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ABSTRACT
Subsequence anomaly detection in long sequences is an im-
portant problem with applications in a wide range of do-
mains. However, the approaches that have been proposed
so far in the literature have severe limitations: they either
require prior domain knowledge that is used to design the
anomaly discovery algorithms, or become cumbersome and
expensive to use in situations with recurrent anomalies of
the same type. In this Ph.D. work, we address these prob-
lems, and present unsupervised methods suitable for domain
agnostic subsequence anomaly detection. We explore two
possible way to represent the normal behavior of a long
data series that lead to fast and accurate identification of
abnormal subsequences. These normal representations are
either based on subsequences (using a data structure called
the normal model), or on graphs, by taking advantage of
graph properties to encode the normal transitions between
neighboring subsequences of a long series. The experimental
results, on a large set of synthetic and real datasets, demon-
strate that the proposed approaches correctly identify single
and recurrent anomalies of various types, without any prior
knowledge of the characteristics of these anomalies. Our
approaches outperform by a large margin several competing
approaches in accuracy, while being up to orders of magni-
tude faster.

1. INTRODUCTION
Time series1 anomaly detection is a crucial problem with

application in a wide range of domains. Examples of such
applications can be found in manufacturing, astronomy, en-
gineering, and other domains [10, 11]. This implies a real
need by relevant applications for developing methods that
can accurately and efficiently achieve this goal.

1A time series, or data series, or sequence, is an ordered se-
quence of real-valued points. If the dimension that imposes
the ordering is time then we talk about time series, but
it could also be mass, angle, position, etc. We will use the
terms time series, data series, and sequence interchangeably.
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Anomaly detection is a well studied task [2, 13, 16, 8]
that can be tackled by either examining single values, or
sequences of points. In the specific context of sequences,
which is the focus of this paper, we are interested in iden-
tifying anomalous subsequences [16, 12, 8], which are not
single abnormal values, but rather an abnormal sequence of
values. In real-world applications, this distinction becomes
crucial: in certain cases, even though every individual point
may be normal, the trend exhibited by the sequence of these
same values may be anomalous. Evidently, failing to iden-
tify such situations could lead to severe problems that are
only detected when it is too late.

Some existing techniques explicitly look for a set of pre-
determined types of anomalies [1]. These are techniques that
have been specifically designed to operate in a particular
setting, they require domain expertise, and cannot general-
ize. Other techniques identify as anomalies the subsequences
with the largest distances to their nearest neighbors (termed
discords) [16, 12]. The assumption is that the most distant
subsequence is completely isolated from the ”normal” sub-
sequences.

However, this definition fails in the case where an anomaly
repeats itself (approximately the same). In this situation,
anomalies will have other anomalies as close neighbors, and
will not be identified as discords. In order to remedy this
situation, the mthdiscord approach has been proposed [15],
which takes into account the multiplicitym of the anomalous
subsequences that are similar to one another, and marks as
anomalies all the subsequences in the same group. However,
this approach assumes that we know the cardinality of the
anomalies, which is not true in practice (otherwise, we need
to try several different m values, increasing drastically the
execution time). Furthermore, the majority of the previous
approaches require prior knowledge of the anomaly length,
and their performance deteriorates significantly when the
correct length value is not used.

Our work addresses the aforementioned problems. We
proposed two approaches aiming to build a normal represen-
tation of the data series, which enables to identify anomalous
subsequences. The two approaches use different data struc-
tures to represent the normal behavior of the sequences; they
are summarized below:

• NormA [3, 4], a normal-model based subsequence
anomaly detection method in large data series, for
which the normal data structure is a set of sub-
sequences paired with a weight. The higher those
weights are, the more ”normal” their paired subse-
quences are.



• Series2Graph [5, 6], an unsupervised graph-based ap-
proach for subsequence anomaly detection in large
data series, for which the data structure is modeled
as a directed graph. Nodes fo this graph can be seen
as subsequences of the data series.

2. NORMAL BEHAVIOR
In this section we describe our proposed approaches to the

aforementioned problems. In the next part we describe the
notions and the elements used in our solutions.

We begin by introducing some formal notations useful for
the rest of the paper. A data series T ∈ Rn is a sequence
of real-valued numbers Ti ∈ R [T1, T2, ..., Tn], where n = |T |
is the length of T , and Ti is the ith point of T . We are
typically interested in local regions of the data series, known
as subsequences. A subsequence Ti,` ∈ R` of a data series
T is a continuous subset of the values from T of length `
starting at position i. Formally, Ti,` = [Ti, Ti+1, ..., Ti+`−1].
Given two sequences, A and B, of the same length, `, we
can calculate their Z-normalized Euclidean distance, dist,

as follows: dist =
√∑`

i=1(Ai−µA
σA

− Bi−µB
σB

)2, where µ and

σ represent respectively the mean and standard deviation
of the sequences. For the remaining of this paper, we will
simply use the term distance.

