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Abstract

Two of the primary vital signs are breathing and pulse rate. There are
various solutions to monitor them, however, all require additional equipment
and expertise to use. Smartphones are nowadays at almost every person’s
arm length, therefore, it could be cost-effective for crowd and personal health
screening. Diaphragmatic breathing can be measured with Inertial Measure-
ment Units (IMU). To optimize the breathing detection the smartphone has
to be placed in the middle of the epigastric region. The tissue in the region
vibrates because of the presence of the abdominal aorta which is also picked
up by the IMU. Breathing, which is usually under 1 Hz during sleep can be
filtered out with a Bandpass filter. The heartbeat is present as vibrations
which can be seen between 1–30Hz. After filtering, breathing is detectable
by a peak detector algorithm and can be differentiated from noises.

Keywords: Sensors, IMU, Filters, Peak detection, Vital signs, Physiological
signals, Screening

1. Introduction

Right now it is a growing need and supply for personal health devices and ap-
plications. Companies are emerging in the telemedicine market and established
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companies are creating divisions for both telemedicine and to develop commercial
devices [3]. Phone manufacturers, for example, Samsung is putting pulse-oximeter
in its phones. Apple developed the Apple Watch, which is unbelievably powerful
especially compared to its size and has enormous potential. The development of
monitoring applications is also funded by governments and EU initiatives mainly.
In-home short- or long-term monitoring could be generally important especially
to screen for disease, assess well-being and to provide history of data. It is not a
solved problem yet for heterogeneous reasons. The most important question is as
always how reliable and precise could be the devices and techniques. It is important
to keep in mind that even clinical devices have reliability issues. Companies are
developing less and less intrusive and better target devices, however many of these
are not widespread. Usually for short term monitoring and general well-being, like
sleep monitoring people are not willing to buy an expensive target device [4, 2, 14].
A significant portion of people uses smartphones already for communication, pho-
tography, fitness, healthcare, smart home, and diary purposes, etc. In many cases
right now, a smartphone is just not enough for the task. However, in a few cases
may be useful.

1.1. Reviews
Extensive review was done by [11] on contact-methods for measuring respiratory
rate. Smartphone’s camera for Photoplethysmography has been investigated many
times by multiple authors [9] and it is said to be enough at least acquiring pulse rate
at rest. IMUs in smartwatches are used for Human Activity Recognition (HAR)
including sleep analysis, fall detection [6]. Evaluating Inertial Measurement Units
for Physiological Signal monitoring is still ongoing and relatively new. Till now,
mainly used for simple step detection, complex gait analysis for exercise monitoring
and rehabilitation. A few authors started to measure breathing and pulsation at
different parts of the body, mainly they work with often just the accelerometer
[7, 10, 11].

A review was done by [8] on the topics of smartphone accelerometers for the
detection of heart rate.

2. Materials and Methods

2.1. Data Acquisition
As a data recorder, we used an iPhone6. According to iFixit’s teardown an In-
venSense MP67B 6-axis Gyroscope and Accelerometer Combo was found.(we did
not receive any funding from Apple or iFixit) It is important to mention that the
phone’s weight, morphology and the place where the IMU is to be found also mat-
ters. The weight matters particularly because the pulse vibrations have to vibrate
the phone.
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To acquire the data from the phone we were using Bernd Thomas’s iPhone
application called SensorLog. Here we can partially choose which type of data we
want to record, few of them are mandatory. We chose: “Accelerometer”, “Gyro” and
“Altimeter”. Every sample is a row, which gets a timestamp. The sampling rate
is configurable between 1-100 sample/second, we set it to 100. The high sampling
rate is needed because of the fast vibration from which the pulse wave is calculated.
In the application, data can be saved into a comma-separated values file (CSV) or
JavaScript Object Notation (JSON) format. After recording, the file (measured
values) was transmitted to the computer (server) by AirDrop.

Figure 1: (Illustration) It has to be placed directly to the skin and
stabilized to make sure no displacement can happen

We looked for the breathing signal on the accelerometer and gyroscope on the
accelerometer during ideal supine position and near-perfect placement (Figure 1).
It is crucial that in this position the phone measures abdominal breathing move-
ment, rather than thorax breathing movements. During Rapid Eye Movement
sleep(REM) one relies on abdominal breathing[12]. In this placement and body
posture, the z-axis is pointing downwards and has a value close to -1, the x-axis
is perpendicular to the body and y-axis parallel to the body, both of them are
close to the 0 value. Y-axis is the most sensitive to angular changes because the
gravitational force is not linearly dependent on the change of angle. It is very
important that the breathing can be seen from angle changes and not linear ac-
celeration. The problem is that, in not ideal placement the rotation won’t happen
around one base axis. This limits the breathing signal quality then the breathing
can be hard to detect. The accelerometer has a best position to use near the angle
where force changes on both axes are maximal and there is nearly no gravitational
force on the x-axis. Because of these reasons accelerometers are mainly useful for
approximating breathing rate and should be used rather in a sensor fusion with
the gyroscope. In this article, we are not dealing with sensor fusion. Any body
posture which deviates from the ideal supine changes the forces present on the axes
of the accelerometer which also decreases breathing signal quality and also it could
abolish it if the person sleeps perfectly on his/her side.
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In comparison, the gyroscope is only affected by body morphology which can
vary based on posture. Yaw angles can not be calculated from just the accelerom-
eter, only roll and pitch angles [15], however, magnetometer could be used for this
purpose, but magnetometers have a big downside. It is a different kind of mea-
surement therefore hard to match with the accelerometer readings. They pick up
electromagnetic noises and introduces additional room variability. In this article,
we will stay with the ideal orientation. It is important that we are using the angular
velocity acquired from the gyroscope and not the calculated roll, pitch, yaw angles
because the correcting algorithm is not known and also we are not evaluating the
IMU.

