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ABSTRACT
Complex Event Processing (CEP) enables autonomous and
real-time decision making in data management systems. To-
day, applications leverage CEP only in cloud-based envi-
ronments to provide prompt reactions, although data are
generated outside the cloud. In particular, the Internet of
Things (IoT) will increase the number of data producers
that a single IoT application has to handle millions of de-
vices. The centralized data collection before applying data
processing introduces a critical bottleneck in current cloud-
based solutions, especially for delay-sensitive IoT applica-
tions. To overcome this bottleneck, fog computing emerged
as a paradigm to process data close to the network edge.
However, CEP systems are not yet ready to leverage the fog
layer as an extension for cloud-based stream processing. In
this paper, we examine how the current system has to adapt
to exploit the new capabilities of the fog for CEP. To this
end, we analyze principal CEP methodologies and propose
new solutions. With this work, we lay the foundation for
large-scale in-network CEP applications on top of the IoT.

1. INTRODUCTION
Complex Event Processing (CEP) is a common method

for real-time stream processing to detect sequences of events
in data streams and triggers actions upon detection [7, 14,
16]. User-defined rules specify both the events and the ac-
tions that enable autonomous real-time decision making in
a wide range of applications, e.g., traffic congestion moni-
toring, live maps, intelligent transportation systems, smart
street lamps, or vehicle pollution control [1, 8, 24]. Sev-
eral cloud-based stream processing engines (SPEs) [4, 10,
21] provide CEP for rule-based monitoring as the current
solution for the Internet of Things (IoT) scenarios with low-
latency real-time response requirements. Under considera-
tion of the constant increase of IoT devices, future IoT appli-
cations will process data from potentially millions of devices.
Thus, cloud-based solutions are not capable of fulfilling the
low-latency real-time response requirements due to the mas-
sive amount of data generated in these future IoT applica-
tions [12, 22]. Zeuch et al. [22] address this problem and
propose a fog-cloud environment that leverages a fog layer
as extension of the cloud. Figure 1 presents the data flow in
both (a) cloud and (b) fog-cloud environment. On the left-
hand side, the cloud environment collects data of connected
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Figure 1: Data Flows in (a) Cloud Environments and (b)
Fog-Cloud Environments.

devices centrally 1 . Usually, the cloud environment uses a
data broker like Kafka for buffering data. Then, the cloud-
based SPE utilizes its almost unlimited resources to process
the collected data in the cloud 2 . However, the central data
collection before processing is highly resource-intensive and
causes significant delays as well as network overhead. Thus,
cloud environments introduce a critical bottleneck for future
IoT data management systems that must handle millions of
data streams [15, 22]. On the right-hand side, the fog-cloud
environment introduces an additional fog layer with a typ-
ical tree-like network topology 3 . The fog nodes M pro-

cess and reduce data on the paths through the network 4 .
Hence, they mitigate the central bottleneck and release net-
work capacities for low-latency real-time responses.

We argue that future IoT applications require a fog layer
to process millions of data streams efficiently. Therefore,
it is crucial to leverage fog environments for CEP and its
capabilities to enable future IoT applications with millions of
devices and thousands of rules. However, fog environments
introduce new challenges for CEP, e.g., stateful in-network
processing on low-end devices, changing network topologies,
and mobile IoT devices. We investigate how to tackle these
challenges in order to leverage the fog layer efficiently for
CEP. In this paper, we make the following contributions to
enable the IoT for CEP:

• We analyze state-of-the-art CEP systems and identify
the major limitations to leverage the IoT as a mean
for large-scale, in-network CEP.

• We highlight three concrete problems and sketch pos-
sible solutions to enable the IoT for CEP.



• We outline possible improvements to our approaches,
which extend state-of-the-art CEP processing in the
areas of pattern evaluation mechanisms, their opti-
mization, and pattern specification languages.

In the remainder of this paper, we analyze state-of-the-art
CEP concepts in Section 2. Then, we highlight what pre-
vents CEP from leveraging the IoT and outline three con-
crete problems in Section 3. In Section 4, we summarize
related work and conclude our findings in Section 5.

2. RESEARCH CONTEXT
In this section, we introduce the concepts of rules and

event patterns. Afterward, we show the state-of-the-art pat-
tern evaluation and optimization mechanism for CEP.

Rules: Rules build the knowledge base of the CEP engine
and are used in active database systems for autonomous re-
actions on data manipulations. For this purpose, the user
specifies rules with up to three components, i.e., event e,
condition c, and action a, which lead to the name ECA-
rules. Each tuple manipulation represents an event e that
might trigger the user-desired action a if e matches the
relation-specific or inter-event conditions c. Actions are
application-specific and can be user notifications such as
warnings and alerts or autonomous system actions such as
updating attribute values or triggering other rules [18].