Given a subsequence Ti,`, we say that its mth Nearest
Neighbor (mth NN) is Tj,` if Tj,` has the mth shortest dis-
tance to Ti,` among all the subsequences of length ` in T ,
excluding trivial matches; a trivial match of Ti,` is a subse-
quence Ta,`, where |i− a| < `/2 (i.e., the two subsequences
overlap by more than half their length). Since we are in-
terested in subsequence anomalies, we first define the set
of all subsequences of length ` in a given data series T :
T` = {Ti,`|∀i.0 ≤ i ≤ |T | − ` + 1}. In general, we assume
that T` contains both normal and anomalous subsequences.
We then need a way to characterize normal behavior. For
the purpose of the paper, we abstractly define the normal
behavior of the data series as follows:

Definition 1 (Normal Behavior, NB). Given a
data series T , NB is a model that represents the normal
(i.e., not anomalous) trends and patterns in T .

The above definition is not precise on purpose: it allows
several interpretations, which can lead to different kinds of
models. Nevertheless, subsequence anomalies can then be
defined in a uniform way: anomalies are the subsequences
that have the largest distances to the expected, normal be-
havior, NB (or their distance is above a set threshold). Both
of the proposed approaches will define their own data struc-
ture to represent NB , as well as their own distance measure.

2.1 The NormA Approach
We describe a new approach for subsequence anomaly

detection. We propose a formalization for NB ,
called the Normal Model, denoted NM , and defined
as follows [3]: NM is a set of sequences, NM =
{(N0

M , w
0), (N1

M , w
1), ..., (Nn

M , w
n)}, where N i

M is a subse-
quence of length `NM (the same for allN i

M ) that corresponds
to a recurring behavior in the data series T , and wi is its
normality score (as we explain later, the highest this score is,
the more usual the behavior represented by N i

M is). In other
words, this model averages (with proper weights) the differ-
ent recurrent behaviors observed in the data, such that all
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Figure 1: Illustration of the two subsequence
anomaly definitions proposed approaches: (a)
NormA; (b) Series2Graph.

the normal behaviors of the data series will be represented
in the normal model, while unusual behaviors will not (or
will have a very low weight).

Figure 1(a) is an illustration of a Normal Model. As de-
picted, the Normal Model NM is a weighted combination of
a set of subsequences (points within the dotted circles). The
combination of these subsequences and their related weights
returns distances di, dj , dk that are high enough to be differ-
entiated from the normal points/subsequences. These dis-
tances can be seen as the distance between subsequences
and a weighted barycenter B (in green) that represents NM .
Note that we do not actually compute this barycenter; we
illustrate it in Figure 1(a) for visualization purposes.

We choose `NM > ` in order to make sure that we do
not miss useful subsequences, i.e., subsequences with a large
overlap with an anomalous subsequence. For instance, for
a given subsequence of length `, a normal model of length
`NM = 2` will also contain the subsequences overlapping
with the first and last half of the anomalous subsequence.
We can now define the Abnormal subsequences as follows [3].

Definition 2 (Subsequence Anomaly). Assume a
data series T , the set T` of all its subsequences of length
`, and the Normal Model NM of T . Then, the subsequence
Tj,` ∈ T` with anomaly score, i.e., distance to NM ,
dj =

∑
Ni

M
wi ∗ minx∈[0,`NM

−`]
{
dist(Tj,`, (N

i
M )x,`)

}
is an

anomaly if d is in the Top-k largest distances among all
subsequences in T`, or d > ε, where ε ∈ R>0 is a threshold.

Note that the only essential input parameter is the length
` of the anomaly (which is also one of the inputs in all rel-
evant algorithms in the literature [12, 16, 7, 9, 8]). The
parameter k (or ε) is not essential, as long as the algorithm
can rank the anomalies.

We stress that in practice, experts start by examining the
most anomalous pattern, and then move down in the ranked
list, since there is (in general) no rigid threshold separating
anomalous from non-anomalous behavior [2].

As we mentioned above and will detail later on, we choose
to define NM as a set of sequences that summarizes normal-
ity in T , by representing the average behavior of a set of
normal sequences. Intuitively, NM is the set of data series,
which tries to minimize the sum of Z-normalized Euclidean
distances between itself and some of the subsequences in T .
Last but not least, we need to compute NM in an unsuper-
vised way, i.e., without having normal/abnormal labels for
the subsequences in T`.