2.2. Raw Data
We show the presence of respiration on the accelerometer, however we extract it
only from the gyroscope. We also show the pulse waveform on the gyroscope. The
figures have been created with matplotlib [5].

Figure 2: Pulse’s vibration on the accelerometer’s z-axis

Figure 3: Abdominal breathing movement on the accelerometer’s
y-axis, the pulse’s vibration also can be seen
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Figure 4: Abdominal breathing movement and the pulse’s vibra-
tions on the gyroscope rotation rate around x-axis

Figure 5: A zoom in of the previous figure. The bigger slow fre-
quency wave is respiratory movement and the pulse wave sits on

top of it. After it 2 pulse vibration can be seen.

2.3. Transformation
We extract offline the pulse and abdominal breathing movement from the gyro-
scope’s angular velocities due to inherent problems with the accelerometer.

We are free to use Finite Impulse Response (FIR) and Infinite Impulse Re-
sponse (IIR) filters because we process the data offline and also in this scenario
signal distortion is acceptable. For the former integer arithmetic is enough, but
latter requires floating-point arithmetic. Generally, a lower order IIR can achieve
similar results to a higher-order FIR filter, therefore we chose IIR Butterworth
bandpass filters. [16, 13]. We extract the respiratory movement signal with IIR
Butterworth bandpass filter, The low-pass cut-off frequency is 0.1 Hz and high-
pass cut-off frequency is 1 Hz. The filter order is 4 (the higher the filter’s order the
higher the steepness is in the transition band). We applied the filter forward then
backward to minimize phase shift.
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Figure 6: IIR Butterworth filtered against raw. Low amplitude
oscillation can be seen caused by the pulse.

To produce a wave for heartbeat detection we are using an IIR Butterworth
bandpass filter with a low-pass cut-off frequency of 10 Hz and high-pass cut-off
frequency of 22 Hz with an order of 15. Again we applied the filter forward then
backward. Some post-processing is needed to produce a wave which could be
suitable to detect heartbeats. Both filters were created with Scipy using Matlab-
style design[17]. Because the pulse wave is present as oscillation and also has
negative values, we take the absolute of the signal after filtering, then we smooth
the curve with moving average filter using a 0.2s rectangle window.

Figure 7: Calculated signal for heartbeat detection

2.4. Peak Detection
During a regulated state like sleep, the detection of normal breathing becomes
much simpler. Usually, after an inspiration soon comes an expiration. We could
find the inspiration and expiration peaks if they were significantly bigger than the
interference caused by the pulse. The condition that the inspiration and expira-
tion peak(which is negative) have to be close to each other easily handles noises
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however it misses breaths without expiration and doesn’t handle most of the ab-
normal breathing patterns [1]. This simple peak detection algorithm is capable of
providing data for the detection of central sleep apnea. Which often can indicate
an underlying disease or present as an idiopathic condition.

Figure 8: IIR Butterworth filtered against raw(Gyroscope’s angu-
lar velocity). Low amplitude oscillation can be seen caused by the

pulsed

3. Results

In this paper, we showed that a smartphone, in this particular case an iPhone6
can be used to obtain a signal which approximates abdominal breathing movement
and for detecting heartbeats. Measuring physiological signals just with a phone
could provide data about people’s health and sleep at a scale and level which is
unprecedented. We are confident that the following metrics can be calculated:

1. Inspiratory time

2. Expiratory time

3. Respiratory Rate.

4. Pulse Rate

We suspect that many more features can be calculated, however that is less clear
how robust would they be. At least for short time windows respiratory effort ap-
proximation could be highly useful to detect obstructive apnea. It is very important
that IMU’s gyroscope gives more reliable, stable and robust data. Accelerometers
output is dependant on the absolute orientation they are in.

3.1. Limitations
1. We are not evaluating IMUs. We plan to create a simulation which points

to the required IMU properties, with the appropriate simulation intra- and
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inter-user variability can be assessed.

2. We are focusing only on sleep because there is little movement to be found.
It gives the opportunity to extract more precise data about breathing and
pulse rate than in any other scenario.

3. We did not validate against a reference device.

4. We measured our abdominal breathing movement and pulse rate.

3.2. Suggested and future work
1. Validating should be done against a reference device.

2. A further developed technique could estimate respiratory effort.

3. Frequency components and amplitudes of breathing and the pulse wave can
highly overlap and change, therefore adaptive filtering is needed.

4. For the same reason and also for respiration effort estimation a more sophis-
ticated adaptive peak detection is needed.

5. Calibration would be mandatory in an application which can have clinical
significance.

6. Aces fusion should be developed for handling orientation deviations caused
by displacement and body morphology.

7. Review and investigate sensor fusion options to provide robust and better
data.
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