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Abstract
Geometric image distortions appear when cameras register the image from

behind a refractive object – e.g. a car windshield. To ensure the reliability of
3D perception algorithms, a distortion model is necessary. The model has to
be general enough to capture the variety of possible refractive object geome-
tries. We propose a method where we directly model the refractive media as
a thick ellipsoid, and compute the resultant distortions by tracing individual
light rays as they refract on the inner and outer surface of the object. With
this new ellipsoid model provides flexibility and via the model parameters we
are able to capture all important factors influencing distortions, namely the
curvature of the surfaces, position relative to the camera, and thickness of
the refractive material. We test the proposed model on a synthetic dataset,
analyzing the advantages and possible failure cases of our method.
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1. Introduction

Video-cameras are preferred sensors for perception in robotics and autonomous
driving because of their low cost and high resolution. When vision is used for 3D
perception [20, 11], a camera model is employed to associate image pixels with
points on objects in the outside world. Camera calibration is the procedure of
finding the optimal parameters for the camera model, either through static cali-
bration with predefined calibration patterns, or in an online manner through self-
calibration. These camera models and calibration techniques often use a distortion
estimation step, where geometric errors in the optic system are corrected.
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Geometric distortions can arise when the camera is placed behind a protective
cover – e.g. a windshield of the car. These distortions are affected by the global
properties of the object – e.g. position to the camera, curvature of the surface
and thickness of the material – as well as irregularities of the surface, resulting
in local distortions. In our previous work [15] we modeled the irregularities of the
distortion surface using an RBF-network, while assuming that the global properties
of the refractive object are known. We constructed the forward model, where
knowing the parameters of the camera, the refractive object and the scene we map
a pixel to a 3D point in the scene. The forward model was implemented as a fully
differentiable raycasting algorithm. Using model inversion and machine learning
techniques [2] we estimated the parameters that generated the distortions.

In this work we use a similar methodology as in [15], but this time we address
the global properties of the refractive object. We model the surface of the refractive
media as an ellipsoid, which is general enough to approximate a large variety of
objects on the area seen by the camera. The model is also designed to be compos-
able with the RBF-network model of the local surface. In the following sections we
describe the model and the raycasting algorithm. We address the issue of arising
symmetries in the distortion estimation process, and we propose a regularization
to help the minimization. Finally we test our method on a synthetic dataset.

2. Related Work

Calibration methods can be classified as static calibration methods [21, 24, 22, 16],
which use objects with known patterns to provide the highest accuracy, or as self-
calibration methods [7, 4, 8, 18], where calibration is done in an online manner
during operation, leveraging geometric constraints of the scene. Our method is a
static calibration method, as we use images of checkerboard patterns to estimate
the distortions.

Different algorithms use specific distortion models with different complexity.
The most widely used models consider radial distortions [3, 8, 10], while some
cameras, like fish-eye cameras require specific models [7]. More flexible models,
e.g. the rational function distortion model [6] are also studied. These models usually
consider distortions as a function in pixel space, while we use a physical model of
the refractive object to model distortions.

In our work we consider distortions from light refractions. Similar work was
done by Agrawal et. al. [1], who analyzed distortions through flat refractive surfaces,
using methods of camera calibration in [19, 5]. Morinaka et. al. [14] modeled
complex distortions, observed when the camera is placed behind a wine glass or a
car windshield using the “raxel” imaging model [9].

Deep learning methods are also used to estimate radial distortions [12, 17], to
rectify fish-eye images [23] or to estimate windshield distortions [13] based on a
single image.
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3. Ellipsoid Model

We model the refractive object as the space between two ellipsoids. The two
ellipsoids have the same center position 𝑡𝑐 ∈ R3 and orientation – represented as
an axis-angle rotation 𝜔 ∈ R3. The inner ellipsoid has the semi-axes 𝑎, 𝑏, 𝑐 ∈ R. To
define the semi-axes of the outer ellipsoid, we add an additional, small thickness
𝑡 ∈ R to each semi-axes of the inner ellipsoid. This way 𝑎+ 𝑡, 𝑏+ 𝑡, 𝑐+ 𝑡 ∈ R give
the semi-axes of the outer ellipsoid. The quantities 𝜃 = {𝑡𝑐,𝜔, 𝑎, 𝑏, 𝑐, 𝑡} together
form the parameters of the ellipsoid object model.