Observe that this definition of NM implies the following
challenge: even thoughNM summarizes the normal behavior
only, it needs to be computed based on T , which may include
(several) anomalies. We address these challenges by taking
advantage of the fact that anomalies are a minority class.

2.1.1 NormA Framework
We now briefly describe NormA [3], our unsupervised so-

lution to the subsequence anomaly detection problem.
[Computing the Normal Model] Recall that NM should
capture (summarize) the normal behavior of the data. This
may not be very hard to do for a sequence T that does not
contain any anomalous subsequences. In practice though,
we want to apply the NormA approach in an unsupervised
way on any sequence, which may contain several anomalies.

We compute the NM in three steps. First, we extract
the subsequences that can serve as candidates for building
the NM . These candidates are either randomly selected
from T (NormA-smpl), or correspond to motifs. Then,
we group these subsequences according to their similarity
in a set of clusters C (we use hierarchical clustering and
Minimum Description Length to identify the right num-
ber of clusters). The last step consists of scoring each
cluster, and selecting the cluster that best represents nor-
mal behavior. Formally, for a given cluster c ∈ C, we
set a weight wc = Norm(c,C) with the following for-

mula: Norm(c,C) = Frequency(c)2×Coverage(c)∑
x∈C dist(Center(c),Center(x))

, where

Frequency(c) is the number of subsequences in c, and
Coverage(c) is the time interval between the first and the
last occurrence of a subsequence in c. We thus set NM =
{(N0

M , w
0), (N1

M , w
1), ..., (Nn

M , w
n)}, with N i

M the centroid
of the ith cluster in C.
[Normal Model Based Anomaly Detection] Intu-
itively, the anomalous subsequences of the long series T are
the ones that are far away from NM . We thus compute the
meta S = [d0, d1, ..., d|T |−`NM

], with dj the distance of the

subsequence Ti,j to the Normal Model NM as defined in Def-
inition 2. These distances correspond to the degree of abnor-
mality: the larger the distance is to NM , the more abnormal
the subsequence is. We then extract the k subsequences of
length ` with the highest distances to NM , and rank them
according to their distances. Alternatively, we can extract
all subsequences with distance larger than a threshold.

2.2 The Series2Graph Approach
We now present an alternative data structure to represent

the subsequences normal behaviors of the data series. The
previous normal model was a set of subsequences that aimed
to store both normal and abnormal subsequences into the
same set, associated with weights that rank them based on
their normality. One can argue that an ordering information
is missing from this data structure representation. We thus
formulate an approach for subsequence anomaly detection
based on the data series representation into a Graph, in
which edges encode the ordering information [5]. Figure 1(b)
illustrates the Graph data structure.

We first define several basic elements related to graphs.
We define a Node Set N as a set of unique integers. Given a
Node Set N , an Edge Set E is then a set composed of tuples
(xi, xj), where xi, xj ∈ N . w(xi, xj) is the weight of that
edge. Given a Node Set N , an Edge Set E (pairs of nodes in
N ), a Graph G is an ordered pair G = (N , E). A directed

graph or digraph G is an ordered pair G = (N , E) where N
is a Node Set, and E is an ordered Edge Set.

We now provide a new formulation for subsequence
anomaly detection. The idea is that a data series is trans-
formed into a sequence of abstract states (corresponding to
different subsequence patterns), represented by nodesN in a
directed graph, G(N , E), where the edges E encode the num-
ber of times one state occurred after another. Under this
formulation, paths in the graph composed of high-weight
edges and high-degree nodes correspond to normal behavior.
Then, the Normality of a data series is defined as follows [5].

Definition 3 (θ-Normality). Let a node set be de-
fined as N = {N1, N2, ..., Nm}. Let also a data series T

be represented as a sequence of nodes 〈N (1), N (2), ..., N (n)〉
with ∀i ∈ [0, n], N (i) ∈ N and m ≤ n. The θ-
Normality of T is the subgraph Gνθ (Nν , Eν) of G(N , E) with

E = {(N (i), N (i+1))}i∈[0,n−1], such that: Nν ⊂ N and

∀(N (i), N (i+1)) ∈ Eν , w((N (i), N (i+1))).(deg(N (i)) − 1) ≥ θ.

Using θ-Normality subgraphs naturally leads to a ranking
of subsequences based on their ”normality”. For practical
reasons, this ranking can be transformed into a score, where
each rank can be seen as a threshold in that score. We used
such a score in GraphAn to detect abnormal subsequences.

Note that given the existence of graph G, the above def-
initions imply a way for identifying the anomalous subse-
quences. The problem is now how to construct this graph.