Data Streams: We want to detect those rules in data
streams, where each data stream E is a continuous and un-
bounded flow of data tuples. Each generated tuple is an
event e that represents the state of its producer, e.g., an IoT
device, at a specific point in time ts. Due to the increasing
amount of geographically distributed IoT devices, the device
location s is another essential tuple attribute. To sum up,
each event source produces a stream E of events en with its
set of attributes E = {ts, s, a1, ..., an}, where ts and s are
spatiotemporal attributes, and an are non-spatiotemporal
attributes, e.g., measurements and identifiers [3].

Event Patterns: In SPEs, users define so-called simple
event patterns [4] as a complement to traditional ECA-rules.
A simple pattern is a 〈e, c〉 pair for one event type T . Event
types are the replacement of relations in stream processing
and provide a uniform schema T = {ts, s, a1, ..., an} for a
group of contributing streams En [20, 24]. For instance, all
sensors that measure the temperature at different locations
contribute to the type Ttemp. All arriving events are mon-
itored with the event type-specific conditions cTn , and an
action a is triggered if a matching event is detected.

Pattern Specification Language: The user formulates
complex patterns of monitoring tasks as a composition of
simple patterns from different event types. The relation-
ships between simple patterns are defined by event opera-
tors, which are either logical, e.g., AND, OR, or temporal,
e.g., the window operator WITHIN or the sequence oper-
ator SEQ, which defines the order of simple patterns [20].
A wide range of pattern languages with different sets of event
operators exists, e.g., SQL-like languages such as SASE+ [20,
23] and CCL [24], or languages based on event logic, e.g.,
CEL [6]. An example pattern for a vehicle pollution control
application can be formulated as follows: Detect if within
30 minutes an increased amount of vehicles (T1) is followed
by a decrease of the average speed (T2), which leads to an
excess of the air pollution level (T3). The example defines
a sequence of three consecutive simple patterns for different
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Figure 2: Evaluations Models for Pattern Detection: NFA
(a) and Tree Structure (b).

event types Tn, including a condition cTn for each type. We
use SASE+ [23] to specify the pattern in Listing 1.

Listing 1: Vehicle Pollution Control Example

PATTERN SEQ(T1 e1, T2 e2, T3 e3)
WHERE( e1.vehicleCount > cT1 AND

e2.speedLevel < cT2
AND

e3.pollutionLevel > cT3
)

WITHIN TIME.MINUTES (30)

Pattern Evaluation Mechanisms: To detect match-
ing events, SPEs create a pattern detection plan given the
internal pattern representation. Common detection plans
are tree-based plans [17], order-based plans with state ma-
chines [23], e.g., non-deterministic finite automaton (NFA),
as well as event processing networks and graphs [6, 11]. We
focus on the research lines with the highest number of repre-
sentatives, tree-based and order-based evaluation plans [9].
Naive approaches of both lines represent the pattern iden-
tical to the user-given formulation and create one instance
of the evaluation structure for each detected event. The de-
tection of a complex pattern subsequence is denoted as a
partial match, while the detection of a complete pattern is
called a full match [13]. The example evaluation structures
of an NFA in Figure 2a represents each partial match in
one state qn and a full pattern match in the final state F .
The tree-based mechanism creates a leaf for each simple pat-
tern (Figure 2b). Each intermediate node presents partial
matches and the root a full match.

CEP belongs to the group of stateful query processing
methods as SPEs need to store all partial matches either
until the next partial match is detected or the window is
expired. The number of partial matches is influenced by
many factors, e.g., query selectivity or event frequency, but
worst-case scenarios have exponential growth [14]. There-
fore, pattern detection plan optimization aims to reduce the
number of partial matches, e.g., by rewriting of single pat-
terns or sharing techniques for multi-pattern CEP [14].

An effective rewriting method is called Lazy NFA [13]. It
processes the pattern out-of-order by putting rare events in
front of the pattern sequence. Frequent events are buffered
and only analyzed after the rare event has been detected.

A new line of research focuses on the translation of pat-
terns into multi-join queries. Thereby, patterns can be eval-
uated as stream queries and leverage existing join query op-
timizations [13]. For instance, we could rewrite the example
pattern from Listing 1 (excluding WITHIN) by replacing
the SEQ operator with the AND operator and adding ad-
ditional inter-event constraints, as shown in Listing 2 [13,
24]. By replacing the temporal operator with a logical al-
ternative, the pattern can be translated into a join query
and profit from join-query optimizations.