To make further computation simpler, it is useful to see the ellipsoid as an
affine image of a unit sphere centered at the origin. The transformation is defined
by a 3 × 3 matrix 𝐴 and the translation vector 𝑡𝑐, with 𝐴 = 𝑅(𝜔)diag(𝑎, 𝑏, 𝑐),
where 𝑅(𝜔) is a rotation matrix constructed from 𝜔 using Rodrigues’ formula,
and diag(𝑎, 𝑏, 𝑐) denotes a diagonal matrix with values 𝑎, 𝑏, 𝑐. Using the affine
mapping, all necessary operations, including intersection with a ray and surface
normal evaluations can be reduced to operations on the unit circle.

The scope of a camera model is to associate pixels with light rays from the
outside world. The intersection points between these outgoing light rays and ob-
jects (e.g. a checkerboard pattern during calibration) will define what we see on the
image. In a distortion-free setup this outgoing light ray coming from the camera
center and going through the image pixel – this is the ray given by the pinhole
camera model. In our physical model the direction of the original light ray is
modulated when it enters or leaves the refractive object – in this work modeled
by an ellipsoid. The change of direction is computed using Snell’s law of refrac-
tion, and it is a function of the incident ray, the surface normal at the intersection
point, and the relative refractive index of the two materials (e.g glass and air).
The complete raycasting process is fully differentiable, allowing the gradient based
optimization of the ellipsoid model parameters. The method is implemented in the
PyTorch framework to leverage the backward mode automatic differentiation for
the optimization.

4. Symmetries of the Object Model

The ellipsoid model of the refractive object overparameterizes the image distortions,
resulting in arising symmetries of the physical model. The observed distortions are
invariant with respect to a set of transformations applied to the object. As a result
of the invariance, when we invert the model to estimate parameters of the ellipsoid,
the full parameter set is not recoverable without some prior knowledge about the
object. While in some cases an estimation of the distortions may be sufficient,
reconstructing an approximate 3D model of the object can also be desirable. Iden-
tifying the symmetries and properly handling them using regularization techniques
is therefore an important step in our method.

To give an intuitive example of these symmetries, we consider a simple 2D case
where the refractive object is a thick circle, and we consider two variables: 1) the

274



Center X coordinate (cm) 20.017.515.012.510.07.55.02.50.0

Radius (c
m)

30
35

40
45

50
55

60

M
ea

n 
an

gl
e 

er
ro

r (
de

gr
ee

)

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

(a)

(b)

a)

-100 -75 -50 -25 0 25 50 75
X (cm)

-60

-40

-20

0

20

40

60

Y 
(c

m
)

b)

-100 -75 -50 -25 0 25 50 75
X (cm)

-60

-40

-20

0

20

40

60

Y 
(c

m
)

Figure 1: Left: Distortion errors relative to the reference configu-
ration for varying circle center position and radius values. Right:
Visualization of two different parameters yielding the same distor-

tions as our reference setup.

relative distance of the circle center to the camera center in the direction of the
optical axis; 2) the radius of the circle. This analysis translates well to the center
position of the ellipsoid and the length of the semi-axes, the two sets of variables
where these problems arise in the 3D case.

We consider the reference parameters of circle position of −10 cm and circle
radius of 40 cm, and compare all other distortions to the ones measured in this
configuration. We express the distortion error relative to the reference setup as
the angle between a refracted ray in the reference setup and the examined setup,
averaged over multiple incident rays with different initial orientations.

Figure 1 shows the distortion error relative to the reference setup for different
parameters. The black notes a set of parameters where the distortion error is less
than 10−3 degrees. We can observe that we can achieve low distortion errors as
long as we adjust both parameters simultaneously in the proper way.

5. Optimization of the Model Parameters

We use the standard setup of static camera calibration to estimate the model
parameters. Given a pixel, our forward model finds the 3D point in the scene seen
by the camera. In a static calibration setup we use a planar checkerboard pattern
as the target object, where the dimensions of the squares are known. Using model
inversion – based on a set of images of checkerboard patterns – the parameters of
the ellipsoid model can be recovered using gradient based minimization.