2.2.1 Series2Graph Framework
We now briefly describe Series2Graph [5, 6], our unsuper-

vised solution to the subsequence anomaly detection prob-
lem. For a given data series T , the overall Series2Graph
process is divided into four main steps as follows:

[Subsequence Embedding] We project all the subse-
quences (of a given length `) of T in a three-dimensional
space that corresponds to the three most important com-
ponents of the Principle Component Analysis (PCA). This
space is subsequently transformed into a two-dimensional
space, composed of two components ~ry, ~rz corresponding to
two orthogonal vectors of ~vref , an axis composed of every
flat sequences (a ∗ 1`−λ with a ∈ R). In the later space, the
shape similarity is preserved [5].

[Node Creation] We then create a node for each one of
the densest parts of the above two-dimensional space. The
space is first discretized by a set of radius Iψ of angle ψ. We
then estimate the density of subsequences along each one of
these radius using gaussian kernels. The maximal values of
the estimated densities are assigned to nodes and form our
Node Set N . These nodes summarize all major patterns of
length ` that occurred in T [5].

[Edge Creation] We then retrieve all transitions between
pairs of subsequences represented by two different nodes:
each transition corresponds to a pair of subsequences, where
one occurs immediately after the other in the input data se-
ries T . We represent transitions with an edge between the
corresponding nodes, and we thus form the Edge Set E . The
edge weights are set to the number of times the correspond-
ing pair of subsequences was observed in T . Finally we build
our graph G`(N , E).

[Subsequence Scoring] We compute the normality
(or anomaly) score of a subsequence of length `q ≥ `
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Figure 2: Comparison of six state-of-the-art meth-
ods to Series2graph and NormA: (a) Precision@k
with a critical diagram over 21 datasets; (b) execu-
tion time vs varying number of points; (c) execution
time vs varying anomaly length.

(within or outside of T ), based on the previously com-
puted edges/nodes and their weights/degrees. Formally, for
a subsequence Ti,`q of T , represented by a path in G`(N , E)

Pth = 〈N (i), N (i+1), ..., N (i+`q)〉, the normality score is de-

fined as: Norm(Pth) =
∑i+`q−1
j=i

w(N(j),N(j+1))(deg(N(j))−1)
`q

,

where w(e) and deg(n) are the weight of edge e and the
degree of node n, respectively.

2.3 Experimental Analysis
In our preliminary experimental evaluations [3, 5], we used

21 synthetic and real datasets from diverse domains, and
measured Precision@k (i.e., accuracy in the Top-k answers)
and execution time. (Due to lack of space, we only report
here aggregated results.)

After rejecting the null hypothesis using the Fried-
man test, we used the pairwise Post-Hoc Analysis with a
Wilcoxon signed-rank test (α = 0.05) [14], and we depict the
results in Figure 2(a). The results show that the NormA and
Series2Graph approaches are the overall winners, perform-
ing statistically significantly better than the state-of-the-art
algorithms from both the data series and the multidimen-
sional data communities. (Even though Series2Graph seems
to be slightly better than both variants of Norma, this dif-
ference is not statistically significant.)

Moreover, Figures 2(b) and (c) demonstrate that NormA-
smpl and Series2Graph are considerably faster than the
other methods (note the log-scale y-axis). In particular,
NormA-smpl is between 1-3 orders of magnitude faster than
the rest, as we increase the length of the input sequence, or
the length of the anomalies.

We note that further experiments are needed in order to
compare in detail our proposed methods.

3. CONCLUSIONS AND FUTURE WORK
Our studies on NormA and Series2Graph, described

above, constitute a first attempt to formalize the problem of
Normal Behavior representation in the context of data se-
ries. The two proposed approaches describe data structures
based on subsequence sets and graphs, respectively. The ex-
perimental results show that both NormA and Series2Graph
outperform the current state-of-the-art techniques methods
over a large set of diverse datasets. This indicates that the

proposed approach of using a Normal Behavior model for the
subsequence anomaly detection problem is very promising.

In our current work, we focus on the following directions.
[Normal Behavior Model] We will study in depth dif-
ferent models for Normal Behavior, and perform analytical
and experimental comparisons among them. The goal will
be to understand the theoretical properties, as well as the
practical limitations of each one, so as to make informed
decisions about the best model to use.
[Multivariate Data Series] Given that many domains
monitor, process, and analyze multivariate data series, we
will work on algorithms that will inherently consider to-
gether all variables of the series. The challenging problems
are how to create a multivariate Normal Behavior model
and corresponding data structure, and how to define and
formalize suitable distance measures for this case.
[Online Operation] In several situations, subsequence
anomaly detection applications need to operate in an on-
line fashion. In this context, we will develop extensions of
our methods for real-time applications. We will analyze the
impact of data characteristics changes on the Normal Behav-
ior models, and explore solutions for updating the Normal
Behavior data structures in real-time.
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