in Information Systems vol. 3 (2002), 529–534.

167