Listing 2: CEP Traffic Pattern Example

PATTERN AND (T1 e1, T2 e2,T3 e3)
WHERE( e1.vehicleCount > conditionT1

AND
e2.speedLevel < cT2 AND
e3.pollutionLevel > conditionT3

AND
e1.ts < e2.ts AND
e2.ts < e3.ts)

3. LEVERAGE IOT FOR CEP
As opposed to fog-cloud environments, state-of-the-art

SPEs process a global union of all sources En as one large
stream. This processing strategy causes delays for mod-
ern IoT applications because it enforces the central data
collection from millions of sensors before processing. Fog-
cloud environments allow the processing of individual sen-
sor streams E or subsets of event types T close to the data
producers in the fog layer. Thus, this layer allows data re-
duction of more than 80% for stream queries, which reduces
network traffic and enables the system to handle the data
from millions of devices with low-latency [22].

Research Goal: We aim to leverage fog environments
for CEP and provide a solution that fulfills the low-latency
and real-time response requirements of future IoT applica-
tions. To this end, we investigate the core features of CEP:
pattern evaluation mechanisms, their optimization, and pat-
tern specification languages.

3.1 Pattern Evaluation Mechanisms
Efficient CEP requires a high-performance pattern eval-

uation mechanism. Currently, available evaluation mecha-
nisms optimized for cloud-based environments could be ap-
plied to fog-cloud environments, yet without leveraging the
fog layer, bottlenecks of cloud solutions would remain. Thus,
the first problem we want to tackle in this work is:

Problem I: Common cloud-based pattern evaluation mech-
anisms use a central component for data processing, pattern
detection monitoring, or both. This central component pre-
vents leveraging a fog environment without additional in-
network distribution strategies.

Opposed to the cloud paradigm, fog environments allow us
to tailor the data to the relevant only on the paths through
the network. As data is only shared with nodes on the net-
work path, the pattern detection plan needs to be aware of
the fog nodes that receive the relevant data to execute sub-
plans. Further, by running sub-plans on fog nodes, we need
to consider that CEP is a stateful processing method that
needs to store partial matches on low-end devices.

Solution Sketch: We intend to identify promising eval-
uation mechanisms for distributed pattern detection and
bring them together with the fog paradigm and distribution
strategies. Since no general pattern evaluation mechanism
with explicit performance guarantees exits, the selection of
one research line for fog environments is not straight forward
and requires an experimental evaluation. To this end, we
consider all three approaches, order-based, tree-based, and
pattern translation into multi-join queries (Sec. 2), as possi-
ble candidates. As the next step of our research agenda, we
intend to implement a naive distributed solution for each of
the three pattern evaluation mechanisms, including the nec-
essary adaptions to leverage the fog layer. Afterward, we
can compare our implementations using stream processing
metrics, e.g., forward delays for matches. Additionally, the
accuracy of our result in comparison with cloud solutions,

where all data is centrally available, can be evaluated by
accuracy metrics [9]. To this end, we can identify promising
in-network evaluation mechanism for fog environments and
optimize them further using our evaluation results in the
following step of our research agenda.

3.2 Optimization of Evaluation Mechanisms
Storing and maintaining large amounts of partial matches

is already a significant challenge in cloud environments with
almost unlimited resources capacities. For fog environments,
this challenge is even more critical as they contain low-end
devices with limited capabilities but need to deal with par-
tial matches of possibly hundreds of patterns. The hetero-
geneous hardware in fog environments lead to the second
problem we want to tackle:

Problem II: Cloud-based optimization techniques do not
consider the limitations and challenges of unreliable and mov-
ing low-end devices and dynamic network topology.

Both optimization techniques, rewriting of single patterns,
and sharing techniques for multi patterns (Sec. 2), aim to
improve the pattern detection plan in order to reduce par-
tial matches. Cloud-based implementations of these strate-
gies make assumptions that do not hold in fog environ-
ments. First, cloud-based SPEs examine the NP-complete
problem of calculating one optimal pattern detection plan
for their static network [7, 13]. In a dynamically chang-
ing network, the existing solutions would cause the expen-
sive re-computation of new optimal plans after each topol-
ogy change. Second, existing distributable solutions rarely
consider heterogeneous hardware and resource limitations of
low-end devices for distribution strategies [2, 19]. Third, to
enable the rewriting technique out-of-order pattern detec-
tion, we need to store event buffers for retrospective pattern
evaluation. Storing potentially high frequent events from
hundred of producers challenges again the capacity limits of
low-end devices and requires data compression.

