
Modeling State Transitions
with Colored Petri Nets?

Rowland Pitts

George Mason University, Fairfax Virginia, USA
rpitts@gmu.edu

Abstract. Modeling state-dependent systems can quickly become un-
wieldy as the number of states and transitions increase. This paper in-
troduces a reusable approach to modeling state transitions that results
in simpler models and allows designers to focus on a design’s functional
behavior rather than the details of state transition.

Keywords: State Transition · Executable Modeling · Colored Petri Net.

Introduction A significant challenge associated with modeling state transitions,
in both UML and CPN, is that the complexity of the models tends to grow
exponentially [1]. Efforts to model state transition behavior typically result in
one-to-one conversions of UML elements into arcs, transitions and places [4, 1],
resulting in complex and unweildy models. This paper introduces an approach
to modeling state transitions that results in simpler models and allows designers
to focus on functional behavior rather than the details of state transition. A
reusable component is modeled in CPN Tools [2].

Related Research André, Benmoussa and Choppy proposed a formalization of
UML state machines using Colored Petri Nets [1]. Meghzili, Chaoui, Strecker and
Kerkouche presented an approach to transforming State Machine Diagrams into
CPN models, and proved certain structural properties in the transformation [3].
Pettit and Gomaa described an approach to systematically map state dependent
objects and their corresponding state charts from UML into CPN [4].

This work differs from others in that state transition behavior is abstracted
into a reusable CPN component that defines state transitions and their associ-
ated actions in metadata, requiring no complex network definition.

Modeling State Transitions UML is the de facto standard for modeling systems
[1], but it is not executable. Petri nets are executable, however models of state
transitions become increasingly complex because they are typically modeled us-
ing an explicit one-to-one correspondence with the State Transition Diagram.

CPN’s hierarchical capabilities facilitate the building of models benefiting
from abstraction and separation of concerns. The functional behavior associated

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

Modeling State Transitions with Colored Petri Nets 219

Event

EVENT
1`"Insert Disk" @10 +++
1`"Play" @20 +++
1`"Next" @30 +++
1`"Prev" @40 +++
1`"Pause" @50 +++
1`"Pause" @60

Current
State

STATE

1`"OFF"

All
Trans

TRANS

1`[{s="OFF", e="Insert Disk", n="READY"},
 {s="READY", e="Play", n="PLAYING"},
 {s="READY", e="Eject", n="OFF"},
 {s="PLAYING", e="Eject", n="OFF"},
 {s="PLAYING", e="Next", n="PLAYING"},
 {s="PLAYING", e="Prev", n="PLAYING"},
 {s="PLAYING", e="Pause", n="PAUSED"},
 {s="PAUSED", e="Pause", n="PLAYING"},
 {s="PAUSED", e="Eject", n="OFF"}]

CD Player

State MachineState Machine

Fig. 1. Programmable State Machine for a CD player. Initial markings of the All Trans
place define the various state transitions (s equals the current state, e is the triggering
event, and n is the next state). The markings on the Event place define a test sequence.

with processing events, issuing actions, and changing state can therefore be en-
capsulated within a reusable CPN, allowing the supported event-driven state
changes to be defined in dynamically programmable meta data. In other words,
rather than define a new net for each state driven scenario, each new scenario
can simply be programmed into the reusable state machine. Figure 1 depicts the
external view of the reusable state machine, with events and transitions defined
to model a CD player.

Conclusions and Future Work The approach simplifies modeling in a number
of ways. For example, the reusable State Machine eliminates the the need to
explicitly define the state transition relationships with a massive number of arcs
and transitions. The designer need only define the transition data, and then
focus on the functional aspects of their design.

This paper addresses state transitions in only the most general sense. That
is where the modeling complexity is first and most apparent. The incorporation
of the Entry, Exit and Do actions associated with each state results in similar
complexity, and early efforts to model them using the same simplified approach
described above show similar improvements. Therefore, the main future work
includes incorporating transitional actions.

References

1. André, É., Benmoussa, M.M., Choppy, C.: Formalising concurrent uml state ma-
chines using coloured petri nets. Formal Aspects of Computing 28(5), 805–845 (Sep
2016). https://doi.org/10.1007/s00165-016-0388-9

2. CPN Tools website (May 2020), http://cpntools.org
3. Meghzili, S., Chaoui, A., Strecker, M., Kerkouche, E.: On the verification of uml

state machine diagrams to colored petri nets transformation using isabelle/hol. In:
2017 IEEE International Conference on Information Reuse and Integration (IRI).
pp. 419–426 (Aug 2017). https://doi.org/10.1109/IRI.2017.63

4. Pettit, R.G., Gomaa, H.: Modeling state-dependent objects using colored petri nets.
In: Proceedings of Workshop on Modelling of Objects, Components, and Agents.
pp. 105–120. University of Aarhus, Denmark (2001)