Our loss function has two components: a reconstruction and a regularization
term. Let 𝐼𝑖 be a calibration image, where 𝑝𝑖,𝑗 represents the pixel locations of the
𝑗th checkerboard corners on the image. We denote with 𝑓𝜃,𝑖(·) the raycasting func-
tion which takes a pixel and returns a point on the checkerboard object associated
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with image 𝐼𝑖. Let 𝑥𝑐𝑏
𝑖,𝑗 be the ground-truth world coordinates of the checkerboard

corner associated with pixel 𝑝𝑖,𝑗 . Then the reconstruction error is expressed as the
squared error between the estimated and ground-truth corner coordinates:

ℒ𝑟𝑒𝑐(𝜃) =
∑︁

𝐼𝑖

∑︁

𝑝𝑖,𝑗

⃦⃦
𝑓𝜃,𝑖

(︀
𝑝𝑖,𝑗

)︀
− 𝑥𝑐𝑏

𝑖,𝑗

⃦⃦2
.

In Section 4 we showed that the ellipsoid model overparameterizes the distor-
tions, and the full physical model cannot be recovered without prior knowledge.
We include this prior knowledge as a regularization term during the minimization.
More specifically, we constrain the distance between the camera center and the
point where the principal axis of the camera – also being the Z axis of the cam-
era coordinate system – intersects the inner surface of the ellipsoid. Let 𝑑𝑍(𝜃) be
the distance between the camera center and the ellipsoid, and 𝛽 be the expected
constant value of this distance. Then the regularization term is a 𝐿2 penalty:

ℒ𝑟𝑒𝑔(𝜃) = (𝑑𝑍(𝜃)− 𝛽)2 .
The full loss function is a weighted sum of the two terms:

ℒ(𝜃) = ℒ𝑟𝑒𝑐(𝜃) + 𝜆ℒ𝑟𝑒𝑔(𝜃). (5.1)

The loss function in Equation 5.1 is minimized using the L-BFGS optimization
method. We chose the L-BFGS method as it is a quasi-Newton method, which
is both efficient and it does not require a direct evaluation of the Hessian matrix,
making the method compatible with backward mode automatic differentiation.

6. Experiments

We tested our method on a synthetic dataset. We generated a set of ground-truth
ellipsoid objects, and we used our forward model to render images with checker-
board patterns. The simulated camera mimics the properties of a Raspberry Pi
camera module, recording images at 3280× 2464 pixel resolution with a horizontal
field of view of 62.2 degrees. For each run we used 10 checkerboard patterns placed
at random positions and orientations. Each pattern had 8 × 8 corners on them,
therefore the 10 images provided 640 data points in total.

After generating an image dataset, we reinitialized the parameters of the ellip-
soid to represent a small circle centered and the origin. We used our optimization
method presented in Section 5 to find the optimal parameters, ideally correspond-
ing to the ground-truth ellipsoid used to generate the samples. The minimization
method was able to find a model with sub-pixel distortion error in each case. The
resulting shape of the ellipsoid however did not always match the ground-truth
model.

Figure 2 shows examples for the experiment. We can observe that in examples
a), b) and c) the estimated ellipsoid approximates the surface well on the area which
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Figure 2: Results of our method on synthetic data. Left column
is the predicted (blue) and ground-truth (red) ellipsoid. The blue
frame shows the area seen by the camera. Middle column shows
the distortion field for the estimated ellipsoid. Last column shows
the norm of the distortion error. Example d) is a run without

regularization.

is seen by the camera. On the other hand, we can also see that in some case (e.g. in
example b) this good local approximation can be achieved without finding the
global ground-truth parameters. This suggests, that the exact estimation requires
more prior information about the refractive object. Although the predicted ellipsoid
is not always correct, the distortion errors are under one pixel in each example,
with small variations across the image. Example d) shows a case where because of
not using regularization, even if a solution with small distortion error was found,
the predicted ellipsoid is not approximating the real surface well, not even at the
area seen by the camera.
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7. Conclusions

We presented a distortion estimation method for scenarios where the camera is
placed behind a refractive object. We modeled the object as an ellipsoid, and
used machine learning techniques to estimate the model parameters. We analyzed
the possible failure cases, where multiple different ellipsoids result in the same
distortions, and proposed a regularization which solves this issue. The method
was tested on a synthetic dataset, generated using the forward model of image
generation, implemented as a raycasting algorithm. We were able to obtain a close
approximation of the object surface on the region seen by the camera.

In our future work we will focus on the validation of the algorithm in a real
scenario. Although our method achieves good results in a noise-free setup, appli-
cation with real cameras and dataset is still an open question. We will also look
into the integration of the local model in [15] with the ellipsoid model, resulting in
a complete model of distortions through refractive objects.
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