Solution Sketch: With this work, we want to iden-
tify optimization techniques for distributed pattern evalu-
ation on mobile low-end devices for hundreds of concur-
rently running patterns. First, we intend to prevent the NP-
complete problem of finding one optimal solution and inves-
tigate strategies that identify sets of possible near-optimal
pattern detection plans. These plans can be used as avail-
able fall-backs in case of topology changes. Second, in a
fog-cloud environment, we can leverage the cloud as coor-
dinator for pattern maintenance and distribution. By dis-
tributing stateful computation tasks of pattern evaluation
to potentially mobile devices, an additional challenge ap-
pears: pattern evaluation might not be possible due to data
producers. In this case, the user must be informed that
currently, either monitoring is not possible or the results
are probabilistic, e.g., derived from nearby sensors. Third,
we want to investigate efficient compression techniques, e.g.,
partial aggregations [5], for event buffers on low-end devices
to enable out-of-order pattern detection. Furthermore, the
translation of patterns into multi-join queries enables an-
other potential optimization strategy. In essence, we can
combine both stream queries and pattern detection in one
engine for optimization and maximize results sharing in fog-
cloud environments. To this end, we leverage traditional
CEP optimization strategies for low-end devices in a dy-
namic network and herewith enable efficient CEP for mil-
lions of devices and thousands of patterns.



3.3 Pattern Specification Language
Similar to evaluation mechanisms, no general pattern spec-

ification language exists, so no comprehensive set of event
operators is available. Further, some languages lack formal
semantics, provide limited expressiveness, or prevent auto-
mated optimization [6, 19, 20]. Besides, these languages are
designed and optimized for single machines or cloud appli-
cations without considering future IoT applications. Thus,
the third problem we want to tackle is:

Problem III: Existing specification languages lack essen-
tial event operators because they were initially not intended
for IoT applications. Further, many of them introduce re-
strictions that negatively impact efficient distributed CEP
optimizations.

We want to enable the formulation of complex patterns
for IoT applications by identifying an easy-to-use specifica-
tion language with the necessary set of event operators. For
Problem I and II, we focus on the most common set of event
operators, i.e., AND, OR, NOT , SEQ [6, 13] and extend
it in this step of our research agenda.

Solution Sketch: Giatrakos et al. [11] reviewed the pat-
tern specification languages of several CEP systems accord-
ing to their expressiveness, including the Big Data SPE
Apache Flink [4]. In contrast to other SPEs such as Apache
Storm [10] or Spark [21], Flink provides built-in support for
CEP [11] and additional operators compared to traditional
single-machine CEP systems. However, Flink does not offer
a specification language but provides an API with low-level
functions. To this end, we use its pattern API as a baseline
for our operator set and investigate how these operators can
leverage a fog layer. Further, we build a pattern specification
language on top of this operator set under the consideration
of other leading languages, e.g., ZStream [17].

4. RELATED WORK
In this section, we summarize the state of the art of related

work and highlight the major differences to our approach.
CEP Optimization: Kolchinsky and Schuster [13] proved

that the pattern detection plan could be translated into
multi-join queries and leverage join-query optimization. We
utilize this result and consider multi-join queries as one pos-
sible evaluation mechanism for fog-cloud environments. An-
other novel approach proposed by Kolchinsky and Schus-
ter [14] is the combination of rewriting and prefix sharing to
optimize multi-pattern CEP. We intend to leverage a subset
of these techniques for our approach.

In-network CEP: Madumal et al. [16] proposed a tree-
based pattern evaluation approach for CEP with a rule en-
gine that schedules the events either to a local CEP engine
of a fog node or the Cloud CEP engine. As opposed to
their approach, we focus on pattern evaluation in multiple
nodes to leverage the tree-like topology of fog environments.
Comet [7] is a decentralized ordered-based CEP approach for
delay-tolerant networks. Akdere et al. [2] propose network-
aware distribution strategies managed by a central control
instance. Parts of both the approaches mentioned above
can be reused for our CEP implementation. Nevertheless, in
contrast to both, we focus on a solution that considers the
limitations of low-end devices in a dynamic environment.
Akili [3] motivated the need for decentralized CEP and pro-
posed a tree-based approach for efficient multi-sink opera-

tor placement for non-hierarchical SPE. Multi-sink operator
placement is a general stream processing problem and thus
a complementing feature of our solution.

5. CONCLUSION
In this paper, we introduce and motivate our goal to en-

able efficient CEP for IoT data management systems in fog-
cloud environments. We review the state-of-the-art solu-
tions, identify their problems to leverage the fog layer, and
suggest possible solutions. Further, we propose the follow-
ing three steps to reach our goal: (I) identify and evaluate
appropriate in-network pattern evaluation mechanisms for
fog-cloud environments, (II) leverage and adapt optimiza-
tion techniques for these mechanisms that fit the properties
of low-end devices, and (III) build a pattern specification
language for the IoT with CEP operators that leverage the
fog layer. Next, we focus on Problem (I) and the imple-
mentation of evaluation mechanisms, including adaptions,
to leverage the fog layer. Then, we use this baseline to op-
timize our solution.
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